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Natural generalizations of the quaternion algebra called quaternionlike algebras (gl algebras)
are considered. The notion of a Lie algebra induced by a gl algebra is introduced and a
classification of such Lie algebras is presented. It is shown that local Lie groups defined by Lie
algebras induced by gl algebras exhaust, with accuracy to local isomorphisms, all local Lie
groups endowed with some simple composition laws of their local parameters.

I. INTRODUCTION

It is well known' that the group SO(3;R) [SO(2,1;R)]
is locally isomorphic to the local Lie group*® (R *,p), where
@ is a mapping of some sufficiently small open neighborhood
UCR *XR? of the point 0eR > X R * into R * defined as fol-
lows:

XAyt

1+ gmxy™
iy joo = 1,2,3; x = (x',x%,x%), y='yy), z
= (2',2%,2°)eR 3, €% is the totally antisymmetric Levi-Ci-
vita symbol in three dimensions; the matrix (g;;)
:=diag( ~1,—1,—1) [for SO(2,1;R), (&)
: = diag(1,1, — 1)] enables one to lower the indices
i, j,... according to the rule x;: = g,;x’, y;: =g,,;p’; the sum-
mational convention applies.

The composition law (1.1) is very attractive because of
its simplicity. Therefore the natural question arises whether
the formula (1.1) is “rigid,” or whether, by changing '/
and g;; into more general real or complex objects, assuming
also that x, y, z are elements of R" or C", respectively, with a
suitable 7, one can find the composition laws for some other
local Lie groups. In the present paper we answer this ques-
tion.

In Sec. II we consider the associative algebras which
generalize the quaternion algebra in a natural manner and
due to this fact we call them quaternionlike algebras, or,
briefly, ql algebras. In particular they contain the quaternion
algebra and the generalized quaternion algebra.**

If Qis an (n + 1)-dimensional gl algebra (n>>1) over F
( = R or C), then, as we shall see in Sec. II, there exists a
unique decomposition @ = Fe, & V, where ¢, is the unity of
Q@ and ¥V is an n-dimensional vector subspace of Q such that
for each vector veV, vveFe,. Then, for any v,weV their com-
mutator [v,w]: = vw — wv belongs to V. Thus the pair
(¥1-,*1) is an n-dimensional Lie algebra over F which we
call a Lie algebra induced by Q and denote by Q; . It appears
that the local Lie group defined by Q; is locally isomorphic
to some local Lie group with composition law being the
modification of the formula (1.1) as it has been described
above. To establish this isomorphism we define some n-di-
mensional Lie group H, which is a suitable subset of Q and

@: US(x,y)—zeR? 72 , (LD

* On leave of absence from the University of Warsaw, Warsaw, Poland.
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we show that the Lie algebra of H, can be identified with
Q... We find a local coordinate system in a neighborhood of
the identity of H,, such that the composition law expressed
in terms of this local coordinate system is just the appropri-
ate modification of (1.1). In this way one finds a mapping
from the class of all nonisomorphic ql algebras onto the class
of all locally nonisomorphic local Lie groups the composi-
tion laws of which are some definite modifications of the law
(1.1). We will prove also that for gl algebras of dimension
n + 1> 2 this mapping is 1:1. The local coordinate system
we have just spoken about enables us to write down in a
concise form the Baker—Campbell-Hausdorff series'*>*° for
the elements of any Q; algebra. Our formula is an obvious
generalization of the analogous formulas given for the Lie
algebras SO(3;R) and SO(2,1;R)."*’ Moreover, it can be
found that if @ is the quaternion algebra, then the group H,
appears to be the group of all quaternions of norm 1 and one
has the well-known isomorphism H, =SU(2).

In Sec. III the classification of Lie algebras induced by
ql algebras is given. Thus, of course, the classification of
local Lie groups endowed with the composition laws being
simple modifications of (1.1) is also given. We study real
and complex algebras separately. Employing the results of
Bianchi,® Behr et al.,’ Ellis and MacCallum,'® MacCal-
lum,'"'? Mubarakzyanov,!> Morozov,!* and Patera et
al.'>'® we list all real Lie algebras of dimension 2<n<6 in-
duced by real gl algebras.

Concluding remarks close our paper.

il. QUATERNIONLIKE ALGEBRAS, INDUCED LIE
ALGEBRAS, AND LOCAL LIE GROUPS

Let Q be an (n + 1)-dimensional (n>1) algebra with
unity e, over F ( = R or C) for which there exists a decom-
position

Q=Fe,0V, (2.1)

where V is an n-dimensional vector subspace of ¢ such that
for each vector veV, vveFe,.

We have the following.

Proposition 2.1: The decomposition (2.1) is unique.

Proof: Let Q = Fey® V,. We will show that ¥V, = V. In-
deed, if v, is any nonzero vector in V,, then, by (2.1),
v, = ae, + v with aeF and O #veV. From the assumption we
have v,v,€Fe, and vveFe,. Hence it follows that av = 0, and
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in consequence, as v#0, @ = 0. It means that v, e¥. If v, =0,

then, of course, v,€V. Thus one finds that ¥, CF. Analo-

gously we prove the inclusion PC V. Finally ¥, =V. N
Let e,,...,e,, be a basis of V. Then

(2.2)

where small Latin indices 4, j, X (as well as [, m, p,... in our

further considerations) are assumed to run through 1,...,n

and X, C* ,;€F; the summational convention applies. [ The

factors 1 and } in (2.2) are taken for further convenience. ]
We intend to establish that

Ck — _Ck

i

. k
ee; = 1K e0+31C " e,

i 2.3)
We first prove the following.
Proposition 2.2: If the vectors v,weV, then vw + wveFe,,

Proof: By the definition of ¥ one infers that
w4+ w)(v+w) =+ ww + vw + wveFe, ,

vveFe, and wweFe,. Hence, our assertion holds. |

Utilizing Proposition 2.2 one can easily verify (2.3). In-
deed, from Eq. (2.2) and Proposition 2.2 we get

ee; +ee; =1(K,; +K;)eo + 3(CH,; + C¥,)e eFe, .
Thus C*,; + C*;, =0and (2.3) holds.

Now the question arises under what assumptions the
algebra Q appears to be associative. We give an answer to this
question by establishing three theorems which are funda-

mental for our further purposes.
Theorem 2.1: Here Q is an associative algebra iff

Cljmcmki =Kjk61i —Kijalk ’ (2.4)
KiICIjk =Klkclij . (2.5)
Proof: Clearly Q is an associative algebra iff

(ee,)e, = e;(ejey) (2.6)

for arbitrary 7, j,k = 1,...,n. Employing Eqgs. (2.2) and (2.3)
one can easily find that the requirement (2.6) is fulfilled iff
the equations

—CLC™y — ChenC™ = K6 — K8 2.7
and (2.5) hold. Executing the antisymmetrization [i jk] in
(2.7) one obtains the Jacobi identity

C™i;Clam =0. (2.8)

Using (2.3) and (2.8) to the left-hand side of (2.7) we get
(2.4). This completes the proof. ]

If n = 1 then Egs. (2.4) and (2.5) are satisfied for every
K,, (wehave of course C'';; = 0). Hence for n = 1 the alge-
bra Q is associative for an arbitrary K;;. If n > 1, then K is
defined in terms of C' ;. In fact we have the following.

Theorem 2.2: If n> 1, then Eq. (2.4) necessitates the
following formula:

K, =K, =[1/(n—1)]C"C", . (2.9)

Proof: 1t is a straightforward matter to show that Eq.
(2.4) yields (2.8) and then, by (2.3), also (2.7). Contract-
ing (2.7) with respect to the indices / and &, and then with

respect to / and 7 one gets
-cl,cry—Cl,Cmy=nK,; — K

i Ji 0

- Cllmcmkj - Clkmcmjl =K;; —nK .

(2.10)
(2.11)
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Changing the index k—i in formula (2.11) and adding the
result to (2.10), employing also (2.3), we obtain (n -+ 1)

X (K;; — K;;) =0. Thus

K,;=Kj. (2.12)
Contracting Eq. (2.4) with respect to the indices / and k,
utilizing (2.12) and (2.3), one gets (2.9). [ ]

Our analysis of the conditions under which Q is an asso-
ciative algebra is closed by the following theorem.

Theorem 2.3: For n#3, Egs. (2.4) and (2.5) yield the
following formula:

K,Cl =0. (2.13)

Proof: For n = 1, Eq. (2.13) holds. If n#1, then con-
tracting (2.4) with C/,,, using also (2.3), (2.5), and (2.9),
we have (n — 3) K,,,,C™ \; = 0. Thus the theorem holds. B

The most distinguished example of our algebras is the
quaternion algebra which is realized when n =3 and C*;
=26 (=>K,, = —45',). Then taking n =3 and C*;
=2d"€" (= K,;; = — 4a'§’; of course, there is no summa-
tion over i or k) with @®> = 1 one constructs the so-called
generalized quaternion algebra (see van der Waerden,* §93,
Jacobson,’ Sec. X, §7). The cited examples make it reason-
able to call our algebras quaternionlike algebras. Thus we
arrive at the definition.

Definition 2.1: A quaternionlike algebra (ql algebra) is
an associative algebra Q with unity admitting the decompo-
sition (2.1).

If @ is an (n + 1)-dimensional gl aigebra over ¥ and
Q= Fe,@ V is the decomposition (2.1), then the pair
(V,[-," 1), where

[,']: VXV (vw)—[v,w]: =vw — wvelV,

is an n-dimensional Lie algebra over F which we call a Lie
algebra induced by Q and we denote it by Q. .From (2.2) it
follows that the numbers C* ; are the structure constants of
Q; with respect to the basis e,,...,e, . Then from (2.9) one
finds that the numbers (n —~1) K;; constitute the compo-
nents of the Killing tensor of @; (Refs. 2 and 5) with respect
to the basis ¢,,...,e,, .

Let g = g%, + ¢'e; be an element of an (n + 1)-dimen-
sional gl algebra Q. Then, the vector ¢: = ¢°¢, — ¢'e,€Q is
said to be a conjugate vector to the vector g. Define the fol-
lowing subset of Q.

H,:={geQ: g7 = le,} . (2.14)
Employing the formulas (2.4) and (2.5) one can easily
check that the set H, together with the multiplication inher-
ited from Q constitute a group. Moreover, as Q possesses a
differentiable structure of #7* !, then H, is an n-dimen-
sional submanifold of @. Finally, H, is an n#-dimensional
(real or complex) Lie group. [ Notice that if Q is the quater-
nion algebra, then we have a well-known isomorphism
H, =SU(2).] Let now WC H, be an open neighborhood of
ey in Hy, such that the pair (W,#) is an allowable chart of
H,, where ¢: W—F" is a mapping which sends g = ¢%,

+g'e;eWinto (q'/q°,....q"/q°)eF". Let peW, geW, and
p,geW. Then, denoting x: = p'/p°, y: = ¢'/¢°, ' : = (pq)'/
(p9)°, using (2.2), one finds
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xi+yi+ %C;kxj_.yk

1+ 3K, xy"
where x stands for (x',...,.x" ey (W) CF " and analogously
y stands for (',...,y" Yey(W) CF". Henceforth we call the
coordinates x', ¥, 2/, etc., the projective coordinates. Thus
one arrives at the following.

Theorem 2.4: Let Q be an (n + 1)-dimensional gl alge-
bra over Fand let H, be an n-dimensional Lie group defined
by the formula (2.14). Let UCF” X F" be an open neigh-
borhood of the point 0eF” XF" such that for every
(x,y)el,

1+ 1K, xy/#0, (2.16)

where K, is defined according to (2.2); moreover, (0,y) and

(x,0) are elements of U for all x,yeF". Then the pair

(F",mg) is a local Lie group locally isomorphic to Hy,

where 7,: U~ F" is a mapping defined as in (2.15). n
From (2.15) we find immediately

%7 (x,p) 3*r(x,p) ;

(’_'__". 7 )x:——O - (’_“‘_"'_"“k - )x=0 = Cjk .

x’ay* /0 ax*ady! /, o
Therefore, the numbers C ‘;,-k are the structure constants of
the Lie algebra of H, [and, of course, of (F",my)] with
respect to a suitable chart (W,¢) [(¢¥(W),id), respective-
Iy].? Thus we can identify these Lie algebras with the Lie
algebra @L . The formula (2.15) resembles closely (1.1). In
fact (2.15) is a ““natural” modification of (1.1), that we have
spoken about in the Introduction. But, for completeness, one
should solve the following problem: LetK;;, C';, = — C'y;
besome numbersin Fand let UCF " X F " be an open neigh-
borhood of the point OeF "X F" defined analogously as in
Theorem 2.4. Finally, let 7r: U— F " be a mapping defined as
in (2.15). The question is what the conditions are for the pair
(F",m) to be a local Lie group.

The answer is the following.

Theorem 2.5: (F ") is a local Lie group iff Eqs. (2.4)
and {2.5) hold.

Proof: First, 7(x,0) =0=m(0,x) for every xeF”;
moreover, if ( — x,x)elU, then 7( — x,x) = 0. The map-
pings 7: U~ Fand F"3x> — xeF " are analytic. Therefore
it remains only to prove that if (x,y)eU, (y,2)eU, (7(x,p),2)
€U, and (x,7(y,2))eU, then

a{m(x,p),2) = mix,m(p,2)) - (2.18)

Simple manipulations show that (2.18) is satisfied iff Egs.
(2.4) and (2.5) hold. Thus the proof is complete. ]

From Theorem 2.5 and our previous considerations it
follows that there exists a 1:1 correspondence between the
class of all nonisomorphic ql algebras of dimension > 2 and
the class of all locally nonisomorphic local Lie groups of
dimension > 1 endowed with the composition laws of the
form (2.15), where X, andC’y = — C " are the elements
of F. Every Lie algebra induced by a gl algebra can be identi-
fied with the Lie algebra of the corresponding local Lie
group. One easily finds that in the case of the quaternion
algebra [Q,_ ~50(3;R)] the formula (2.15) turnsinto (1.1)
with (g,;) = diag( — 1, — 1, — 1); in the case of the gener-
alized quaternion algebra such that C'; = —2¢',
C?, = —26%,C3, =26 [Q, ~50(2,1;R)] the formula

Te(xy):=2'= 2.1%)

.17
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(2.15) yields (1.1) with (g;;) = diag(1,1, — 1). The latter
results in a slightly different formalism than was found by
Plebanski’’ many years ago. It is now evident that the com-
position law (2.15) appears to be a natural generalization of
(L.1).

We close the present section with some considerations
on the Baker-Campbell-Hausdorff formula for the elements
of the Lie algebras induced by the gl algebras.

Let @ be an (n + 1)-dimensional gl algebra over Fand
Q,. the Lie algebra induced by Q. If v = v'e,€Q; , then using
(2.2) one gets

¢’ = (cosh A)e, + [(sinh A)/Alvie,eH, , (2.19)

where A: =(v|v), (v|v):= — 1K, ;»v/. If v belongs toa
sufficiently small open neighborhood of the vector OeQ, ,
then v’ are the canonical coordinates of the first kind (see
Ref. 2, Sec. III, Chap. 4) of the point ¢’€H,,. From (2.19)
and the notion of the projective coordinates one easily finds
the relation between the canonical coordinates v’ and the
corresponding projective coordinates x’,

; sinhA , tanhA ;
x = V= v,
Acosh A A

This is the “tangential” parametrization"®’ generalized on
an arbitrary Hy.
Let v,we@, . Then

evew — eU#w s

(2.20)

(2.21)

where vBw is the Baker~Campbell-Hausdorff series.!">*~
To express v#w in a concise form we proceed as follows. If v
and w are elements of a sufficiently small open neighborhood
of the vector 0@, , then we have the projective coordinates

= tanh \/(va)v,- i tanh \/(w]w)w,.

V(o) (who) (2.22)
; _ tanh  (viw|vlw) i '
Z'= (vw)
(viw|viw)
for e, e*, and e™, respectively. Define
xi=x'e,, yi=ye, m==72e. (2.23)
Utilizing (2.15), (2.22), and (2.23) one gets
v = arctanh y(z|z) z, (2.24)
V(z]z)
- X+y+xAy x— tanh /(v|v) v
1 _ 3
(xly) Jov) (2.25)
y= tanh y (w|w) w
(w|w)
where (x]y): = — iK,;x/, x Ay: = }C’; x/y*e,. Then in-

serting (2.25) into (2.24) and understanding that the right-
hand side of (2.24) is a “formal sum” of the Baker-Camp-
bell-Hausdorff series we find the Baker—Campbell-
Hausdorff formula in a concise form for arbitrary v,weQ, .
This result is an obvious generalization of the one given for
the Lie algebras so(3;R) and so(2,1;R) (see Refs. 1, 6, and
7).
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11l. CLASSIFICATION OF LIE ALGEBRAS INDUCED BY
QUATERNIONLIKE ALGEBRAS

In this section we present the classification of Lie alge-
bras induced by gl algebras. Thus, at one stroke, we get also
the classification of the local Lie groups endowed with the
composition laws of the form (2.15). From Theorem 2.3 it
follows that the case of n = 3 is rather a particular one and it
should be examined separately. First we consider real Lie
algebras and then complex Lie algebras.

A. Real Lie algebras
1.n=3

All nonisomorphic three-dimensional real Lie algebras
were found by Bianchi.® Then Bianchi’s classification has
been reformulated by Behr et a/.° and Ellis and MacCal-
lum.'® We follow them (see also MacCallum'"!? and Spin-
del').

The structure constants of a three-dimensional Lie alge-
bra can be written as follows:

ijk=M”€0k +NI‘Sj;c’ (3'1)
where M " = M " €, is the totally antisymmetric Levi-Ci-
vita symbol, and

8 =88 — 8.8, .

Then the Jacobi identity (2.8) is equivalent to the relation

M"N; =0. (3.2)
From (2.9) and (3.1), utilizing also (3.2), one gets
K,=—- WIkMpreilpEjkr + NN, . (3.3)

Inserting (3.1) and (3.3) into (2.5), employing (3.2), we
conclude that Eq. (2.5) is satisfied iff
€ det(M ™) = €, det(M ™) . (3.4)

As (3.4) holds true, the condition (2.5) is fulfilled automati-
cally without any further assumptions.

Consider now the consequences of (2.4). From (3.1)
and (3.2) we find

CIijmki = - MmMprEjmpekir + ZM’mNjEmki
+ N, (N, &' —N,&") . (3.5)

Substituting (3.3) and (3.5) into (2.4) we arrive at the con-
clusion that Eq. (2.4) is satisfied iff

M*N;, =0&M*=0 or N,=0. (3.6)
Gathering the present results we can see that a three-dimen-
sional real or complex Lie algebra is induced by a gl algebra
if M* =0QorN; =0.

For each three-dimensional (real or complex) Lie alge-
bra there exists a basis e, e,, e, such that

M= diag(M'\M*M?), N,=(0,0,N). (3.7)
Then from (3.2) and (3.7) we have
M3N=0. (3.8)
The commutators of the basic vectors are
e,,e,] = M?e,, 23] =M 'le, — Ne,,
[ere] 3 [enes] 1 2 (3.9)

(es,e,] = Ne, + M7Ze, .
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Equations (3.3) and (3.7) yield
K,=-M ‘M283,.63j —M3M ‘62,.62j — M2M36‘,-5‘,-
+ N263,.63j . (3.10)

Assume first that M'=M?>=M3>=0, N #0 [compare
with (3.6)]. In the real case these conditions define a three-
dimensional real Lie algebra of class B and type V (the Bian-
chi-Behr classification). Rescaling, if necessary, the basic
vectors e; one can make N = 1.

Let now N = 0. In the real case this condition character-
izes all three-dimensional real Lie algebras of class A. Then
rescaling, if necessary, the basic vectors e; we can make all
nonzero M’ either 1 or — 1. Thus one arrives at the follow-
ing nonisomorphic three-dimensional real Lie algebras with
N = 0 (we apply the Bianchi~Behr classification):

M'=M*=M?=0cI,
Mi=1 M?=M3=0oI1,

M'=M?=1, M?=0oVIl,, (3.11)
M'=1, M*= —1, M3=0&Vl,,
M'=M?>=M?=1cIX,

M'=M?=1, M?®= — 1-VIII.

Concluding, type V and all the types in (3.11) exhaust all
three-dimensional real Lie algebras induced by real gl alge-
bras (see also Table I). One finds immediately that the Lie
algebras so(3;R) and so(2,1;R) are of types IX and VIII,
respectively.

2.n#3

For n = 1 we have C!,, = 0 and our one-dimensional
real Abelian Lie algebra appears to be induced by a two-
dimensional real gl algebra. Evidently the latter assertion
holds true for the complex case, too.

Let n> 1 and n#3. Contracting Eq. (2.4) with K, and

utilizing (2.13) one gets
KK, =0, (3.12)

where [ j p] stands for the antisymmetrization with respect
to the indices j, p.

From (3.12) it follows that K| is of the form

K, =AK,K;,, AeR and K.eR. (3.13)

Consider first the case of the rank (X ;) = 1. Then, we can
always choose the basic vectors ¢; so that

K, =¢€6"6", €=1. (3.14)
The condition (2.13) with the use of (3.14) gives

Cc",=0. (3.15)
The condition (2.4) amounts presently to

C,C%, = e 8 (3.16)

(from now on lowercase Greek indices a, B, o,... are as-
sumed to run through 1,...,n — 1). Equation (3.16) forj = 8
gives

C%C%=0. (3.17)
Inserting j=n, k=n,i=pf,and thenj=n, k=6,i=y
into (3.16) we obtain

J. F. Plebanski and M. Przanowski 532



TABLE 1. Real Lie algebras of dimension 2<#<6 induced by gl algebras. The terminology of Patera et al.'*'® has been used. In the parentheses (

Bianchi-Behr type is given.

>++) the

Dimension Name Nonzero commutation relations Comments
n==2 Ay, [ene] =& solvable
4,,dn [ene;] = ¢ nilpotent
A;5(V) [exe,] =e¢,, [ese,] = e, solvable
A4 (VL) [ese ] =ey, [ese;] = —e, solvable
A4 (VILy) [ese] = ey, [es,6,] = — e, solvable
na==3 A, (VIID) [epe,] = — e, [ene;] =ey, simple
[eJrel] = ez SO(Z:I;R)
=~sl(2;R)
A4 (IX) [ene;] = e, [eses] =ey, simple
[ene ] =e, s0(3;R)
~su{2)
A ;; [ewe, =2y, [eser] =6, solvable
n=4 [ewes]l =
Ayt [ene,] =, [ene,] =€, solvable
[eses] = — e
A 51 [63,85] =e, [eues] =@, nilpotent
As, [ene] =e, [eses] = e, nilpotent
A ;; ! [esie,] =e,, [esse,] =€y, solvable
[85’33] =€y, [esse,] = &4
A ;; - IeSre|] =€y [85,82] =€ solvable
n=35 [es,e3] = e, [eses] = — e
Ay bt [esie,] = ey, [ese;] =€, solvable
lesses] = —es, [ese]l = — e
4 Sill?m [ese;] = e, [ese;] = solvable
leses] = —e, leses] = —e
Ags lene,] = e fenes] = e, nilpotent
[exes] =e5
Asa [ee,] =es, [en,e3] = e, nilpotent
[ere] = e
465 [eyes] == es, [eres] = e, nilpotent
[enes] = aeg, [exes] =es
(a#0)
n=6 [ese] =ey, [ege] = ey, solvable
{esses] = €3,
[eges] = e, [eses] = e
[ece,] = e, [ene:] =€ solvable
[epes] = ¢,
[eces] =24 [eges] = — e
[ece;] = e, [ene:] = €5 solvable
[eges] = e,
[ewed = —ey leges] = —es
Ce C°. — e8® (3.18) well-known result in the linear algebra (see Ref. 4, Sec. 12,
ok g §88) that by some linear transformation the matrix (C%)
where C¢,: = C?,, and can be brought to the following form:
C“aC"B,,=0. (3.19) A,
Contracting (3.19) with C?, and employing (3.18) one (C%={0 =~ 0], (3.22)
finds A,
Crp =0 (3.20) where the matrices 4,, . . . ,4, are of the form
[Notice that Eq. (3.17) is a consequence of (3.20).] Thus 00 - 0 a
the only nonzero structure constants are of the form C“ . 10 - 0
Assume first A, =}0 1 0 a |, (3.23)
€=1. (3.21)
Hence the eigenvalues of the matrix (C“) are + 1. Itisa 00 - 1 ap
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where ¥ = 1,...,7, fi + - +f, = n — 1. From (3.18) with
(3.21) one infers that the matrices 4, are of the forms

A;,:((l) (1)) or A, =1 or 4,= —1. (3.24)

Itis easy to check that a suitable linear transformation brings
the leftmost matrix in (3.24) to the diagonal form (} 2,).
Gathering the above results, we can see that if, in Eq. (3.14),

€ = 1, then there exists a basis e, such that

Crj=0=C%,, C%p=¢s6%, (3.25)

and also (3.14) with € = 1 holds true. (For three-dimen-

sional real Lie algebras this is the case of the Bianchi~Behr

type V, e, =1 =¢,, orof thetype VI, e, =1 = —¢,.)
Assume now

eﬁzily

€= —1. (3.26)

Then the eigenvalues of (C*;) are 4 i. Utilizing (3.18)
with (3.26) one finds that the matrices 4,, defined by (3.22)
and (3.23), are of the form

0 - 1)
45 = (1 0/’
Therefore, by some obvious changing of a basis, the matrix
(C*“4) can be brought to the following form:

0, “1(1/2)(':—1)
(ce )=( ;
s I(1/2)(n—l)’ 0

where I, 2, _ 1) iS the identity matrix of degree (n — 1).
Equations (3.15), (3.20), and (3.14) with e= — | hold
true. Note that (C ;) satisfying Eq. (3.18) withe= — 1
defines an almost complex structure'® on a real vector space
generated by e,,...e,_ ;. (One can easily check that for
three-dimensional real Lie algebras, precisely the type VII,
belongs to the just considered algebras.)

Finally let us remark that real Lie algebras induced by ql
algebras and such that

(3.27)

(3.28)

rank(K;;) =1 (3.29)
are solvable but non-nilpotent Lie algebras.>*!>%°

Consider now the case of

K,;=0. (3.30)
From (2.4) with ( 3.3(5) it follows that

Ci\C™y=0. (3.31)

Hence our real Lie algebras appear to be either Abelian Lie
algebras (when C "jk =0) or nilpotent Lie algebras of the
nilpotency class 2.>°1%2° [For three-dimensional real Lie
algebras this is the case of type I (Abelian) or of type II
(nilpotent of class 2).] To close the considerations found in
this subsection (III A) we list (Table I) all nonisomorphic
real Lie algebras of dimension 2<» <6 induced by ql algebras
omitting the Lie algebras which are algebraic sums of alge-
bras of lower dimension. We follow the works of Behr et al.,’
Ellis and MacCallum,'® MacCallum,'"'? and Patera et

01'15,16

B. Complex Lie algebras

In the complex case the considerations are very similar
to those concerning real Lie algebras. The only difference is
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that some algebras that are nonisomorphic on the real level
appear to be isomorphic after complexification. Thus one
finds that for n = 3 the complex Lie algebras VIII and IX are
isomorphic to s1(2;C) and also the complex types VI, and
VII, overlap. Generally we conclude that for every n> 1 an
n-dimensional complex Lie algebra induced by a complex gl
algebra for which rank(K;;) = 1 possesses a basis e,,...,e,
such that the structure constants with respect to it take the
form (3.25).

V. CONCLUDING REMARKS

The main results of the present paper can be summar-
ized as follows.

An n-dimensional real Lie algebra appears to be the one
induced by a gl algebra if and only if it belongs to one of the
following types.

(1) An Abelian Lie algebra.

(2) A nilpotent Lie algebra of the nilpotency class 2, i.e.,
a non-Abelian Lie algebra for which C’,C™, =0,
i, j,... = 1,51,

(3) A solvable Lie algebra for which there exists a basis
€...€, such that C";=0=C"%, C%;=¢€36%;
eg=+LiL,=1L.maByv=1.nn—1

(3’) A solvable Lie algebra for which there exists a basis

e,...e, such that C";=0=C%,, and the
(n — 1) X (n — 1) matrix
0’ _1(1/2)()‘!—1)
(C%) = ( ,
g 1(1/2)('1—1)’ 0

where C%:= C%4, and I, 3y, _, is the identity matrix
of degree i(n — 1);4,j=1,..m;a, B, y=1,..n— 1.

(4) A Lie algebra isomorphic to su(2).

(4") A Lie algebra isomorphic to sl(2;R).

In the complex case one has the types (1), (2), (3) and
the following.

(4") A Lie algebra isomorphic to s1(2;C).

The above presented list gives also a classification of all
real or complex local Lie groups endowed with the composi-
tion laws of the form (2.15).

Finally let us note that our considerations on gl algebras
appear to be closely related to the problem of a definition of a
cross product in a vector space of an arbitrary dimension.
(We are indebted to Professor J. Adem for this suggestion.
The paper on this subject has been submitted to the Journal
of Mathematical Physics?'; see also Ref. 22.)
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The set.# , of infinite matrices and the set @ of squarable matrices are considered as partial
*.algebras. The connection between @ and two partial *-algebras of closed operators is
studied. Conditions for a matrix representation in “von Neumann’s sense” of a family of closed

operators are given.

I. INTRODUCTION

Since the beginning of the theory of linear operators, the
matrix calculus has played so relevant a role as to achieve the
status of a classical argument.

This growth of importance, mainly due to the quantum
mechanical custom of replacing indifferently matrices with
operators, has given rise to a wide literature (some papers
date back to the pioneer age of quantum mechanics), essen-
tially concerned with the study of the relationship between
matrices and operators, which has emphasized the fact thata
theory of matrix representation of unbounded operators is
not at all a slight modification of the bounded case.

From the algebraic point of view the situation was clear
as far as one had to deal with finite or bounded matrices. Asa
matter of fact, the operators occurring in the applications are
often unbounded and unbounded matrices may exhibit a be-
havior as singular as that of operators. For instance, the set
of all infinite matrices does not carry any usual algebraic
structure because of two well known features: the multipli-
cation of two matrices is not always defined and, even if it is,
the associative property may fail to be true.

The question arises whether any help from this point of
view can be given by some partial algebraic structure like
those introduced and studied in the last years by some auth-
ors (Refs. 1-3).

In Sec. I1, we show that the answer is affirmative: the set
A ., of all infinite matrices and the set Q_ of squarable
matrices are in fact partial *-algebras.

In Sec. III, we study the correspondence between Q
and the sets €(Z ), and €*(F ) of, respectively, & ,-mini-
mal and & -maximal closed operators on the linear hull &,
of an arbitrary orthonormal basis.

In Sec. IV, the problem of the matrix representation in
“von Neumann’s sense” of families of closed operators is
examined.

Il. PARTIAL ALGEBRAIC STRUCTURE IN THE SET OF
INFINITE MATRICES

The main concept we have to deal with is that of a partial
*-algebra due to Borchers (Ref. 2) and studied by Antoine
and Karwowski [Ref. 1(a)].

For the reader’s convenience we recall the basic defini-
tions.

Definition 2.1: A partial *-algebra is a vector space .«
with involution x - x' [i.e., (x + Ap)t =x' + Ap*; x™ = x]
and a subset I'C &/ X & such that (i) (x,y)el’ implies
(' x"eTs (i) (x,p) and (x,2)el imply (x,y + Az)eT; and
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(iii) if (x,y)€l’, then there exists an element xope.o and for
this multiplication the distributive property holds in the fol-
lowing sense: if (x,y)el” and (x,z)el’ then

xop 4+ x0z = xo(y + z).

Furthermore, (xoy)t = ytoxf,

Notice that it is not required that the o-product be asso-
ciative.

The partial *-algebra <7 is said to have a unit if there
exists an element les/ (necessarily unique) such that
1'=1, (1,x)eT, and 1ox = x°1 = x VxeT.

Whenever (x,y)el’, we say that x is a left multiplier of y
{and writexe L(y) ] oryisaright multiplier of x [ye R(x)].

If SCo we put LS= N, L(x), RS= N, R(x);
MS =LSORS. If s = &/, Mo/ is called the set of universal
multipliers of 7.

A particularly interesting situation occurs when

{(xy)ed X of |xesl yor yed ,} CT,

where &7 ,C o/ is a *-algebra.

In this case we say, following Lassner (Ref. 3) that .« is
a quasi-*-algebra with distinguished *-algebra &,

A quasi-*-algebra (&, ) is said to be a topological
quasi-*-algebra if .o is endowed with a locally convex topol-
ogy 7such that (i) .&7,is densein .«; (ii) the multiplications
x—x°oy and x - yox are continuous for every xe. ; and (iii)
the map x —x' is continuous.

We will now show that the set .# _ of all infinite matri-
ces

A, ={(4,,), 4,,€C, u,veN}

carries a very natural structure of partial *-algebra.
Proposition 2.2: (i) In .« _, the map (4,,,) -~ (4}%,),
where 4}, = E, defines an involution and the usual
rows—columns product defines a partial multiplication on
the set
r={((4,,),(B,)):2,4,,B

p*uptpv

< 0 V,u,VEN}.

Thus (# ,,T') is a partial *-algebra with unit 1 = (J,,,).

(ii) The set R# _ of the right universal multipliers of
A , consists exactly of the matrices with a finite number of
nonzero elements in each column. Analogously, the set
L. of the left-universal multipliers of .# _ consists of
those matrices having a finite number of nonzero elements in
each row.

(iii) Theset M.# _ of the universal multipliers of .# _,
ie,M# =L4&_ NRMA_,isa*-algebra;then # _ isa
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quasi-*-algebra with distinguished *-algebra M.# _ .

Proof: (1) is straightforward.

(ii) We prove only that a matrix (B,,,) having an infi-
nite number of nonzero elements in some column does not
belongto R.# _ . Let, in fact, (4 v ) be a matrix such that for
someogeN, 2 4,, does not converge. Without loss of genera-
lity we may suppose B,,#0 VYu, for fixed p. Put C,,

=A,,B " Then

S C,.B,=SA,B,'B, =S4, = .

(iii) Let (4,,), (B,,)e M4 ,, and
Cuv = ZAW,BPV;
P

suppose that there exists u such that C,, #0 VveN. Let p, be
the minimal number such that 4,,, = 0, p > p,; necessarily
some of the B,,’s are not zero for p<p,. Then the matrix
(B,,) has infinite nonzero elements in the oth row with
1<o<p,. This is a contradiction.

Remark: In .# _ a topology 7, can be introduced by
means of the set of seminorms

Pu[(A,0)] = A, | VpveN.

It is easily proved that .4 _ [7,] is a Fréchet space and
M.« _ is 7o dense in .# _ ; moreover operations are contin-
uous. By the previous proposition we get that .# _ is a topo-
logical quasi-*-algebra over M.# _ .

One of the most remarkable subsets of .# _ is the set
A, of bounded matrices

My, = [(A,w)e./w:

2

m

2
ZAlﬂ’g" <szl§,u,2 V(gy ),MEIZ}'
v K

As is well known, .#, is a *-algebra isomorphic to the
*-algebra B(#) of bounded operators in Hilbert space. But
A . contains also many *-algebras of unbounded matrices,
like the set .# ;, considered in Ref. 4, which is isomorphic to
the *-algebra C, = £ 1(Z') of unbounded operators. Here
we are interested in the following subset of .# _ :

Q.= [(Al-lv)e/[cn: ZIA#V'2< @, ZIA#VIZ< °°]'
o v

Following von Neumann (Ref. 5) we call elements of
Q. squarable (“quadrierbar”) matrices. Clearly, .#, CQ_
and 4 ,CQ, .

Asisknown Q_ plays an important role in the study of
the correspondence between matrices and operators in sca-
lar product space. Actually, a necessary condition for a ma-
trix (4, ) to represent an operator is that (4,,,)eQ,, .

Proposition 2.3: (i) Q_, is stable under involution.

(ii) @, isacomplex vector space under the usual opera-
tions.

Proof: (i) is obvious. (ii) follows from the inequalities

Slduy + B, [’<3 (|4, | + 1B, 1D*
7 “
<2(21A,w:2 + zw,wtz) <w.
7 7
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Thus @, inherits from .# _ the structure of vector
space stable under involution; but for the multiplication the
situation is more complicated. In fact, the product of two
elements of Q  is always defined, as a consequence of the
inequality

2
ZA;thpv <z 'A;Lp IZZI‘pr |2 < o0,
4 P 14

but it need not belong to Q_ . Then @ is neither an algebra
nor a partial *-subalgebra of .# _ . Nevertheless for a suit-
able choice of the set I'y, (@, ,[',) becomes a partial
*-algebra.

Proposition 2.4: (@, ,I' 5 ) is a partial *-algebra with uni-
tyl=(4,,)if

2
I, = [((AW),(B,W))GQ“, X0.:3 54,8, | <,
LAY
2
2 EApoV# < oo] .
u i

Proof: We already proved that Q_ is a vector space sta-
ble under involution. By the definition itself it follows that if
((4,,),(B,,))elg then ((BX,),(4 },))el,.

Letnow ((4,,),(B,,))el'; and ((4,,,),(C,,))el,. We
have

2

“

2

S4,.(B,, +4C,,)
=3 |34,.B,, +134,.C,,
m v v

2 2
<2(2 S4,.8,| + 13|54, )<°o.
pilv v

In an analogous way the other condition can be proved
and therefore ((4,,,),(8,, +AC,,))el,.
At this point the equality ((4,,) (B,,))*
= (B}, )(4%,) and the distributive property, in the sense
of Definition 2.1, can be easily proved.

2

IIl. MATRICES AND OPERATORS IN SCALAR PRODUCT
SPACES

The wide gap existing between the matrix representa-
tion of bounded operators and that of unbounded ones has
been already mentioned in the Introduction. Let us recall
shortly the terms of the question.

If {4, } is a family of closed operators such that thereis a
dense linear manifold A with AC N, [D(4,)ND(A4 }) ] and
A; | A=A, | AVij, it is always possible to find a matrix
(4,,) such that for any vector ¢ = 2,£,e,€ D(4,) its im-
age ¢ = A,¢ can be determined by the matrix (4,,) [the
e, €A YveN and 4, = (4e, e, ); from now on the Hilbert
space is always supposed to be separable]. Nevertheless, the
matrix (4,,, ) has in Hilbert space a domain, in general, larg-
er than the D(4,)’s; therefore it defines an operator 724
and no general connection between the 4,’s and T 'is known.

For this reason, we will use the words “matrix represen-
tation” when a prescription to find the domain is also given.
One possible way to do this is to use the notion of matrix
representation in von Neumann’s sense (for a more detailed
discussion of this point, see Ref. 6).
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No problems arise clearly if the domain of the operators
can be considered to be the whole space as it happens for
bounded operators or for the operators of C, as shown in
Ref. 4.

Here we will show that some one-to-one correspon-
dence (preserving operations) between some class of opera-
tors and matrices of .# _ can be established.

We will deal with two partial *-algebras of closed opera-
tors introduced by Antoine and Karwowski in Ref. 1(a). A
detailed study has been made by Antoine and Mathot in Ref.
1(b).

Let C(2,°) be the set of closed operators 4 in 57 such
that 2 CD(A)ND(4*). Given AeC(D,5) define 4+

= A* D and4' = [4 | Z]* Theoperators 4,4} are
called & minimal (i.e., & isa core for them). The operators
A7, A are called & maximal (i.e., they are the adjoints of
% -minimal operators; in fact 47" = 4%* and AT = A 11¥),
Let us denote by €(Z ) the set of & -minimal operators and
by €*(Z) the set of & -maximal ones. Here €(Z ) has a
partial *-algebra structure when one defines the operations
as

A+B= A+B)[D, i=74|7,
A-A*= A% T, AOB=(4+B)¥,

where A*B=[BY(A'| Z)]* defined
B2 CD(A™)yand A' D CD(BY).

Analogously, the set €* (.2 ) can be considered as a par-

tial *-algebra with the following operations: 4 + B

=[{(A*+B*) | DI*, Ad4=[14*|D]* A-4t
=[4 | Z]* and partial multiplication 4 «*B defined as
above.

We have examined in Sec. II the partial *-algebra of
matrices Q *. The question arises now: does it correspond to
some partial *-algebra of operators?

Let us first remark that given a matrix (4, )@, anda
basis (e, ) in # two closed operators can be determined in
an easy way. The first one is the operator R(4) which is the
closure of the operator R,(A4) defined by the matrix
A = (4,,) on the linear hull &, of the basis vectors.

The second one is the operator S(A4) defined by (4 uv)
on the domain

2
)

D)= lp=3 tec?| 3| Sk

In order to show that S(4) is closed we prove the fol-
lowing.
Lemma 3.1:

S(A) =R(A*)* =R, (4 *)*
Proof: Let

p= Zv gveve go,

we get
(Ro(A*) ) = i g, }; A, =3 & B,

= (@,S(4)Y),

whenever

>

u

0

¥=3%.,neecD(SA))

1

ie, S(A)YCR,(A*) = R(4 *)*.
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Conversely, let us suppose that yeD (Ry(A4 *)*) with
Y=2,7,e, then

(Ro(A4 *)e,, 1) = (e,,Ro(A *)*Y) = YA 17,
M

= ZAv‘u 7’;4 .
m
Therefore X,4,,,7, represents the vth component of the
vector Ry(A *)*y; then it must be

2
2| 2A v
m

< 00.
v

Thus ¢e D (S(4)).

Since, by definition, R(A4) is a & ,-minimal operator,
S(A4) is Y, maximal.

This suggests the possibility to find two classes of opera-
tors corresponding to Q@  for a given basis (e, ). We can, in
fact, define for a fixed basis (e, ) the following two maps
[Z , being the linear hull of (e, ) ]:

R:A = (4,,)Q, ~R(A)eC(D,),
S:4 = (4,,)€0,, —~S(A)e6*(D,).

Let us now discuss the question whether R and S are
*-isomorphisms of partial *-algebras.

We recall first the following definition [Ref. 1(a)].

Definition 3.2: A homomorphism of a partial *-algebra
I into another one N is a linear map o: M — N such that

1) o(xh) = [a(0)]";

(i) if xe L(y) in M, then o(x)e L (o(y)) in N and

o(x)-o(y) =o(xp).

Clearly a *-isomorphism of the partial *-algebras It and
N is a homomorphism of M into N which is one-to-one and
onto.

Proposition 3.3: The map R: 4eQ - R(A)e€@(Z ) isa
*-isomorphism of the partial *-algebras (Q_,I,,2) and
(€(Z),I,0).

Proof: One readily checks that

R(A4*) =R(A)*}
and

R(4 +AB) =R(4) + AR(B).

Let us now show that if (4,B)el’, then (R(4),
R(B))el’. 1t is clearly enough to prove that

R(A)e,e D (S(4))
and
R(A*)e,eD(S(B*)) VueN.

We havein fact (R(B)e,), = B
Since (4,B)el’, we get

(R(A%)e,), = 4,,.

L7724

2

z ZA#VBVP < o0
©° v
and
2
2| 2B | <o
“ v

these, respectively, mean that R(B)e,e D(S(4)} and
R(A*)e,e D(S(B*)). Now
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R(A)OR(B)
= (R(A)*R(B)*
= [Ro(B)*Ro(4 *)]*H = [S(B*)Ro(4 *)]*#
= [Ro(B*4*)]*¥ = [S(4B)]¥ = R(4B).

The map R is a *-isomorphism since &, is a core for all the
operators of €( ).

Proposition 3.4: The map S: AcQ_ —»S(A4)eC@*(F ) isa
*.isomorphism of the partial *-algebras (@, ,[,,°) and
(@*(Z),I.,*).

Proof: One readily checks that S(4*) =S(4 )t and
S(4 + AB) =S(A4) + AS(B). Let now (4,B)el’ 5, we need
to prove (S(A),S(B))el’. . Since S(B) Y, = Ry (B)Z , and
S(A*)D = Ry(4*)D, the statement (5(4),S(B))el. is
equivalent to the statement (R (4),R (B))el already proved
in Proposition 3.3. It remains only to prove that S(A4B)

= S(A)*S(B). But

S(4)*xS(B) = [S(B*)Ro(4*)]*
=R(B*4*)=S5(4B).

Since, as remarked in Ref. 1, €(Z,) and €*(Z,) are iso-
morphic and R: Q_ —-€(Z,) is a *-isomorphism, so is .S
Q- —»@*(@0),

IV. MATRIX REPRESENTATION IN von NEUMANN
SENSE

We return now to the problem of matrix representation.
We have already seen that a matrix 4 = (4,,,)eQ_, and a
basis (e,) in 7 identify two closed operators in Hilbert
space, namely, R (4) and S(A4), which are, respectively, &,
minimal and & , maximal, where &, is the linear hull of the
basis vectors.

If 4 is a closed operator in # with A(A)
=D(A4)ND(A *) dense in F7 and (e, ) is a basis in A(4),
then the matrix (4,, ) belongs to _ ; thus it identifies the
two operators R(4) and S(A). According to von Neumann,
the “basis for a matrix representation of 4 > is a basis (e, )
such that R(4) = A and he proved that such a basis always
exists for a closed symmetric operator. In Ref. 6 we gave a
necessary and sufficient condition for a closed operator to
have a matrix representation in this sense. Clearly if
A= R(A) then 4 * = S(4 *). We will then split the defini-

tion of matrix representation into two parts.

Definition 4.1: Let A be a closed operator with dense
domain in 7% such that A(A) is alsodense and (e, ) abasisin
A(4).Putd,, = (de,e,).

We say that 4 admits a matrix representation of the first
kind if 4 = R(4).

We say that 4 admits a matrix representation of the
second kind if 4 = S(4).

Proposition 4.2: The operator A admits a representation
of the first kind if, and only if, 4 * admits a representation of
the second kind.

Clearly, the map R: O —€(Z,) is a matrix represen-
tation of the first kind and the map S: @_ -C*(Z,) is a
matrix representation of the second kind.

We wish now to discuss the following question. Given a
family & of closed operators defined together with their
adjoints on a dense domain & [i.e., a subset of C(Z,%°)],
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is it possible to find an orthonormal basis (e, ) for a matrix
representation of the first kind of all operators of .&#?

Let us first consider the following two families of opera-
tors defined by ¢

o, ={Ad¥" = 4| D |dea},
o g ={A™" =[4* } D]*der}.

By the definitions it follows that «/,, C&(Z) and
oy CC*(Z). Clearly, if & is *-invariant, &y = &%.
Thus if 7, admits a matrix representation of the first kind
then .o/ ,, admits a matrix representation of the second kind.
So we can confine ourselves to consider the question whether
o, admits a matrix representation of the first kind. There-
fore, from now on, we will take directly o/ C&(.Z ). In this
condition, since each element of .« is & minimal, for each
Ae there exists a basis (e, ) for a matrix representation (of
the first kind) of 4. But, of course, nothing enables us to say
that the basis is the same for all operators of .27

It is clear that if ./ admits a matrix representation (of
the first kind) with respect to (e, ) then & C€(Z,), where
Y, is the linear hull of the basis vectors. The converse is also
true.

The following proposition gives some conditions for the
matrix representation of a set .o« CC(Z).

Proposition 4.3: Let o/ C8(Z), (e, ) be an orthonor-
mal basisin &, and & , be the linear hull of the ¢, ’s. Then for
the statements (1) (e, ) is a basis for the matrix representa-
tion of the first kind of o7; (2) &/ CE(Z,); (3) D, is a
common core for all elements of «/; (4) &, is dense in &
with the &/-graph topology defined by the seminorms
¢—|Ap | Aeo/; and (5) & is separable for the </-graph
topology, we get

(He@e@); =0 ) =05

If o is directed (ie, VA,Bey ICe:
|49 |I.||Be ||<||Ce ) thenthestatements (1)—(4) areequiv-
alent.

Proof: (1) < (2) & (3) follows easily from the defini-
tions.

(4) = (5). The set of finite linear combinations with
rational coefficients of the basis vectors is contained in &
and is dense in it for the 7 -graph topology.

(4) = (3). Let &, be dense in & for the &/ -graph
topology. Then Vpe 2 there exists a net {p,}C Z, such
that

p.—¢ and Ag,—Ap VAed,

this implies that 4 = 4 | &, V4e.&/ and therefore & is a
common core for .«

Now, for directed .7, ;\t is proved in Ref. 7 [Theorem
1(4)] that the completion &, of & , for the .« -graph topol-

ogy is

LY _—

Dy= ND(A[Dy)= NDUA)DD,
Acd Aeot
then &, is dense in & for the </ -graph topology.
Proposition 4.4: Let o/ C€(Z ) and assume that the .o/ -
graph topology on & is separable. Then there exists in & a

basis for a matrix representation of the first kind of <.
Proof* By the assumption, there isin 2 a sequence { £, }
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dense in it for the &/-graph topology. Let (e, ) be the basis
obtained from { f, } by orthonormalization and & , the lin-
ear hull of (e, ). Here &, is clearly dense in & for the «-
graph topology. The statement follows from Proposition 4.3.
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Two cohomology classes associated to groups of transformations (symplectic or not) of
Hamiltonian and Lagrangian systems are studied. A geometrical interpretation of the family of
cocycles arising from a class of nonsymplectic actions is given in terms of the Poisson structure
of the phase space of the system. These ideas are used to study nongauge (i.e., anomalous)
groups of transformations of (locally or globally defined) Lagrangian systems. In particular,
well-known results about the magnetic monopole system are described in this context and
some hints relating Yang-Mills anomalies with nonsymplectic groups of transformations are

given.

I. INTRODUCTION

Physics has been increasingly concerned about anoma-
lies, i.e., classical symmetries broken at the quantum level—
for example, the loss of gauge invariance in a Yang-Mills
theory with massless Weyl fermions is called the Yang-Mills
or non-Abelian anomaly. Different families of anomalies
have been computed using powerful techniques from global
analysis, and some of its implications, showing, for example,
the inconsistency of the canonical quantization procedure
for the Yang—Mills anomaly, have been pointed out.! In a
different way Dirac pointed out that consistency in the quan-
tum representation of the translation group for the magnetic
monopole system implies the quantization condition for the
electric charge? (see also, for example, Ref. 3 and references
therein).

The main goal of this paper is to provide a common
background for both phenomena in terms of a general coho-
mological structure associated to noncanonical action of Lie
groups on (pre)symplectic manifolds. We will study the
classical structure of groups of transformations in Hamilto-
nian and Lagrangian systems and we will show that there
exists a natural way (similar to the descent equations of Fad-
deev but inspired in a different choice of double complex) of
constructing a family of cocycles with values in forms on the
(pre)symplectic manifold (phase space of the system). This
family has a geometrical interpretation in terms of the Pois-
son bracket of the theory. The physical meaning of the dis-
cussion is displayed step by step through the detailed de-
scription of groups of transformations for classical
finite-dimensional Lagrangian systems mimicking the no-
tion of anomalous systems.

This paper is organized as follows: Section II will be
devoted to the statement of usual properties of gauge groups
of transformations of Lagrangian systems and the introduc-
tion of some obvious generalizations of such concepts. We
will describe the descent method for a noncanonical action
of a Lie group in Sec. III and in Sec. IV the relation of the
family of cocycles obtained with symplectic geometry is

* On leave of absence from the Departamento de Fisica Tedrica, Universi-
dad de Zaragoza, 50009, Spain.
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studied. In particular, we will provide a Poisson bracket in-
terpretation of them. Some applications, remarks, and impli-
cations of the ideas described in this paper will be considered
in Sec. V and, in particular, the application of this approach
to anomalies in quantum field theory is sketched.

Il. GROUPS OF TRANSFORMATIONS AND
LAGRANGIAN SYSTEMS

Groups of gauge transformations of Lagrangian sys-
tems have been studied for a long time and their cohomologi-
cal implications analyzed in different contexts.*® As has
been pointed out in the Introduction, nongauge groups of
transformations are relevant to understanding the geometric
structure of anomalous systems. We will assume in the fol-
lowing discussion that the configuration space of the system
is a C* -differentiable (finite- or infinite-dimensional ) mani-
fold Q, and L is a Lagrangian function defined on 7Q, the
tangent bundle of Q. Let G be a group of fiber preserving
transformations of 7Q. The action of G may either preserve
the canonical tensor field S of 7Q or not.” In the former case
the action of G on TQ corresponds to a lifted action of a
group Hon Q times (semidirect product) a group of transla-
tions along the fibers of 7Q. We will call these transforma-
tions natural and we will be restricted to this simpler case in
what remains of this section.

Let us recall some well-known results about gauge
transformations before introducing some generalizations. A
group G is said to be a group of gauge transformations of
(TQ,L) ifg*L =L + ag, where a, is a closed one-form on
Q, and @, the associated function on 7Q. The set of one-
forms a, satisfy the one-cocycle condition

Qgg, = gl*ag. + Q. (2.1)

If the group G preserves the vertical endomorphism §,
[£4»S ] =0 VgegG, then

g*6, = g*(dLoS) = dLoSog,
= d(Log)oS = d(g*L)oS = 6,.; .

Consequently,
Opp =0, + 1, 2.2)
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where we have just used that 8, = 7*a YaeB '(Q).* The
infinitesimal version of (2.1} is

Qs =d{X,,0,) —d(X,,a,) Vabeg, (2.3)

where a, = (d /dt)@.,, .|~ 0, and X, denotes the vector
field associated to the infinitesimal generator q. Then if G
acts by natural transformations we have that the Poincaré-
Cartan one-form 6, transforms as shown in (2.2) and corre-
spondingly the Lagrange two-form @, is invariant because
of the closedness of c, .

If L is a regular Lagrangian we find that G acts by sym-
plectomorphisms of w,, and if H'(Q) = 0, there exists a
global Hamiltonian function associated to each infinitesimal
generator a of G defined by the formula*

f(‘x =0L(Xa) '—ha9
withdh, = a, Vaeg. The main implication of the nontrivia-
lity of the cocycle a, is the appearance of a nontrival two-

cocycle ¢, with coefficients in R in the commutation relation
of the Hamiltonian functions f,. More explicitly, we get

{for o =Ffian) +c(ad) Vabeg.

A natural generalization of the above structure appears
removing the closed character of the cocycle a,. The first
change is that the group of transformations is not any longer
a group of symplectomorphisms of @, . Let us make more
precise these assertions.

We will call a group of transformations G quasigauge if
g#L=L+ &g, where @, is a family of (non-necessarily
closed) one-forms on Q. If G acts by natural transformations
on 7Q, we have g*w, = w; + 7* da, or, infinitesimally,

(2.4)

There is an important remark related with the noncan-
onical character of the quasigauge transformations. There is
no local Hamiltonian function associated to the infinitesimal
generators of the groups G, because iy @, is not closed and
can be written, in a nonunique way, as a sum

ixyw, =p,+a,

Lyw, =7*da, Vacg

(2.5)

wheref3, is a closed one-form. Locally there will exist a func-
tion £, such that 8, = df, and the previous equation shows
that X, has a canonical part (@7 '3,) and a noncanonical
one (&; 'a,). We will analyze this structure in detail in Sec.
IV.

Example: Perhaps the easiest example for this corre-
sponds to a system with a broken symmetry. Let L, be a
Lagrangian in TR”, that is, invariant under translatlons
along & directions on R", and let L, =L, +A where
A=A, dg' is a generic one-form on R” (in physical terms
that corresponds to couple the original system with a mag-
netic potential 4). In general L, is not any longer R* invar-
iant, and for any infinitesimal generator aeR*, we have
a, =X,L = a'(d4j/3q")§’. This gives for a, the expres-

sions a, =a'(34,/9¢')dq’. Notice that o, =,
+ 7* dA, then
Lyow,, =dLy m™A4=n*da, =a'(4,; — A4,.;)dg"Ndg
c?F
= a —
g’
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where F = dA is the magnetic field associated to 4. The non-
trivial cocycle «, reflects the transformation properties of
L, and by previous commentaries we could say that the La-
grangian L, is “anomalous” with respect to the translation
group R,

lIl. NONCANONICAL COCYCLES

In this section we are going to establish the cohomologi-
cal foundations of some of the ideas encountered in the com-
mentaries of the previous section. Afterwards we will discuss
the interpretation of some of these objects in terms of sym-
plectic geometry.

From the discussion in the previous section it is clear
that the relevant geometric structure to be studied is an ac-
tion (noncanonical in general) of a Lie group G on a mani-
fold M equipped with a closed two-form Q (possibly degen-
erate). As we noticed before, if the action leaves {) invariant
we arein the well-known case of (pre)symplectic actions. By
the contrary, if G does not leave {1 invariant we get a family
of closed two-forms w, defined as follows:

Ly =0, (3.1)

The family of two-forms w,, obviously satisfies the one-
cocycle relation

Vaeg.

anwb - bewa - a)l,,_,, 1 = 0 (3.2)
or, equivalently,
d( (Xa )wb> - <Xb:wa)) — Wgp )= 0 Va,beg. (33)

It happens that the existence of this one-cocycle has
physically relevant consequences on the transformation
properties of (G-invariant) systems described on (M,Q).
Some of these properties are related with a family of coho-
mological objects associated to @,

The best way to describe the origin and structure of
these objects is dealing with the cohomologies involved here,
i.e., the cohomology on the group G and the cohomology on
the manifold M.

Let us consider an open neighborhood U on M such that
there exists a family of one-forms a, satisfying da, = w,
(for example, U contractible). Consider the double complex

& 5,450 177(g,U) of left-invariant p-forms on G with values
in forms on U, i.e., 97(g,U) = A?(g*) @ N(U), where
AP(g*) represents linear p-forms on g and Q/(U) differen-
tial g-forms on U. This double complex could be represented
as a grid with the (p,q) entry given by the (p,g) factor
079(g,U). The exterior differential d maps Q79(g,U) into
Q79+ Y(g,U) and the exterior differential on the group J
maps Q7?into ¥ * 4. Because of the action of Gon M there
is another cohomology operator, denoted by 8, defined as
follows:

Sa(ay,...a; )
k+1

= z( DLy, Lalay,...

i=1
+ Y (-1
i<j

where « is an element in Q%9 and a,,...,a, , , is a family of

ak+1)

Y Ha([a:,a;],815eesBiseesoeslic 1 1)
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elements in g. The Lie dérivative commutes with the exterior
differential and then we have that § commutes with d as well
asd, ie.,

béd =db, dd=dd.

The one-cocycle w, defined previously is an element in
Q2 (g,U), and satisfies Sw, = 0 = dw,. From dw, = 0 we
get that there exists a family a, in Q"'(g,U) such that
da, = w,. Theelement A in 0> (g,U) definedby A = Saisa
two-cocycle with respect to S—namely 814 = §°a = 0, and is
again a cocycle with respect to d because
dA = dba = § da = bw = 0. Notice that the explicit for-
mula for A is given by

Alab) =Lya, —Ly,a, — @4

=iy 0, —iy,0, +d{X,,a,)
(3.4)

AgainA(a,b)isa faAily of closed one-forms on U, then
there exists a family of functions h(a,b) such that
dh(a,b) = A(a,b). The family A(a,b) defines a cochain ele-
ment in 22°(g,U). The image under & of 4 provides a new
element 7in 0>°(gU) satisfying 57 = 0, i.e., 7 is three-cocy-
cle in g. In addition we have that r has values in locally
constant functions because of the relation dr = déh

=8 dh = 84 = 0. Then, as Uis connected 7(a,b,c) is a con-
stant function for any elements a,b,c in g and this means that
ris a three-cocycle in g with values in R. This construction is
a particular case of the tic-tac-toe lemma for double com-
plexes® (see also, Ref. 9 for a different example of the use of
the tic-tac-toe lemma).

The preceding discussion has a local character in M.
Nevertheless, the conclusion is global; that means that if we
change the neighborhood U we get cocyles 7" and A’ in the
same cohomology classes as 7 and A respectively. Let U,V be
two nondisjoint neighborhoods of M and a”,a’ two families
of one-forms satisfying da; = w,; and da; = @, ,. On the
intersection UNV, there exists a family of closed one-forms
B, such that a’ = a? + B,. The two-cocyles A Yand A ¥ ob-
tained, respectively, from a” and a" differ by 53, . But there
exists a family of functions g, such that B8, =dg,; then
AV=AY+8dg, =1"+d(bg,). Bt AV=dhVand A7

=dh ", thereforeh Y = h ¥ + 8g + ¢, where c¢(a,b) is a con-
stant on M depending only on a,b, and finally 7¥ =6A"Y
=68(h" +68g+c)=6h"+ 8¢ =1"+ dc. The conclusion
is that the cohomology class of the three-cocycle 7Y is an
invariant of the action of G on M.

This discussion can be summarized in the theorem be-
low.

Theorem 1: Any action of Lie group G on a (pre)sym-
plectic manifold (M,(}) has associated a cohomology class

[r]1eH *(g,R) and a cohomology class [A]1eH *(g,Z ! (M)).
Furthermore, if the action is symplectic the classes [7] and
[A] vanish, and A becomes a two-cocycle in the § cohomo-
logy. Here A is given by formula (3.4) and 7 is defined by

7(a,b,c) =, § )((Xa,l(b,c)) —h(la,b1,0))

— (X,,a,) — Ay, Va,beg.

= S (X,h(bc)—h([a,b]l,c)) Vabceg,
(a,b,c
’ (3.5)
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with dh(a,b) = A(a,b) and the symbol S denotes cyclic
(a,b,c)

sum over the indices (a,b,c).

Proof: The construction of [7] and [4] was discussed
previously as well as its independence of the covering chosen
for defining them. Notice that if the action is symplectic that
means that @, =0 and then da, = 0. Thus there exists a
family of functions &, such that dk, = a,. Because of the
commutativity of § and d and the vanishing of A we get
h =6k and dh = 0. In consequence [#] is a well-defined
classin H ?(g,R). Itis important to remark that the cohomo-
logy operator § collapses to d when it is restricted to multilin-
ear forms on g with coefficients in locally constant functions
and this is the reason 7 is a three-cocycle in g with coeffi-
cients in R, i.e., with respect to 4.

As an immediate consequence of the previous theorem
we get the following corollary.

Corollary 1: Any action of a Lie group G on an exact
(pre)symplectic manifold (M,Q}) has vanishing [1] and
[r] cohomology classes.

Proof: 1t is obvious because we can define in any neigh-
borhood a family of one-forms «, such that da, = w, and
ba = 0by Ly 6 = a,. It follows that  is going to be a locally
constant cochain, hence 7 is trivial in the d cohomology,
T=20h.

From this remark follows the important conclusion.

Corollary 2: Any Lagrangian system (7Q,L) with a
quasigauge group of transformations G has trivial cohomo-
logy classes [A] and [7].

Proof: The reason is that any Lagrangian system has an
exact (pre)symplectic structure w, = d@,, where 0, is the
pullback of the canonical Liouville one-form on 7" *Q by the
Legendre transformation.

Notice that this remark does not contradict the possible
existence of nontrivial three-cocycles for Lagrangian sys-
tems not globally defined. In such a case the symplectic
structure in the canonical formalism is not exact. This is
what happens with a particle moving in a monopole magnet-
ic field F (Ref. 10) because the two-form giving the field
strength F'is not exact. We will proceed along with this dis-
cussion in the last section.

IV. POISSON BRACKETS AND COHOMOLOGY

In the previous section we have shown how a noncanon-
ical action of a Lie group in a (pre)symplectic manifold
causes a family of cocycles of g with coefficients in the ring of
differential forms on M. In this section we will provide a
symplectic interpretation of the second cohomology class
4] described before, formula (3.3), in terms of the Poisson
structure induced in the ring of functions on M by the sym-
plectic structure Q) (if §} were presymplectic we should use
the ring of first class functions, i.e., those invariant along
char Q) and a new formula for computing 7 in some particu-
lar cases.

From the definition of the one-cocycle w,, formula
(3.1), we get that locally we can find families of one-forms
a, and S, such that

iy Q=p, +a, Vaeg, (4.1)

J. F. Carifiena and L. A. lbort 543



where S, is a family of closed one-forms. We will call the
locally Hamiltonian vector field H, associated with 3,, i.e.,
satisfying the equation iy Q1 = B,, the Hamiltonian part of
X,. The vector field A, defined by i, 2 = a, is called the
noncanonical part of X, with respect to the decomposition
(4.1). Clearly, X, = H, + A, Vaeg and, as it is obvious
from the definitions, both H, and 4, are not uniquely de-
fined. Because of this there is no real reason to talk about the
Hamiltonian of X,. In spite of this one has reason to ask
about what happens with the “representation” of g obtained
for each decomposition (4.1) using only the canonical or
Hamiltonian part H,. The canonical part of X, is only part
of the fundamental vector field representation of g in the Lie
algebra of vector fields of M. Because of that, it is expected
that the Hamiltonian vector fields associated with the infini-
tesimal generators of G do not provide a representation of g.
The cocycle A is defined by the commutation relations of the
Hamiltonians associated with the infinitesimal generators of
g only for special decompositions of the fundamental repre-
sentation of g. Thus the link between the cocycle A and the
Poisson bracket commutator is partial.

We will say that a decomposition X, = 4, + H, of the
fundamental vector fields of a noncanonical action of G on
M is Abelian if Q(A4,,4,) = 0 Va,beg, or in other words, if
the distribution generated by the noncanonical part of the
fundamental vector fields X, is isotropic. Two important
cases in which we have Abelian decompositions are given by
the following.

Examples: (1) Let G be a group of quasigauge transfor-

J

d{f,.f,} =dQ(H, H,) =dQ(X, —4,,X, — A4,)

mations of a Lagrangian system with Lagrangian L. Defin-
ing the decomposition of X, as given by formula (2.4) it is
obvious that 4, is a vertical vector field because a, is the
pullback of a one-form on the base space Q. The vertical
distribution of 7Q is Lagrangian and then clearly
w;(A,,4;) =0 Va,beg. Because of this any quasigauge
group of transformations admits an Abelian decomposition.

(2) Let G be a group acting by diffeomorphism on a
manifold Q. There is a natural action of TGon 7Q. Let Lbe a
Lagrangian function invariant under the complete lifting of
G. The Lie algebra of TG is g° ® g”. The complete lifting part
g° is Hamiltonian, and the vertical part g° is noncanonical.
This (trivial) decomposition is clearly Abelian.

The main theorem relating Poisson brackets and cocy-
cles is the following.

Theorem 2: Let G be a group of noncanonical transfor-
mations of the symplectic manifold (M,{)) such that there
exists an Abelian decomposition X, = H, + 4, Vaeg of its
fundamental realization. If the Hamiltonian associated to
X, with respect this decomposition is f,, we have

A f,.fo}=df.p, +A(ab) Vaeg,

where A is the two-cocycle associated to the action of G as
given in formula (3.4) and

(4.2)

T(a,be) = S (A, A,.)) Vabceg, (4.3)
(a,b,c)

where 7 is the three-cocycle defined in formula (3.5).
Proof: Computing d{ f,, f, } we get

de(XaXb) +dQ(Aa’Ab) _dQ(Xa’Ab) _dQ(AaXb)

=d(iXb(iXan)) + d <Xa!ab) - d <Xb’aa>

=Ly, (ix, Q) — ixg(ixaﬂ) +d((X,,a,) ~ (Xp,a,))
= i[x,,,X,,]\Q +ix Ly, Q — iy, da, +d( (X..ap) — (Xp,2,))

ZIX[

o+ iy, day, — iy da, +d((X,.,) — (X,.a,))

:df‘[a,b 1 _a[a‘b ] + iXa dab — iXb daa +d( <Xa,ab) - <Xb,aa))

= d.f[a,b 1 +/1(a,b)

Noticing the dh(a,b) = A(a,b) we get that the formula
(4.2) from before can be written as

{.farfb} =-f[a,b ] + h(a’b) + c(a,b),

where ¢(a,b) is just a constant depending only on a,b. Then a
straightforward computation gives us

S h(lable)y= S {f[a,b ]:fc}~ S f[[a,b],c]
(a,b,c) (a,b,c)

(a,b,c)
= S (H,A(bc)),
(a,b,c)

and from formula (3.5) we get

T(aab:c) = S <Xa/{(a’b)> — S h([a,b ],C)
(a,b,c) (a,b,c)
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I

S (X, A(be)) — S (H,A(bc))
(a,b,c) (a,b,c)

= S {4,4(b,0)).

(a,b,c)

Notice that in the trivial case, i.e., when we are dealing
with canonical actions, @, =0 and A = 0, then h(a,b) is a
two-cocycle in the d cohomology, that can be assimilated to
the constant ¢(a,b) reproducing the classical results.'! It is
also important to notice that the decomposition used to ob-
tain the relation (4.2) is not unique. Not all possible decom-
positions are Abelian, so formula (4.2) is only true for Ham-
iltonians corresponding to Abelian decompositions.
Formula (4.3) deserves some commentaries too. First it is
convenient to remark that this formula is true only for Abe-
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lian decompositions and it shows once again that for sym-
plectic actions 7 is equal to zero because we can choose 4,
= 0 Vaeg and then trivially we get 7 = 0.

Example: Continuing the example started in Sec. 11, we
get

ixawL,q = iXaa)Lo + ixa dd = d‘f;’ +a,.

Assuming, for example, that the Lagrangian L, is the kinetic
energy corresponding to a metric {, ) we get that

f(lz (Q»Q) = (aaq) - <G,A(Q)>,

and
Hc =aii-ai%i-
aq' dq' ¢
Then
04; 9
a =@ ——
dq ¢

is a familiy of vertical fields and obviously they define an
Abelian decomposition of X,. The Poisson bracket of £, and
J is easily computed and it gives

d{f.. f,} = o, (H,,Hy) =d(F(X,X,)).

This result is in complete agreement with formula (4.2) be-
cause [a,b] =0 Va,beg and

Alab) =i, w, —ix 0, —
= (a"b’'—a'b*) (3% A; —I;A,)dq’
=d (F(X,,X,)).

Finally the three-cocycle 7 vanishes because the Lagran-
gian L , is globally defined. As we will show later, even in the
monopole system the three-cocycle 7 is still zero.

V. SOME APPLICATIONS, REMARKS, AND
COMMENTARIES

During the general discussion we have been studying
the example of the translation group acting in the system of a
particle moving in a magnetic field F = d4. This example
lead us to trivial results in the sense that both cohomology
classes, [A] and [7], were trivial. We can modify slightly
this example considering a charged particle moving in the
field of a magnetic monopole. A magnetic monopole of
strenth g at the origin in R> creates a magnetic field given by
a two-form F on R*® — O (the field is singular at the origin)
that is closed but not exact. Its integral over S the unit
sphere centered at the origin, is 47g. There is no globally
defined vector potential for F, hence there is no globally de-
fined Lagrangian for the system.'® The two-form F is com-
pletely determined by its restriction to S %, where it coincides
with go, o being the area form on §'2. However, there are
local one-forms, 45 defined on S 2 — {north pole} and 4
defined on S — {south pole}, differing by an exact form on
their common domain, whose exterior derivatives are both
F. Choosing these forms we can reproduce the computations
we did for the globally defined potential example and we get
again that the two-cocycle A is given by the formula
A(a,b) =d(F(X,,X,)). Here r is still zero because
r(a,b,c) =dF(X,,X,,X,), and as far as Fis closed the three-
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cocycle 7 will be zero. For the monopole system the two-
cocycle A is not trivial but 7 still is. Thus the Dirac’s quanti-
zation condition for the electric charge does not appear from
the existence of a three-cocycle on the system but from inte-
grability conditions of the system in the geometric quantiza-
tion scheme, namely integer class of the charge symplectic
form of the system, as was pointed out in Ref. 12, which is
equivalent to the requirement that the path integral quanti-
zation of the system be well defined.®
Finally, a brief discussion about Yang-Mills anomalies

and the ideas described previously is in order (a forthcoming
paper is devoted to a thorough discussion on the subject).
Let Q be the space of Yang-Mills potentials, irreducible con-
nections on the principal fiber bundle P(G,X) with X a 2n-
dimensional space-time. Here L is the effective Lagran-
gian of the theory obtained from the generating functional
Z[A] = dulfA]exp( —Sym[A]) by the formula
S Ly dt = W[A] = — In Z[A], where Sy, is the classical
Yang-Mills action with Lagrangian density L(A,l,b,g_ﬁ)
= ( i/2)1ZD n'A q&,{b are Weyl massless fermions, and D, is
the covariant Dirac operator associated to the connection 4. -
The group of gauge transformations of the theory will be
denoted by G and it is well known that the effective action
W{A] of the theory is not gauge invariant. The anomaly of
the theory is defined as the infinitesimal variation of the ef-
fective action under the group of gauge transformations and
can be easily seen to be a one-cocycle on G (Wess—Zumino
consistency condition). From the previous discussion we
know that there exists a two-cocycle A that modifies the
commutation relations of the Hamiltonians associated to the
infinitesimal generators of the group of gauge transforma-
tions. In this sense the cochain 4 such that dh = A is precise-
ly the Schwinger term computed in Ref. 1.
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The method presented in the first part of this work is applied to the superalgebra B(0,2). Two
families of irreducible *-representations of this superalgebra and its real form osp(1,4) are
constructed explicitly in terms of differential operators on the Hilbert space L (M) ® C" of N-

component vector functions ¥: M-CY: (i) the family {#,: J=0,1,...
X ( — m,m) XR™, the dimension of the vacuum subspace

representations with N =2, M = R*

} of massless

of 7, being J + 1; (ii) the family {#$”: 4> 0} of massive representations such that

a§®

! 80(3,2) equals the direct sum of three irreducible representations of so(3,2). This family

is characterized by N = 4, M=R*X(0,7)XR* and nondegenerated vacuum. It is also
shown that all the remaining massive representations form a system of families {#{": &> J /2},
J=12,.., with N=4(J + 1), (J + 1)-fold degenerated vacuum and common

M=R*%X(0,7)XR™.

|. INTRODUCTION

In the first part of this study’ we have presented a meth-
od for constructing *-representations of complex Lie super-
algebras B(0.n) (n=12,..) whose real forms are
osp(1,2n). In the present paper the method is applied for
obtaining a family of irreducible Hilbert space *-representa-
tions of B(0,2) and osp(1,4).

We shall start by recalling basic features of the method
and specifying it for the case n = 2. A basis of B(0,2) is used
in which the odd and even generators are denoted by a; and
b, respectively, withj,k = + 1, + 2and b, = b,;. The rel-
evant commutation and anticommutation relations read

[bu-a:] = guax +8ua;, {a,,a,.}=2b,, (L)
where g,:=sgn( /), ,. The (unique) involution on
B(0,2) can be defined by a*:=a_;, which implies

x=b_; 4.

The construction is based on the following assumption:
an infinite-dimensional linear representation  of B(0,2) is
given and there exists involution 7—7"# on a subspace A( V)
of all linear operators on the representation space V such
that for all zeB(0,2), one has Q(z)eA(¥) and

Q(z*) = Q(2)% (1.2)

The problem consists in finding an €-invariant subspace
& CV and defining scalar product (-, *) on & such that
2-m(z): = Q(2) | & becomes an algebraically irreducible
representation of B(0,2) on & satisfying for all ®,¥ec % the
following *-condition:

(P,7(2)V) = (7(2*)D,¥). (1.3)
In addition, we require that the vacuum subspace

D oo =D N {PeV: Q(a,)P =0, r= 1,2} (1.4a)
be finite dimensional,

Igdim &, < . (1.4b)

Remark 1.1: The real linear hull of even generators b,
equals sp(4,R) ~s0(3,2); this Lie algebra can also be ex-
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pressed as the real linear hull of x;:=4(by —b_; ;)
+ G/2)(b_p +b;_), j>k, for which one has
X% = — xy. Then (1.3) implies that the representation
x—m(x) of sp(4,R) is skew symmetric, and as sp(4,R) is
noncompact, & must be infinite dimensional, at least one of
operators 7(x) being unbounded.?

Suppose that for a given linear representation { on ¥V
there exists a subspace & C ¥ such that 7=Q | & has all
the required properties. We have seen that a necessary condi-
tionforitisdim & = «.Some further necessary conditions
are implied by the following properties of operators

E:=7T(b2_1), i':=77'(b1—2): 15
f]:=1T(b2_2) '—7T(b1_1)’ (1:32)
and
Ne=m(by_+ b, ) =— 2 {r(a)man}  (15b)

r=1
(see Ref. 1) (a) the vacuum subspace & vac is 1nvar1ant
underN E F andI-I (b) the restrictions of E 7"' and H to
Y .. form a finite-dimensional representation of s1(2,C);
and (c¢) Nis positive and commutes with E F and H.
Well-known properties of finite-dimensional represen-

tations of sl(2,C) now imply existence of a subspace

Vaw CZ . on which N is a multiple of identity and the
operators E, F, and H form an irreducible highest-weight
representation of s1(2,C). In other words, a non-negative
integer J and a vector ¥, ,_ exist such that {E*¥,:

k=0,1,....J} is a basis in ¥, and the following relations
hold:
E’+W¥, =0, F¥,=0, AY,=J¥,, (1.6a)
NY, =¥, (1.6b)

for some v3>0. These equations are completed by ¥ ,€2
ie.,

AV, =0 4, r=12. (1.6¢)

Equations (1.6) represent the main part of necessary condi-

vac?

r=m(a,),
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tions as mentioned above. One more condition is implied by
algebraic irreducibility of 7 that is equivalent to requiring
that ¥, (and any other ¥Ye2) be cyclic, i.e.,

D = U(A,ApA_,A_))VY,, (1.7)

where % (--*) denotes the linear hull of the set of all opera-
tors
T,=]] A{d;4",4™,),
r=1

with n = 0,1,..., and any non-negative integersj,, k,, /,, and
m,.> We have argued in Ref. 1 that explicit knowledge of a
basis & of & would be useful for proving algebraic irreduci-
bility and for introducing a scalar product of & for which
Eq. (1.3) will hold. It has been further suggested that such a
basis should consist of vectors @, satisfying

N®,=(v, +n(K)Pg, r=12, (1.8a)
where
Ni:=yN+ (- 1VH)=n(b,_,),
(1.8b)

v:=v+(—1DV)
and n, (K) are some integers. In particular, the HW vector
¥, isin & and n,(K) = ny,(K) =0for ®, = V¥,.

The paper is organized as follows. Section II deals with
solving Egs. (1.6) for a family of representations
{Q}={Q\} (¥=124,...) of B(0,2) in terms of linear differ-
ential operators on the space C & (M) of infinitely differen-
tiable vector functions M3 x—® (x)eCY.* In the third sec-
tion the family {Q,} is considered in detail; for each
J=0,1,..., the HW vector ¥, is found and an infinite set
& ; C C 5 containing ¥, is obtained. It is further shown that
2—1,(2): = Q,(2) | (&), is an algebraically irreducible
representation of B(0,2) and that the *-condition (1.3)
holds for the usual L *-scalar product; the completion of
(&} )tin under this scalar product equals
L*R* X ( — mm) XR*)® C2 The dimension of the vacu-
um subspace of 7, equals J+ 1 and the family {=,:
J =0,1,...} is just the set of all the massless representations
of osp(1.4).°

In Sec. IV we show that each element of & is an analyt-
ic vector for each of the operators 7, (a;) and 7, (b ) and
hence a basis in B(0,2) can be chosen such that all the gener-
ators are represented by essentially self-adjoint operators.
Reduction of each 7, with respect to s0(3,2) is performed
and weight diagrams of the resulting irreducible compo-
nents are found.

The next section deals with the remaining families
{Qy}, N=4,8,12,... . An analysis similar to that in Sec. III
is performed; detailed results are given for the case N =4
that covers just all the massive representations belonging to
the second class of Ref. 5. Finally, in the last section our
results are compared to those of earlier works.

Il. ANALYSIS OF NECESSARY CONDITIONS

In Ref. 4 we have presented for N =2,4,... families
{0}={Q,} of linear representations of B(0,2) in terms of
linear differential operators on the vector space C 3 (M) of
CMvalued functions that are infinitely differentiable on
M:=RX(0,00) X (0,00). For a given even N the family
{Qy} is labeled by one real parameter x that takes values in
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some interval % . Explicit formulas given below for the
odd generators 4;: = {}(a;) are related to expressions for the
operators Y; of Ref. 4 by

A,=27"20F, —i¥_Hv- 2.1)
Here V is a bijection of spaces C “(M) and C = (M) with
M: = (0,00) X (0,77) X (0,0 ) given by

(V) (p.p,z): = p'*(p cos @,z, p sin @).

Expressing the Vimages of the partial derivatives p, =4, ¢,
k = 1,2,3, in terms of d, ¥, 3, Vi, and 3, V¢ yields

VoV ' =p'?cos@d, p~"'? ~ (1/p)sin ¢ 4,
Vp.V~'=34,, (22)
VosV ' =p'?singd, p~ ">+ (1/p)cos ¢ 4.

Then, by Theorem I11.3 of Ref. 4 one gets
A =2""%[(p+3, — 1/2p)(cos p® A4 — isin & B)
+ (i/p) (—cospd,®B+isinpd, o4

+ (1/2sing) ® C)1, 2.3)

A, = 2’”277[(z+6z) oA

+ i(ic?,P ® B — — cot peC— l@D)],
z 2 2
where 7: = exp(in/4). The N X N matrices 4, B, C, and D
(Ref. 6) satisfy the anticommutation relations as given in
Ref. 4; 4 and C are Hermitian and the remaining two anti-
Hermitian. A

The involutive map D ~>D* defined in Ref. 1 for linear
differential operators on C 3 (M) is transformed through V
to the involution D —D* on the space A of linear differen-
tial operatorson C % (M ):

D* = Vﬁ”V".

(2.4)

One then has, for r = 1,2,
A¥ =4 _ (2.52)
;1(11(:' (gé):yi;ljp, 9% = —9,,0%= —3,; consequently,
A*= —id 438, (2.5b)

with
8:=2"*p(cosp@d —isinpeB), 5;:=2"pzeA.
(2.5¢)
_ For the particle-number operator one has by Eq. (1.8b)
N, = i\{A,,Z _,}, which can be expressed via even genera-
tors X, of Ref. 4 as follows: N, = — (i/2) V(i’,,
+X_,_,)V ! (cf. Remark 1.1). Theorem IIL.3 of Ref, 4
now gives

=~ 1 1 1
M=X[p—a2_ (a 1_ ®T)],
l 2[ r—F ° % sin? @
1 2 1
Ti=|—WBC+1)] ——,
2 4 (2.6)
~ 1 1
N==|2-9%2- _2(— d,®AB
1 2[ z Z 4 +( (4
i 1 2
-—®(I——AD)——-cot¢>®AC) )]
2 2
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In addition, one has N¥ = N, for r = 1,2.
For analyzing Eqs. (1.6) it is convenient to rewrite op-
erators E, F, H, and N with the help of Eq. (2.5a) as follows:

E=4{d, A%}, F={d, 44},

H=N,-N,, N=N,+N,
Then, in view of 4, ¥ = Ofor WeZ . and Eq. (2.5b), we get
{4, ANV =4, AN =45V ={4,5}¥, rs=1.2

Further simplification of Egs. (1.6) is achieved via
transformation DD /: = T,DT ;! on the space Ay,
where T, is the operator of multiplication by the
function [ p,@.zl— f (p.@.2): = (pz) "' exp §(p* + 2).
Let ¥e¥ . and ®: = T,¥; then one gets, with the help of
Egs. (2.3), (2.5¢), and anticommutation relations for matri-
cesA, B, C, D,

TF¥=F ¢ = (z/p)sin p(pcot ¢ 3, — 3,)P,
2.7
T,H\l/ HPO® = (z4, pa,,)cb, (2.8a)
TNY=ND®=2+pd, +23,)9, (2.8b)
T,EV=EY® = (p/z)sing [zcot ¢ J,
-3, +is )]®, (2.9)

with U: = — }({B,D} + 24B). The expressions (2.7) and
(2.8) do not contain matrices and hence each of equations
FOP, =0and H P, = Jb,, where

@, =TV, (2.10)

represents an uncoupled system of  identical equations for
components (®,), of the vector function P,. The general
solution can be found by the method of characteristics.” A
function ®,eC 3 (M) satisfies F /', = 0 iff

@, (p:piz) = u,(psin g.z), (2.11a)
where u, is any C-valued function whose components be-
long to C *{(0, 0 ) X (0,0 )). Let us now insert this solution
into H/’®, = J®,; by using Eq. (2.8a) and setting
x: = psin @, we get (zd, —x3d, —u; = 0. The general
solution reads

Uy (x,2) =20, (x2), (2.11b)

v; being any function of the single variable y: = xz = p sin ¢
such that v,6C (0, 0 ). Further specification of v, will be
obtained from Eq. (1.6b) which can be replaced in view of
(1.8b) by

N, ={(N- )Y, =vV¥,,

where v, is some non-negative number. Using Egs. (2.8) and
denoting y: = xz = pz sin @, we find that the function v, sat-
isfies the following equation:

wi(p) = (v — Do, (y).
The solution reads
vy =y""'ec,

where ¢, is a constant vector from C~.
Next we pass to the condition (1.6¢c); we insert

¥V, (pp,2) = (pz)''% exp( — (p* + 2°)/2)

X (pzsing)"~'oc, (2.12)
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into (4, +4,)¥, =0 and make use of the relation S
= BC — AD + 1, where § is a diagonal matrix.® This leads
to the following pair of equations for ¢, :

Sey =4(1 — v, —J /2)c,, (2.132)
(S +24D —2J — 2)¢, = 0. (2.13b)

The second equation can be transformed with the help of
= [S,4]1and 4 ~! = 4 (see Ref. 4) to

(S —2J —2)dc, =0. (2.14)

_ Letus finally consider the first of conditions (1.6a), i.e.,
(E)'+®, =0. From (2.9) and (2.12) one finds, for
k=12,..,

(ED)Yp, = p*2’ ~*(pzsin )" ~ '8 M " (@)c,,
(2.15a)

where the matrix-valued functions g—M (@) are given by
M (@):=Jcos ¢ —sin @ (J, + iU) and

M (@):=[(J—k+ 1)cos @ —sin p(d,, + iU) ]
XM (@), k=23,..

With the help of the relation

[0, +i(U+a){(B+ Dcos g
—sing [d, +i(U+a+ A1}
={Bcosp—sing[d, +i(U+a+B+ 1]}

X[d, +ilU+a—-1)],
which holds for any a, BeC, we get

M) (p)=(—ising)’*! H (U+J—20).

I=0
The condition (E /)’ +'®, = 0 is thus equivalent to

J
[ (U+7—2he, =0. (2.15b)
{=0

By Eq. (2.12) one sees that ¥, is nonzero if and only if
¢, #0. Then the vectors E ¥, for k = 0,1,...,J, are linearly
independent; this assertion easily follows from
HY, = =JY,, FW¥, =0, and commutation relations for E,
F, and H. Now ¢; 50 if and only if A¢; #0 and thus we can
conclude the analysis of necessary conditions as follows.

Proposition 2.1: For given non-negative integer J and
positive even N the vector function ¥, fulfills Egs. (1.6) if
and only if it has the form (2.12), where v,>0, c,eC" is an
eigenvector of S with eigenvalue 4(1 — v, — J /2) satisfying
Eq. (2.15b), and Ac; is an eigenvector of S with eigenvalue
27+ 2

This proposition represents restriction for the param-
eter x, on which the matrices 4, U, and S depend, and selects
in this way from among the members of the family {Q,} a
subset {Q,}, of admissible representations: a nontrivial
HW vector ¥, does not exist unless Qe{Q,},. Since the
matrices 4, U and S are known for any even N, the subset of
admissible representations can be explicitly specified for all
values of N and J.

One immediately sees that the HW vector does not exist
for any Qe{Q,,,.,}, m = 1,2,.... In fact, in this case the
only positive eigenvalues of S are 2m — 1 4- 3(x), where
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I9(x}] < 1 (see §3 of the second part of Ref. 4), which is not
equal to 2J + 2 for any J = 0,1,... . In this way the families
{Q,} are excluded for N = 6,10,14,... . The case N = 2 will
be considered in the next two sections and the remaining
cases N=4m,m=1.2,..,inSec. V.

{Il. IRREDUCIBLE REPRESENTATIONS ON THE SPACE
OF TWO-COMPONENT VECTOR FUNCTIONS

Here and in the next section only the family
{0} ={0f7: xe[ — § o)} will be considered. Each repre-
sentation 1{* is determined by eight matrices that are ex-
pressed via Pauli matrices and a real ¢ related to » by
92 = 2x + 9 (see Ref. 4, Appendix to the second part):

A: "'—02,
T=V=0 U=

B= —ig, C=0, D= —ido,

(19—0.3)/2, Sr—l"""l?obo (3.1)

Let us find by Proposition 2.1 the set of admissible rep-
resentations {{},}, for J = 0,1,... . The spectrum of §'is de-
generated just for x = — },i.e., for 4 = O;then.S = I, sothat
2J + 2 is not its eigenvalue for any J and, consequently,
Q§ ~*? isnot admissible. If & #0, then S has twonondegen-
erated eigenvalues 1 — ¢ and 1 + . Accordingly, there are
two cases: in the firstone weset 4(1 — v, —J/2) =1 ¢
which implies ¢, = [§] (up to a nonzero factor). Then
Ac; = [°.;] and Eq. (2.14) yields & = 2J + 1. By inserting
this value into 4(1 — v, —J/2)=1—4, we get v, = 1;
further we find Uc; = Jc,, i.e., Eq. (2.15b) is satisfied. The
corresponding HW vector, which will be denoted ¥§*, is

given by
=52)s|o)
5 ® ol 3.2)

Now one gets from Eq. (2.15a), by induction for k =0,
1,....J,
(B (popiz)

= [JV(J = kN ( p/z)ke = *oUSH( p,@,2). (3.3)
—J/2) =1 4 & leadsto

=2)oi] o2
5 JNE 3.2
and E, V{7 = [JV(J— k)1( p/2)*** ¥, Thus for
eachJ = 0,1,... the set {Q,}, consists of two representations
withd = + (27 -+ 1).
Let us denote by Z,( + J) the operators we obtain by
inserting matrices (3.1) with 4 = + (2J + 1) into Eqgs.
(2.3). Itisconvenient tointroduce foru = + 1 matriceso*:

Vit (ppz) = (pZ)”zz"exp( -

Similarly, thesecond case4(1 — v,

W (ppz) = (pZ)'/Zz’exp( -

= }(0y — ipoy); then
21(‘})=21(“J)=—-2-”237 2 pe = e
P
ud,
x(6, 40— L1E%) g
p
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p=t1
X(ap"' %+pa¢)®0”
P
(3.4a)
Zz(iJ)z 1/2 Z
= +1
s B
A#(ij) ___2—»1/27-7 Z U
= %1
oo (s (4 2) 10.)] oo
(3.4b)

These formulas and Egs. (3.2) and (3.2°) imply that any
VeD ) = Q(A,(+J]), A¥(+J)r= 12004 [cf. Eq.
(1.7) ] depends on the variable @ as follows:

Y(pp2z)= 3 ™% 5 W (pz)elu), (3.5a)

meZ, uw= +1

where Z, is a finite set of integers, ¥{*eC *((0,)
X (0,00)) and

oreli} 1= ]

Thus Z5*’is a subspace not only in C 7 (M) but also in
C ( ext) Wlth Mext = {[P:¢»Z] P’ZE(O’“’ )’ q)G( —,
'a-)} This extension of M is possible owing to special proper-
ties of matrices (3.1): they cause that the functions ¥$*’ do
not depend on @ and in Egs. (3.4) no terms containing cot ¢
occur [cf. (2.3)].

The inclusion Z§*’C C 5 (M., ) has the following im-
portant consequence.

Proposition 3.1: Let J be any non-negative integer and
w5’ be the representation of B(0,2) that arises if one re-
stricts ), for & = + (2J 4+ 1) to the subspace Z§*’. Then

V=TT, where T= — iR,®0, and R, is the
operator of reflection with respect to the variable @

Proof It is sufficient to verify W§~’'= =Tw+,
TA, (DT '=4,(~0),and TA DT ' =4*%(— ), for
r = 1,2. The first relation immediately follows from Eqgs.
(3.2) and (3.2'); the remaining ones are obtained by Egs.
(3.4) if one uses 0,00, = — oM, u

It thus suffices to consider representations 74 *’; the
upper index will hereafter be dropped, i.e., 7, =7$*’, and
similarly we set ¥,=¥{*’ and & ,=2{*’. Besides Egs.
(3.4) we shall also need expressions for even generators.
Explicit formulas will be given for x;,: =4(b,, —b_,_,)
+(/2)(b o+ b, ), with jk= +1,+2 and j >k,
rather than for b, smce the elements x;, also span the even
subalgebra of B(0,2) and the result is for them simpler. By
using Theorem II1.3 of Ref. 4, inserting for the matrices
A,B,... from Eq. (3.1) with ¢ =2J+ 1 and denoting [cf.
Egs. (2.2))

(3.5b)
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Pr=p"*cospd,p~""*— (1/p)singd,,
py=p'?sin@d,p~""* + (1/p)cos p 3,
we find that the operators X, jk W= jk: = VXjk v —! are as

follows:
X , .=iel, X_,_,=ipzcosp®l,
X,_,=[2(9, — 1/2p)cos p — (z/p)sing 3, ] &1,
X, »=(29,+}) 8l
X = ip’el, 1?1—1 =(pd, +1 el
X,_,=p(d, — V/2z)cos o I — i(p/z)
Xsing [(J+3—id,)el—ie0;],

X,=—i[d;+p720, + D]l
X, = —ip,(9, — 1/2z) ® I — (1/2) p,

X[(J+i—id,)el—4ieaos],
Xy=—i[d2—z73(J+}—id,)"] el

—iz73(J+4—1id,)®0;.

According to what has been argued in Sec. I, a basis in

2 ; consisting of common eigenfunctions of the operators
N, and N2 should be found. The corresponding explicit
expressions can be~obtamed from Egs. (3.6) using N
= — (i/2)(X,, +X_,_,). By Egs. (2.8b) and (3.2) we
find NV, = (2 +/)¥, and then (1.8b) implies that the
eigenvalues of ¥, and v, + n, withv, =l and v, =J+ 1.

Now, in view of Eq. (3.5), the sought eigenfunctions can be
written as e"*Y{ " (p,z) ® |u), where the functions

nn,

(3.6)

Y WeC =((0, 00 ) X (0, 0 )) satisfy
3[p? = 3% +p72(m? = PP = (L + n)YTR,
)2 =02+ +m+ (1 —p)/2F =PI
= (J+ L+ m) g, (3.7

We will select for each J aset &, of these functions such
that (%), = 2, and V,e%,. For getting it the same
functions as in Ref. 1 will be used, viz.

X [ (x): = ¢{Dxa+ V2= X2 (0(x2) x50, (3.8a)

wherea> — 1, n=0,1,..., ¢!*: = 2n/T (@ +n + 1))"/%,
1

— plk +pm)' 2| kim — p;
k2 \k — Um — p; — p),,

27,2 A,(D) | klmp), = {

— Y2 e 4+ 1im — p;
7 e+ D P+ J75
21/2 A[(J)]klm'l*l‘).l - [[.t(k+ 1 __pm)l/Z!klm — i

1112kl —

lm; “ﬂ) s
21,2 T_ 3, (D) |klmsp), = {_ ’

—2{’,—22 (D |kimp), = [
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—l‘)J’

”/"’).h

U+ 5 — (I + m+ D)2 kim; — p),

wll + 3+ p(J + m+ D)2 kim; — p),,
—p I+ 1)\ 2 |kl + 1m; — p),,

and L™ are the Laguerre polynomials (Ref. 8, §8.97).
They fulfill

I —di 4+ +x 2@ =D]fP=Cn+a+ ) f®
(3.8b)
and obey the following recurrence relations:

. +x—Q+a)/x)fi”= —2n

e —x— G+ a)/x)f@=—2a+n+ D2fErD,
(3.92)

l/2f(a+ 1)

n-—1

de+x—G—a)/x)f@=2n+a)?fe-D,

d,—x— G —a)/x)f=2(n+ 12 fle b,

Notice that the relations (3.9b) make sense for a > 0 only.

Let us now introduce for any integer m, non-negative
integers k,/ and p1 = + 1 the linearly independent functions
;klm #)JEC ( ext

|klm;;t>1(p,<p,z): = fiMp) fYHmT w2z

img

X_____._..
(217,)1/2

(3.9b)

® |p), (3.10a)

and denote

={lkim;u),;: kI=01,., m=0,4+1,., u= + 1}
(3.10b)

From Egs. (3.7) and (3.8b) it immediately follows that each
element of & fulfills

N, |klm; p), = (2k + |m| + 1) |kim; ), (3.11a)
and
K’z‘klm;ﬂ).l
=2+ [T+ m+ (1 —p)/2| + Ykim;p), .
(3.11b)

Thus |kim; u), are common eigenfunctions of N, and N,
with integer eigenvalues. With the help of Egs. (3.9) weshall
now find for r = 1,2 the action of 4, (J) and A #(J) on any

|klmu) ;. By taking into account that o*|v) =48, _,| —v)
foru,v= + 1, we have
um>l,
um<0 (3.12a)
— i)y pmzl,
1um<0 (3.12b)
pJ+m+ 1, (3.120)
pJ+m+P<—1, e
u(J+m+4)>4, 3.12d)
pJ+m+4<—4. <
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These formulas show that the subspace
(%,)n CC5 (M., ) is invariant under all the operators
A.(J) and 4%(J), r = 1,2. Next we shall find with the help
of them the intersection of (% ;),, with the vacuum sub-
space V,: = {QGC;(f{éx, ): Z, (NHY®=0,r=1.2}%
Lemma 3.2: The subspace 7= (&,);,NV, is
spanned by linearly independent functions
Emy, — l'__’_TL”!__)VZ —m:
B, J.(Z(J_ —) 10 —m+ ),
form=0,1,...,J,ie,dim I =J+ 1.
Proof: By Egs. (3.12a) and (3.12c) one sees that for
m =0,1,....J the functions |00 — m; + ), are in Z7*. On
the other hand, let Ye &}, i.e.,

V=" cumlkim;+ ), + 3 dim|kim; — ),
kim kim

and 4,()H)¥ = A,(J)¥ = 0. The first of these conditions im-
plies, with the help of (3.12a), (3.12c), and linear indepen-
dence of |klm:u),,

V=3 3 coymlOlm; +); + 3 > dopm |Olm; — ),

I m<0 I m>0

(3.13)

and then 4,(J)¥ = 0 by (3.12b) and (3.12d) yields
J
Y= ZCOO_,,,IOO—m;+)J. [ ]
m=0

We shall use shortened notation
U,=%A,(J), A4 (N, A (N, A5 ().

Proposition 3.3: (a) One has £, =% ,¥,C(& ;).
(b) To each nonzero YeZ }* there exist T.S<% s such that
¥=T¥,and ¥, =SV¥.

Proof: The first statement is due to
¥, = ((7/2)J)"/?|000; + ),€%, and to invariance of
(#,)y, under 4, (J) and 4 #(J) for r = 1,2. By Proposition
3.4 and Lemma 3.1 of Ref. 1 and by Lemma 2 one sees that
B,_;:=U4,()), A¥(N}, s = 1,2, generate an irreducible
representation of gl(2,C) on &7, which is equivalent to
(b). _ a

Lemma 3.4: The projections P, : = } ® (I + o) belong
to % ;.

Proof: 1t is sufficient to show 7 ® o;€% ,. Consider the
second-order Casimir element ¢, of sp(4,R); it can be ex-
pressed as a biquadratic polynomial function of the odd ele-
ments @, and a _, = a¥, r = 1,2; hence 7, (¢,)€% ;. On the
other hand, by (3.1) and Theorem I1.3 of Ref. 4 one finds
7;(c;) =18 (2 + 1 —03)? — 8 and thus I® 0, is a linear
combination of the identity and 7, (c,). n

Now it is not difficult to show that &, is a basis of the
subspace & ;. In view of Proposition 3(a) we only must find
for each |kim;u), an operator Te%,; such that
|klm; ), = T|000; + ) ,, which can easily be done with the
help of Egs. (3.12) (see Appendix A).

We will further prove that &, has no proper subspaces
invariant under 4, (J) and 4 #(J) for r = 1,2. This assertion
holds true if any nonzero Y€, is a cyclic vector; by taking
into account that ¥, ~ |000; + ), is cyclic by the very defini-
tion of & ,, and making use of ¥ ; = (&), and of the
second statement of Proposition 3, one sees that it suffices to
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find for each nonzero We(#,);, an operator Se% , that
transforms ¥ into a nonzero element of the vacuum sub-
space Z *°. Moreover, because of Lemma 4, we can assume
that ¥ belongs to one of the subspaces T’i 9 ,. Then the
sought operator S can again be found by applying Egs.
(3.12) as is shown in Appendix A.

The fact that &, is a basis of &, facilitates introducing
a scalar product on &, such that the *-condition (1.3) will
hold. Consider the Hilbert space % = L *(M.,,,dp dg dz)
® C*=L*(M,,, ) ®C?and denote by (- , -) the scalar prod-
uct on #°. As & , is an orthonormal basis in 5%, the relation
D, = (€ ;). means that I, is a dense subspace in 7.
Furthermore, invariance of &, under all operators in %,
implies that the *-condition (1.3) is equivalent to

(klmy, |4, (D) |k'T'm'; )
= (k'U'm's | A¥(D) |kim; ), (3.14)

for r = 1,2 and all vectors |kim; u) ,;, |k 'l'm'; u') ,€& ;. This
condition is indeed fuifilled, as can be checked by a direct
calculation with the help of Eqs. (3.12) and orthonormality
relations.

We have thus derived basic properties of representations
7r; that can be summarized as follows.

Theorem 3.5: For each J =0,1,..., the map z+»7,(2),

defined via the operators (3.4) and the Racah basis of
B(0,2) by

m(a,):=A4,(0), ma_,):=A%J)
and

7y (by): = Hm,(a)m(a)} k= +1,£2),
is a *-representation of B(0,2) on L2*R*X(—mm)
XR*)®C* with domain &, = (¥,),, given by Egs.
(3.10) and projection P, =1® (I + 0,). Moreover, 7, is
algebraically irreducible, its vacuum is (J + 1)-fold degen-
erate, and the representations 7; and 7 are nonequivalent if
J#J.

Proof: Only the last assertion has not been proved. Sup-
pose 7, = Um,U""; then one has I = UL (see
Lemma 2) and hence

J' +1=dim I =dm P =J+1,
ie,J=J" N

(r=12)

IV. ADDITIONAL PROPERTIES OF REPRESENTATIONS

Ty
A. Essential self-adjointness

We hive seen that the operators A ,(J) and
A_ (N =4%D), r= 1,2, can be regarded as densely de-
fined operators on L *(M.,,) ® C* with the common invar-
iant domain &, = (&,),,,. Consequently, any Te%, is
alsq~ a densely defined operator, which is symmetric if T*
= T} this immediately follows by the *-condition (1.3). It
turns out that the results of Ref. 1 concerning essential self-
adjointness can be generalized for polynomial functions of
operators 4;(J) withj= + 1, +2.

Lemma4.1: Let p= L,2,..., and B, be a product of any p
elements of the set {4 L (N):j=+1,+ 2}. Then one has for
each |kim; u) ,€% ,,
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o~ P
B, \elrm; 12}, 1°< 28 [T (B + Im] + T+ 1+ )
J=1

=21,

where n,;: = max{k,/}.
Proof Let By:=1I; then, for p=0,1,.., one has
A [hereafter we write A instead of A (J) and
|klm; 1), 1, wherejpe{ + 1, + 2}, and

41)

B, -
similarly |klm py=

the assertion can easily be proved by induction using Eqs.

(3.12). For example, if B, , | = EPZI, then we get forum>1
1B, , . lklm; w)? = 2(k + |m)|B, [kim — s — )|
<27t Ny + ImDIEL _ .

Now for um>1 we have |m — u| =um — 1 =|m| — 1 and

P
E_ <] ma+Iml+T+14)
J=1
n’(dp+l)

—’lk1+‘m‘+~’+P+2,
hence

1B, .« klm; ) |

(p+1)
It

ny+m+J+p+2

=27 Y(ny + |m))

(p+ 1)

<21 p . |
Im

_ Clearly, there are at most 4 different operators
B l‘,” =B, (1<r<4"); the above lemma combined with the ar-
gument we have used for proving Proposition 4.5 of Ref. 1
yields the following assertion.

Proposition 4.2: For p=1,2,4 and arbitrary complex
Q5o @y, It

4’ _—~
= 2 a,B ‘(,r) .
r=1
Then each |kim; u) is an analytic vector of 7’, and ;’2 and a
semlanalytlc vector of P,. In addition, a sufficient condition
for P to be essentially self-adjoint (e.s.a.) readsP = P" for
= 1 ,2 and P >0 for p = 4, respectively.

Asan 1mportant example consider, for jk = + 1, + 2,
the operators [cf. Eq. (3.6)]

PIP=iX,: = (i) ({4,,4,} —{d_,4_,})

—1d{4_,4}y+{4,4_.H 42

and
1/2( A + lA j)'

In view of 4¥=4_, one has (P{®)*=P and
(P“’)”—Pﬁ”, i.e., all these operators are e.s.a. Conse-
quently, there is a basis in B(0,2) such that the 7, images of
all its elements are e.s.a. operators (see Sec. II of Ref. 1).

With the help of operators P{*) we can further con-
struct

PP=77;:=

P . — D kN2
A=P; = (P37 = — E Xjk,
ik="ft1,%2 hk="t1,+2
j>k j>k

as ((P{0)2W,¥) = ||P{/W||*>0 for any We D ;, we have
A>0and, consequently, A is e.s.a. Now A is the Nelson oper-
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ator for the representation of sp(4,R) ~so0(3,2) that arises
by restricting 7, to the even subalgebra of osp(1,4). In view
of the Nelson theorem® this representation can be integrated,
which yields a unitary representation of the universal cover-
ing group for the component of unity of SO(3,2).

B. Reduction of =, with respect to s0(3,2)

In this subsection the 7,’s are regarded as representa-
tions of the real Lie superalgebra osp(1,4). By Theorsm 3.5
the operator 7, (x) commutes with the projection P_ for
each even element xcosp( 1,4), which means that the restric-
tion of 7, to the even subalgebra so(3,2) of osp(1,4) is re-
ducible. In order to get the components of 7, } s0(3,2) cor-
responding to the projections P, and P_:=1I— P, let us
introduce matrices €, := (1 0;)/2, so that P

= 1 ® €, ;now each xeso(3,2) equals a real linear combina-
tion of x;, and by insertingo; = 2, _ ., pe€, into Eq. (3.6),
we get

2 9 (x) @ €,,. (4.3)
p= %1
Here 7$*(x) is an operator on L %(M,,,) with the domain

D, (1 _ .y, Where, for p=0,1,..., we have denoted
D,:= {|klm)p: Lk=0,1,., m=0,+1,.}.
with

|kim), (p.@.2): =M (p)f I+ P (2) [0/ (2m) ']
(4.4b)

m(x) =

(4.4a)

[notice that for each p the set {|kim),: kl=0,..,
m =0, + 1,...} is an orthonormal basis in L 2( M, )]. By
Eq. (4.3) one sees that x—75#(x) is a representation of
50(3,2) on L ?( m) forbothuy = + 1.

With the help of Egs. (3.6) we easily find the operators
75" (x); e.g., we get

TSR (xyy) = — i[9 —z72(J + 1 —idp)?]
— iz *(J+ 1 —idp).
In general, one has, for any xeso(3,2),
7§ (x) = a(x) + (J + (1 — ) /2)B(x)

+ (W + (1 —p)2Py(x), (4.52)

wherg a(x), B(x), and y(x) are differential operators on
L?(M.,,) that do not depend on J and u. It thus holds, for
J = 1,2, that

Ty =10 =7,

(4.5b)

Let us furtherset 7,: = 7§ ; ; then 7, is, for eachJ =0,1,...,a
representation of s0(3,2) on L 2(M,,,) with the domain D,,
which is related to 7, by [cf. Eq. (4.3)]

T(X)|kim), ® | + ) =7, (x)|kim; +);, xes0(3,2).
This relation implies that 7, is a skew-symmetric representa-
tion since all the operators X, '« = T; (X ) are skew symmet-
ric.

Now the Hilbert space L 2(M,,,) ® C? can be identified
with L2(M,,,) ® L *(M.,,, ); accordingly, the sought decom-
position of 7; } s0(3,2) reads
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J=0,1,...

Are the representations 7, algebraically irreducible? The fol-
lowing proposition shows that this is not the case for 7.
Proposition 4.3: One has 7, = 7., ® Toqq, Where 7.,
and 7,,, are skew-symmetric representations of s0(3,2) on
L*(M.,) with domains D, :=[(I+ R)/2]D, and
D,y = [(I — R)/2]D,, respectively, and R is the unitary
operator of reflection with respect to @.
Proof: Equation (4.3b) yields
=fil( p)fimi(z) [e™®/(2m) " /?]; thus

R |kim)g = |kl — m)o,

forall k,I,m. Consequently, D, is R invariant; further, R? = I
implies that (I + R)/2 are orthogonal to each other and
hence D, =D, ®D,gq. It remains to verify that
R7o(x4 )R ~' = 74(x3), forjjk = + 1, + 2 andj >k; how-
ever, this is obvious by Egs. (3.6). [ |

The problem of reduction of 7, with respect to so(3,2)
is completely solved as follows.

Theorem 4.4: With the above notation one has

w1 so(3,2)=T1,®7, 1,

'klm)o( PPZ)

m, 1 so(3.2) =787, 4, (4.6a)
forJ = 1,2,..., and
o [ 80(3,2) = Teven ® Toaa ® Ty (4.6b)

WHhEre Toyens Toaa» and 7; for J = 1,2,... are algebraically irre-
ducible skew-symmetric representations of so(3,2) on
LY M)

Proof: Since the decomposition (4.6) has been derived
above, it remains to prove algebraic irreducibility. This can
be done in the same way as in Theorem 3.5, i.e., for each pair
of vectors @, belonging to the domain of the representation
under consideration one finds an operator

T,,c%(r(by): jk= £ 1,12, j>k)

such that ¢ = 7",,,,, . However, the problem is more compli-
cated because the “odd” operators 4; are no more available;
in fact, constructing 7, explicitly is a tedious business and
we shall not reproduce it here.

There is another approach for proving algebraic irredu-
cibility, which is based on essential self-adjointness of the
Nelson operator A for each of the representations
m; | s0(3,2). As A equals the direct sum of the Nelson oper-
ators A, for individual irreducible components 7 of
7y | 50(3,2), essential self-adjointness of A implies that each
A, is e.s.a., so that ris integrable. Then, with the help of one
theorem due to Harish-Chandra,'® one can show that 7 is
algebraically irreducible if the only bounded operators on
L 2(]i'{,m) that commute with 7(x) for each xeso(3,2) are
multiples of identity. Details will be given elsewhere. ]

Remark 4.5: Let 7 be any of representations 7,,en, Toga s
T1sT... and denote the domain of 7 by D. Now 7 is skew
symmetric and irreducible and for the central element

1 2
= (bl—l+b2-—2)=’—'{z ('xrr +x—r—r)
r=1

i
2
of the maximal compact subalgebra kACso(3,2), which is
isomorphic to u(2) (see Remark 3.2 of Ref. 1), one has

7( —iz) = }N | D>0.

Hence each  is in the Evans list'! and in order to write it
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down in the Evans notation we only have to find the corre-
sponding weight diagram. To this purpose is needed in the
first place the direct-sum decomposition of the domain D in
terms of eigenspaces .#"(4) of %X’ } D. Since N=N, + N,,
one finds by Egs. (3.11), that for J = 0,1,... the eigenvalues
of 7,( — iz) read

AV=1/245+1:5=0,1,..,
and .
dm A APy =(s+ DT +s5+1).

In the second place each .#" (4 ) has to be expressed via
direct sum of representation spaces of irreducible represen-
tations of su(2). To this end it suffices to determine the spec-
trum of the operator

47, (br_y — by ) [ A (AP =4H N A/ (A")

including multiplicities. This can easily be done and the
sought decomposition reads
J/2+s

A A= o V,

ji=J72 7

each V; being a (2j + 1)-dimensional space that carries the
irreducible representation of su(2) with the highest weight
2j. Now the weight diagrams of the representations
Tevens Toaq» and 75, for J = 1,2,..., can immediately be deter-
mined, and using them we find that these representations
appear in the Evans list as p;5, g5, and p}, | | ; 2, respec-
tively.

V. FOUR- AND MORE-COMPONENT
REPRESENTATIONS

This section deals with the remaining families {,,, },
m =1,2,.... Let us start with recalling some of their basic
properties as given in Ref. 4. The representations in {{,,,}
are labeled by a real ¢ (Ref. 12) taking values in

T mi=((m—~1)/2, + ). (5.1)
For each Q”e{Q,,} the odd generators 4;(J)=4,
:=Q(aq;),j= + 1, + 2, are expressed via four 4m X 4m
matrices 4,8,C,D [see Egs. (2.3) and (2.5)] that depend on
7; the even generators

Ejk () Eﬁjk: = Q(")(bjk ) = %{Zj, Zk}
contain only the following quadratic polynomials of
A,B,C,D:

S:BC—AD+1, T:=}[(BC+1)*—1],

U:= —1({B.D} +24B), V:= —1({CD}+24C).
The matrices S,7,U,V are block diagonal and their block
structure is determined by four orthogonal projections F, on

C*"  that satisfy Z!_,F, =1I their dimensions
m,: = dim Ran F, read

(5.2)

One has F,ZF; =6, _»zZ°% where Z=S,T,UV and
a, = 1,2,3,4. In particular

m=m+1, m=m-1 my=m,=m.

S =5 F,, (5.3a)
with

Si= —S8,=2m, s3= —s,=447, (5.3b)
and U‘” has nondegenerated spectrum o(U®)
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={2j—1—-m,:j=1,2,..,m_}. Explicit knowledge of the
block structure of 4 will also be needed. It appears that

AP =4e+2F+2 -0, a,f=1,2, (5.4)

all the remaining blocks A *® being nX(n+ 1) or
(n + 1) Xn matrices of rank n: = min(m,,m;) such that
the following implications hold for the solution of the equa-
tion 4 "¢ = 0:

m,=ms+1=c=0, (5.5a)
m, = ms — 1= unique normalized solution
ceRan F exists. (5.5b)

Now we are prepared to analyze the necessary condi-
tions according to Proposition 2.1. Let J=0,1,... and
m = 1,2,.. be given; we are looking for all 3.7, for which a
vector ceC*™ exists such that 4c#0 and the components
c®: = F ¢, 1<a<4, satisfy

(1) s,c =41 —v, —J /2)c™®,
(ii) 5, (4c)® = (2J + 2) (4c) @,

for some v, >0,

J
(iii) ] (U +J =20 =0.
=0

The first condition is fulfilled iff 4(1 — v, — J/2) is in the
spectrum of S. According to Eq. (5.3b) there are four possi-
bilities; let us discuss, e.g., the case

4l —v,—J/2) = — 4. (5.6)
As ¥ must be positive [see (5.1) ], one gets by (i) and (5.3b)

==
Further, condition (ii) always gives

(AC)W — (Ac)<2) =0.
By Eg. (5.4) thefirst of these equations becomes A “?¢? = 0
(since ¢!V = 0), which, with the help of (5.2) and (5.5a)
yields ¢® = 0. On the other hand, the second equation,
which can be rewritten as 4 >*c® = 0, has by (5.5b) non-
zero solution ¢®. Now, inversing the implication (5.5a)
gives Y £0=0# (4c)Y = 4999, ie., Ac#0, and by us-
ing condition (ii) for a@ = 1, one has

J=m—1.
Hence in the case (5.6) a nonzero c fulfills the conditions
(i), (ii), and Ac#0iff the only nonzero component of ¢ is ¢'¥
and J = m — 1. Inserting into (5.6) and using (5.1) yields
vi=1+3¢ — (m—1)/2> 1; for the corresponding eigen-
value v of N(#): = Q¥ (b,_, + b,_,) one finds by Eqgs.
(1.8),

v=2w,+J=2424

Finally, as ¢! = ¢ = ¢ = 0, condition (iii) becomes

m—1

[ W¥+m—-1-2n"=0.

[=0
However, the numbers2/ + 1 — m, /= 0,1,....,m — 1 are just
all the eigenvalues of U and thus (iii) is fulfilled identical-
ly.

One can proceed similarly in the other cases when the
rths of Eq. (5.6) is replaced by 2m, — 2m, and 44, respec-
tively. Our analysis of existence of HW vectors ¥, for the
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families {Q,,,}, m = 1,2,..., can then be summarized as fol-
lows.

Proposition 5.1: (a) For each QPe{Q,, }, ie,
0> (m — 1)/2, there exists a HW vector ¥ , =¥, |
given by

¥, 1 Cppiz) = (p2)'%exp( — (p* + 2)/2)

sz— l(pzsin ¢)0; (m— 1)/2®C,
(5.7a)
where ¢! = ¢? = ¢® = 0, and ¢ satisfies 4 >Y¢¥ = 0. The
corresponding eigenvalue of N(#) reads
v=2+4 2% (5.7b)

(b) If m>2, then no further HW vectors exist for any
0Pe{Q,,,}. For Qe{Q,} there are two more possibili-
ties:

2
(i) Y2 (p.@2) = (pZ)”Zexp( —3—;—22—)

0
s 1o
X(pzsing) *® I 0< 9«1,
0
(5.8a)
with N(3)¥#* = (2 — 23)¥%; and (5.8b)
2+22
(ii) wl(p,¢,z)=(pz)”2exn>(—p 5 )
1
X{(psing)~le _0 , 9=1,
0
(5.9)

with N(1)¥, = ¥,.

The following simple argument enables us to reduce the
case (5.8) and exclude (5.9). Suppose that for given 2 a
HW vector ¥, is known and construct the subspace &,
according to Eq. (1.7). If ascalar product on & exists such
that Q@ } 9, satisfies (1.3), then for any
Te@/@ 41 (3),4 +2(3)) one has, for the norm of
v.=Tv,,

%)= (¥, T*T¥,). (5.10)

AsT¥TW, =3, M,¥,, where each M, is a monomial in
A¥=4_,,r=12and¥,e2*=2,NJ,,.,* onefinds by
Egs. (1.1), (1.6), and (1.8) that (¥, T*TV,)
= c(3,J)||¥,||>. The necessary condition (5.10) is not ful-
filled if ¢(3,J) <O0. For ¢(3,J) = 0 this condition is violated
if TW, 0.

Consider first the case (5.9). Equations (1.8) yield, for
r=12,

N(HY, =NV, =1 4,4, =v¥,, v:=0, v:=1

Further, ZV\PIE%{ZI,ZQ'}\P] =0 and FEY, =V¥,, where
E=1{4,,4%} [see (1.5) and (1.6)]. Then the relations
(1.1) yield, for T=4%4% ,
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T*TY, =4,02N, — A$4,)4%¥,

=4N, NV, — A, A$RQE — 4%4,)¥,

= — (2QF—A%4,)2E V¥,

= — 4V, + 244 (EA, + 4,)¥, = — 4¥,.
The necessary condition (5.10) is thus violated; consequent-
ly, the case (5.9) cannot yield any *-representation.

Let us pass to the case (5.8), for which one hz§

N1(0)~‘l/g =N,(HYE = (1 — )V, and let T
= 1[4 % (9),4% () ]. Proceeding as above, we find that the
rhs of (5.10) now equals 2(1 — #) (1 — 283)||¥#||% hence
the case (5.8) yields no *-representation for < (4,1]. Final-

ly, if & = 1, a direct calculation using explicit formulas for
A%(1) [see Egs. (2.3), (2.5), and (5.11) below] gives

0

0
: 1/2
)(sm @)'°e® 0

1

so that no *-representation can be obtained for ¢ = J, either.

By adding these results to Proposition 5.1, we arrive at
the following conclusion [for a given Q¥e{Q,,,} we set
2PN =2A (D)4, (D).

Theorem 5.2: If for some QPe{Q,, }, m=1,2,.., a
subspace & of 4m-component vector functions belonging to
C=(R* X (0,7) X R*) exists such that 7=Q" | & is an
irreducible representation of B(0,2) with finite-degenerated
vacuum and satisfies the *-condition (1.3) for some scalar
product on &, then 7 equals to one of the following:

(@)= | 252, ()Y,
J=0,1,.,8>J/2,

with the HW vector ¥, given by (5.7a) and (J + 1)di-
mensional vacuum subspace;

(b) pP=QP } 2P ()W, 0<d<),

with the HW vector (5.8a) and nondegenerated vacuum.

Remark 5.3: The representations listed in (a) are exact-
ly all the massive representations of Ref. 5, the parameters
E, and j being related to our ¢ and J by E, =1 + ¢ and
j=J/2

The last problem to be solved is conversing the preced-
ing theorem and reducing the representations 7$” and p‘”
with respect to the sublagebra so(3,2). Only the representa-
tions 7§” will be considered; the remaining cases can be
treated similarly, however, detailed calculations have not
been finished yet. In the rest of this section it is thus assumed
J=0,ie,m=1and 4>0.

It turns out to be convenient to transform the 4 X 4 ma-
trices 4,B, . .., which are explicitly given in Ref. 4, by a
unitary matrix R such that 7': = RTR ~!becomes diagonal.
The result is expressed via Pauli matrices as follows:

A'=0,90,, B'=io,®0,,

- 2, 2
(TVE) ( p,piz) = dipz exp( _pP ;'

C'=200,90,, D'=io,®(0,—29),
S'=14o03)el+23]1 —0;) &0, (5.11)
T' =38l (d+03),

U= —-1l(l1403)00, V' = —id(l+0;)80:.
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The matrices S', T', U’, V' are block diagonal, the di-
mensions of the blocks being 2,1,1 [see (5.2)]. The opera-
tors we obtain by inserting the matrices (5.11) into Eqs.
(2.3) and (2.5) willbe denoted 4, () =4, and 4%, r = 1,2.
Similarly,

Ejk (%) Eﬁjk = %{ijzk}! k= +1,42,

where. A_ , = A *for r = 1,2. In particular, for the operators
N,=B,_, Eq. (2.6) yields

N, =1 2—82+ _2® ’
V=il =0, 40 (5.122)
N2=%[22—8,+z ®2]’
with
Op= -3, -1+ (sing) e T/,
0,;=0,-2id,9U +icotpe V' —2T' +1S' + 232
(5.12b)

Our next goal is finding common eigenfunctions of oper-
ators ®, and ®, on the space C  (0,7) of four-component
vector functions that are C* on (0,7). Consider for
m = 0,1,... and 1<n<4 the following elements of C 7 (0,7):

L vt e, n=13, 13
) = VP D ge  n=24 (5.13a)
m n? y Ve

Here the vectors e, €G* are related to the basis (3.5b) by
ex=|+)e|+) ex=|+)e|—),
ex=|—)&|+), ex=[=)o®|-),

and the functions v{,?eC = (0,7) are defined for B> — 1via

the spherical functions P{#’ or Jacobi polynomials P {=#
(see Ref. 8):

(5.13b)

M 172
(=)™ (@): = (_s";_‘}’) PPPLCP (cos @)

_ (sin¢))"+‘/2 v Pm!
2 H(g+m+1)

XP PP (cos @), (5.13¢)
where
VB = [(2B+ 2m+ DT Q2B+ m + 2)]1/2
" Q2B+ m+ Lym!

One has for each m =0,1,... and B> — 1,
[ —d2 + (B =1/ (sin@)’ ol = (m+ B+ WP
and

Te,=[(0—(— 12— 1le,, 1<n<4.

Then the first of Egs. (5.12b) gives, for m =0,1,... and
1<n«4,

0,|lmn)y =[(m+ 3 — (—1)"/72+ 1) — 4]|m,n) ;.
(5.14)

By using Eq. (5.11), we see that this relation holds also for
@, if n = 3,4, whereas for » = 1,2, functional relations satis-
fied by the functions v{? (see Appendix B) yield

O,m 1)y =[(m+d +1)>+3—28]|m,1),
+2[(m+ DRI+ m+ 1)]?|m + 1,2),,

J. Blank and M. Havligek 555



O,lm + 1,2y, =2[(m + YQ2I + m + 1)]Y?m,1),
+[(m+ 3+ 1)’ +3+28 )Im + 1,2),.

Thus the subspace {|m,1),, |m + 1,2) 4 };;, is invariant un-
der ©,; at the same time this is an eigenspace of @, [for the
eigenvalue [(m + & + 1)>—1], see (5.14)] By taking
proper linear combinations of |m,1), and [m + 1,2) 5, we
find that besides |m,3), and |m,4),, m =0,1,..., there are
further common eigenfunctions of ®, and @,:

Im, + ) ( n )m 1,1)
™Al =ae v am) T
2§+m)1/2
P ’2 E]
+(20+2m Im.2)5
29+ m4 1 )1/2
m— )y = TMmT B
. = (2w+m+1) Im.1)s

m+1 )1/2
__mT: 1,2),,
(2(19+m+1) Im +1.2),

m=0,1,.. .

The corresponding eigenvalues of ®,, r = 1,2, are given by
Almp)=(m+9+6, ) —14
Amp)=m+9+86, V-4, p=+1,
A(mn)=(m+3+4—n)*—

for r=1,2, n=34.
Now one finds by Eqgs. (3.8b) and (5.12a) that for
k,I,m = Q,1,... the vector functions

(946,00 )f(m+"+5““)(z)
I

[klm; ) s ( popy2): =
®|m9ﬂ>0(¢7)’ ﬂ= i 17

;}dm;n)é(p’@,z): - £m+x?+4—n)(p)f§m+0+4—n}(z)
®|mn); (@), n=34, (5.15a)

satisfy

[N, — (2, + m+3+36,,., +ur)kim;p)s =0,

[N, — 2, +m+3+5—n)]kimn); =0,  (5.15b)

where r = 1,2 andj;: = k, j,: = I. Notice that the HW vector
(5.7a) can be written as follows:

W, =2~ 7T (28 + 1))"/%|000;4) ,. (5.16)

The action of the operators 4, () and 4% (), r = 1,2,
on the vector functions (5.15a) can be found by direct calcu-
lation. The resulting formulas given in Appendix B show
that the subspace

@0 = (gx?)lin’
= {|kim; u) 5, |kim;n)y: kIm=0,1,..,
p=+1,n=34} (5.17)

is invariant under all of them and, as ¥ €% ;, the domain of
w$ fulfills

U DAV, C D5, 9>0.
Moreover, each of the vector functions (5.15a) isin
L2(M): =L*R* %X (0,m) XR*)&C*.

(5.18)
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This can be checked with the help of Egs. (3.8a) and (5.13c¢)
showing that

v (@) ~ (sin @) £+ 2P, (cos @),

where P,, is a polynomial of degree m; hence v{PeL 2(0,7)
for any B> — 1. In fact, the sets {v'?: m=0,1,...} and
{f{®: k=0,1,..} are orthonormal bases in L 2(0,7) and
L?(R™), respectively, for all a,B> —1 (see Ref. 8,
§8.904); hence & ; is an orthonormal basis in L 2 (M). By
using this fact and the explicit formulas of Appendix B, one
easily verifies that Q7 | 9, fulfills the *-condition (1.3)
for the L 2 (M) scalar product. The formulas of Appendix B
also show that for any We% , such that 4, ¥ =0, r= 1,2,
one has ¥ ~|000;4) ; (cf. Lemma 3.2), i.e., the representa-
tion O | &, has a nondegenerated vacuum.

Let us finally examine questions of irreducibility [notice
that if one proves algebraic irreducibility of ‘” | &, then
equality will hold in (5.18), i.e, QP |} ;5 = n{”]. Con-
sider the subspaces Z "’ C Y ,, a = 1,3,4, where

D®O:={|klm; p)y: kdm=0,1,,p = + 1}y,
@‘gx): = {tk!m;a),,: k,l,m = 0,1,...}“!1, a= 3,4.

AsthematricesS', T, U’, V'leaveinvariant the correspond-
ing subspaces in C*, each of & §® is invariant under all the
operators ~,k (%), jk= +1,+2; the representations
QP (x) |} D§, xes0(3,2), will be denoted 7.
Proposition 3.4: The representations 73", a = 1,3,4, are
algebraically irreducible.
Proof: Let |000;1) ;: = |000; + )5 and

%P (By:= U By (D), jk=+1,+2)

[cf. Eq. (1. 7)] 1t suffices to find to each nonzero ¥Ye &
two operators S, and 7,€% (¥ (B) such that

¥ =35 000;a),, T,¥=]|000a),. (5.19)
This can be done with the help of Appendix B |cf. the proof
of assertions (i) and (ii) in Appendix A]. n

The relations (5.19) also cover the essential part of
proving irreducibility of QP } G, if one can show that the
projections P, onto the subspaces 2§ satisfy

P.e%("(4), a=134. (5.20)

To this end we make use of the following property of the
second-order Casimir operator 027 (c,) of s0(3,2) that ob-
viously belongs to % {* (B) (cf. Lemma 3.4):

QP(e) =10 (S +x—4) =18 (S'+43*—8).

(See Ref. 12.) One has P, = I8 F,, where F, projects onto
the subspace of C* spanned by e,, e, and F;, F, onto sub-
spaces {e;},, {eshin, respectively. Now Egs. (5.3) yield
S'=2F, + 43(F, — F,) and, due to this relation, each F,
can be expressed as a polynomial function of S’ provided that
the eigenvalues of §’ are nondegenerated, i.e., ¢ 4. Then P,
equals the same polynomial function of 7 (¢,) — 432 — 8
so that P,e%{"(B)C % {*(4). However, for 4 =} we
only find that P, and P, + P, are in % {* (B). Unfortunate-
ly, the fourth-order Casimir operator of so(3 2) does not
help since its eigenvalues corresponding to P, and P also
coincide for # = L.

Letus conclude this section by summarizing basic prop-
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erties of representations 75”7 =Q® } % {»(4) for 4> 0.

Theorem 5.5: (a) Each #{” is a *-representation of
B(0,2) on L}(R™* X (0,7) X R*)® C* and its domain equals
9 4 given by Eq. (5.17), the corresponding grading of
End &, (see Ref. 1) being determined by the projection P,
onto Z V.

(b) The vacuum subspace of 7{? is one dimensional,
spanned by the vector function

Vol pyp,2) = (pz2)°+172
Xexp(— (p* +2°)/2)(sin @)’ ®e,.

(c) Each 7§” is algebraically irreducible and with re-
spect to so(3,2) reduces into three algebraically irreducible
skew-symmetric representations.

(d) The representations 75" and 75°” are nonequiva-
lent if F #£4'.

Proof: Only irreducibility of 75"’ and assertion (d) have
not been proved yet. Irreducibility can be verified as in Prop-
osition 5.4: to each WeZ , one finds S and 7€ % (¥ (4) such
that W = §|000;4), and TW =|000;4),. This can be
achieved by using Egs. (5.19) and (5.20) and (see Appendix
B) 13

A%|000;4) , = — (28 +2)"/2|000; + ),
4,)000; + )5 = — 728 + 2)'72/000,4) ,,
[4%,487]000;4), = 2[ (28 +2) (29 + 1)]"/2|000;3) ,,
A,4,1000:3), = — [(29 +2) (28 + 1)]/2(000;4),,

7: = exp(in/4).

Finally, assertion (d) follows froln Eq. (5.7b2, which gives
the lowest eigenvalue of N(#)=B8,_,(#) + B, _,(%).> A

VI. CONCLUDING REMARKS

To our knowledge, infinite-dimensional representations
of osp(1,4) have been treated in Refs. 5 and 14. In the former
work irreducible *-representations have been classified ac-
cording to how they reduce with respect to so(3,2), and
divided into four classes. The set {7,: J = 1,2,...} is identical
with the third class, whereas the representation 7, belongs to
the second class, which is labeled by a continuous parameter
Ey>1; m, corresponds to E,=1. The whole set
{m,: J=0,1,...} just covers all the massless representations;
the representation space of each of them are two-component
vector functions. Similarly, the four-component representa-
tions 7§”, ¢ > 0, of Sec. V are just all the massive representa-
tions in the second class. Finally, the fourth class is com-
pletely covered by representations {7(¥:9>J/2},
J = 1,2,..., that can be obtained from the families {Q,, , ;,}
using the HW vector (5.7a). Construction of these represen-
tations is in progress.

In Ref. 5 explicit form of the representations under con-
sideration is not given. Progress in this direction has been
attained in Ref. 14, where special attention has been given to
representations with nondegenerated vacuum characterized
by the order of parastatistics p > 0. The authors of Ref. 14
have constructed all the representations belonging to the
first and second Heidenreich’s class by giving explicit formu-

las for matrix elements of the odd generators in a concrete -
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basis. Their case I is for p = 1 equivalent to our 7, and for
p>2 to w§* ~*; further the case I11, which contains repre-
sentations with degenerated vacuum labeled by g = 1,3,2,...,
is equivalent to 7,, (a counterpart to 7, the first member of
Heidenreich’s third class, is missing). The basis used in Ref.
14 is related to the reduction of so(3,2) with respect to
s0(2,1) ®s0(2,1) and is quite different from the bases
(3.10) and (5.17). The resulting formulas for the odd gener-
ators are much simpler in the latter bases; moreover, we give
basis-independent expressions [see Egs. (2.3), (2.5), (3.1),
and (5.11)].
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APPENDIX A: ALGEBRAIC IRREDUCIBILITY OF
REPRESENTATIONS =,

In order to complete the proof of algebraic irreducibility
sketched in Sec. III it remains to check the following two
assertions (the notation of Sec. III is used, however we omit
writing down dependence of 4,, 4, and |klm: u) on J).

(i) For each |kim; u)e# , there exists Te% , such that
|klm; py = T'|000; + ).

(ii) For 4 = + 1 and any linear combination

\ll,u = 2 Crim | KIm; ) #0 (A1)
kim

there exists Se% , such that 3"1’” is a nonzero vector of &},
i.e., it equals a linear combination of |00m; 4 ), where
— J<m<0.

Explicit knowledge of the action on any |klm; i) of 42
and 4% will be needed. With the help of Egs. (3.12) one
finds

— (i/2)A% |Klm; p) = [k(k + |m|)1"2|k — U Im; p),

(A2)
— (i/2)A % \kim; 1)
= [+ |u(J +m+1) ~ )12kl — L m; ),
(A3)
(i/2)A ¥ |kim; )
=[(k+D(k+14+|mD12k+ Uim;p),  (A4)
(i/2)A % |kim; )
=[U+ D41+ p(U+m+1) —41"?
X |kl + 1 m; ). (A5)

Now we get, by (A4) and (AS),
A P4 800m; ) = a(k,,m, 1) |klm; u),

with some nonzero a(k,l,m, ). Hence (i) will hold if we
iind, for each u= +1 and m =0, + 1,..., an operator
T {#e% , such that

|00m; 1) = T {/|000; + ).
Let us consider first the case — J<m<0. One has

[00m; — ) =q[2(J+m+ 1)} ~24%4|00m; +)  (A6)
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and then T can be found using Proposition 3.3(b) since
|00m; + YeDy*. If m< —J — 1, we use

|00m; — ) = — 7(2|J + m|)~/24,|00m; + )
and further
|00m; + )

= — (i/2)(|m| |m +J|)~V2444%|00m + 1; 4 ).
With the help of these relations we find that 7¢*’
is proportional to (434HY*"T ) and T
= — (2| j+ m|)~"?4,T . Finally, for m > Owe use m
times
|00m; — )

= — (i/2)(m(J + m 4+ 1)) "2444%|00m — 1; - )
and then (A6) with m=0, which gives T
~(A84%)™4%. As for T*’, Eq. (3.12c) shows that 4,
tratlsfgrms {00m; — ) into |00m; + ), therefore T (1’
=4,T.. )

FoI proving (ii) let us denote by k the largest kin (A1)
and by / the largest / for which cy,,, #0. Further let m, (m,)
be the minimum (maximum) of the set {rg : Clim 7 0}. Then,
by using Egs. (A2) and (A3) and setting Sz: = A 2’4 2% one
gets

=S¥, = 3 ¢,[00m;pu), (A7)

m=m,

0),
WO,

the coefficients c,, being proportional to ¢z, . Let us consid-
er first the case g = + 1.
(a) If m,> 0, then the relation

_ézzz,|00m;+)

_ [ —(m(J +m))"?100m — 1; +), m>1,

—lo, m<o,
yields (= (i/2)AA )™ = (= D™(mI(J + my)/
JY2,, ,|00m; + ), i.e., one can choose § = (4,4,)™Sg.

(b) For m,<0and m,> — J we see that ¥ Y2 }* and
thus only the case m,< — J — 1 remains. By using

ézlzzl()()m; +)

_ { — (|(J+ m||m])'?100m + 1; + ),

0, m>—1J,
one sees that (A4,4,)7+™Wp®
100 — J; + YeZ*, and thus we set § = (4,4,)"” + ™ 5.

Let us now suppose £ = — 1in (A7). If 4,¥‘? = O for

both r= 1,2, then ¥ PP, whence S = Sg. If 4, %% 0,
we use

mg—J—1,

is proportional to

- min( — 1,m;)
TGRS
and S is obtained by applying (b) to 4,%?. Finally, if
A,¥® =£0, then one has

¢, |m|"300m + 1; + ),

4,0 = S, (T m A+ 1)V200m + 1; 4 ).
m = max( —J,m,)

Now §f A,Sg for m,<0; otherwise one gets S by applying

(a) to 4,99,
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APPENDIX B: EXPLICIT FORMULAS FOR
REPRESENTATIONS ="

The action of operators 4, =75 (a;) and B, =7{™ (b, ),
jk= +1,+2, on the vector functlons (5.15a) has been
found by using Eqs. (3.9) and the following relations for the
functions v # (sec Ref. 8, §§8.733 and 8.735):

i(28 +2m + 1)"2 cos pv'P (@)

(m+1)2B+m+1) ]‘”v(m (@)
2B+2m+3 !
_ m(2B + m) (g)
28+2m—1 U= (@),

(2B +2m + 1) sin gl (@)
(zﬂ+m)(zﬂ+m+l)]'1/2v(ﬁ)
28+2m+3
m(im+1) ‘/2(,3)
Brom_1l "o

1(?’)

(2B+2m+ 1) 2singul? | (@)
(2B+m)(25+m+1)]'/2v(m
28+ 2m—1
mm+1) 2 4
23+2m+3 m+l(¢)’

1(¢)

{d, + (B—Ycote 10,2 (@)

= —i[(m+ 1)Q2B+m)]"2 L3 (@),
[d, — (B+ Yooty JuiP (@)

= —ifm(2B+ m + DIV V().

It is convenient to calculate the action of operators Ajand A%
in the following orthonormal basis:

&P ={|kim; ud)y: kJm=0,L..., uA= + 1}

CL (M),
where
|klm; g+ ) 52 = |kim; ) 5,
{elm; o — )y

t= Q% +2m+ 1 —pu)~ V2
X[Q23+m+8,, )" *|kim3+8,_,),
+u(m+68, , )" km —u3+8,  1)s]-
Similarly, the action of 4, and 4% will be expressed via
vectors
|kim; p+ 15: = |kim; )y,
|klm; p — 14
=Q23+2m+14u)'?
X[(m+8, ) *klm + 3+ 68, 1)y
+pQ23+m+8, )\ Pkim3+6,, )],

which also form an orthonormal basis €’ C L2 (M). By in-
troducing

J. Blank and M. Havlitek 558



(2]')1/2’ /.l«=1,
RU+m+3+ D] p=—1,
j=0,1,..,

with 7: = exp(in/4) [notice that f,, ,(j,u) =0iff j=0 and
p# = 1], one has

A\ |KIm; pAYy = fr o (ks ) |k =8,y Im; — p, — A,
A% \kim; pd),
= 7”1._17(k+6y+ 1 —I-‘)|k+5y+1,lm§ —p, — Ay,
Zzlklm;M]o
=y m(l’ — W)k —6,  1,m; —pu, — 1],
A8 |kim; pdly = — pfrns (U +8,_ 1, 1)
X|kd+6, _m;—p,—A] 5. (B1)

For proving algebraic irreducibility in Proposition 5.4 and
Theorem 5.5 the following formulas for B,=1{4,,4.},
r.s = 1,2, which directly follow from (B1), have been used.

E,,‘klm; BA)
=fm,|?(k’ .u)fm,a(k _5/1—— 19 _/‘)lk - l’lm;/‘ﬁb»
BY, \kim; pd)y = Frog G+ 1, 1) T g (K48, 1, — )
Xk + 1,Im; ud),,

SnsUn)=7

Bolkim; pudl,
=fno (=84 415 1) frno (b — ) |K] — Lmpd 15,
§§2|k1m;,u/1],, = fT,a(I'HSu— 1) 7;;(1+ 1, —u)
X |k, 4+ Lm; ui],
Elz|00m;.u)o

_ m(d+m+ 1)(2% + m)|?
d4+m

|00m - 1;:u’>0’
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B,,|00m;n) 5
m@3+m+6,_,)Q2¢+m—-1+426,_,)12
=[ d+m—1+6,_, ]
n=34,

X |00m —_ 1;”).9,
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Casimir operators for massless representations of the super-Poincare
algebra and the reduction of the ten-dimensional massless scalar superfield
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Invariant operators for the massless little algebra of SP, (super-Poincaré algebra in d
dimensions) are given. They are used to decompose the scalar (massless) superfield in ten
dimensions. Explicit expressions for the irreducible pieces are obtained after exploiting a

relevant Cartan subalgebra.

I. INTRODUCTION

The obtaining of explicit expressions for irreducible rep-
resentations of the N = 1 super-Poincaré algebra in higher
dimensions SP, by reduction of general superfields has been
accomplished in the massive case thanks to a complete un-
derstanding of the Casimir operators involved.! An excep-
tion to this is the case d = 10 whose special difficulties have
been pointed out in Ref. 2. The massive representations in
four dimensions had been understood long before due to the
efforts of a number of authors.? The massless representations
of SP, for any NV have also been completely understood long
ago* by use of the method of induced representations.

In this paper we analyze the massless representations of
SP, and concentrate on the case d = 10, which is especially
important in the authors’ opinion given the current interest
in superstring theories. Aside from that, it shares the special
difficulties of the massive case in d = 10 and, since the off-
shell extension of the massless case is the massive one, it is
the only one whose off-shell extension is at present complete-
ly unknown.

The paper is structured as follows. In Sec. II we estab-
lish our conventions and give the commutation relations of
the super-Poincaré algebra. Then, in Sec. III, we derive the
little algebra whose representations will be the actual con-
cern of the rest of the paper. The formulas given there will be
familiar from our knowledge of the four-dimensional case.*
Section IV is devoted to giving the complete set of Casimir
operators corresponding to the general case. In Sec. V we
start our analysis of the massless scalar superfield in ten di-
mensions by giving the particular form of the Casimir opera-
tors suitable for this case as well as their eigenvalues and the
corresponding SO(8) irreducible representations. We also
give there some necessary field contents.

We digress a bit in Sec. VI to explain how the Wigner
method of induced representations works in this case. In Sec.
VII we stop to give simplified forms of the relevant higher-
order Casimir invariants as well as a derivation of their
eigenvalues. Finally, we return in Sec. VIII to the main ob-
ject of this paper in order to give explicit expressions for the
irreducible pieces contained in the massless scalar superfield
in ten dimensions.

Il. THE SUPER-POINCARE ALGEBRA SP,,

We will start this section by recapitulating some neces-
sary formulas from Ref. 1. The super-Poincaré algebra in d
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dimensions SP, is defined by the commutation relations

[PiPs] =0, (2.1a)
[Ju5-PC] = — 285, Py, (2.1b)
[Jas S P = —4i6 €T, (2.1c)
[P,,Q°] =0, (2.1d)
[V45:2%] = — (i/2)T 5% 2%, (2.1e)
{007} = (BC 1), (2.1)

where the Latin indices 4,B,C,D run from O to d — 1 while
the Greek indices run from 0 to 2!9/2], which is the dimen-
sion of the representation of the Dirac (Clifford) algebra in
d dimensions [ corresponding to the basic spinorial represen-
tation of SO(1,d — 1) for d odd or the sum of the two basic
spinorial representations of SO(1,d — 1) ford even]. Brack-
ets enclosing a set of indices will denote complete antisym-
metrization with strength 1, as usual. The Dirac algebra in
our conventions is

{PA’PB} = 217AB =2dlag( + —_—
and T tensors, again as usual, are
Tua, =TT Tay

Here Qis a translationally invariant Majorana spinor, which
can exist in all dimensions except 5, 6, 7 mod 8 (Ref. 5) and
C is the charge conjugation matrix, 0 = @ 'T'y = Q@ 7C.

The generators of SP, are realized in superspace as fol-
lows:

'—)’

. d

P=—i—,

. It

| = a
JAB=_(’xAPB_xBPA)-'——;—BFABa_o-_‘_EAB’ (2'2)
M d 1

a__ hd _Pa 03),

e '(ae,,+2 s

where 2, represénts the external spin operator which acts
on the external indices of the corresponding superfield and
(i/2)6T .5 (3 /3P) is necessary to describe the internal spin
part.

In addition to these generators, in superspace we can
introduce a covariant derivative which, like @, is a transla-
tionally invariant Majorana spinor,

a 1
De=j{—— — —_ P67, 2.3
(2% ) (23
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but which anticommutes with it,

{D*0%}=0. (2.4a)
Also
{D*D P} = — (PC~1)*b. (2.4b)

In 2 mod 8 dimensions we can have Majorana—Weyl spin-
ors.’ Thus, in ten dimensions using the Weyl projectors,

N =4I+ ), Loy =Tl Ty, (2.5)
we can split Q in two pieces,

QE) =TI'*Q (2.6a)
and similarly for D,

D =TI‘’D, (2.6b)

Here Q¢%’ and D (*’ satisfy the Majorana condition.
Hence we can define two simpler superalgebras,? SP{;" ’ and
SP{;’, whose gradings are, respectively, provided by Q‘*’
and Q¢~’. An obvious Casimir operator for the algebra
(2.1) is the square of the momentum operator,

P2=P,P*, (2.7)
Depending on the eigenvalue of P2, the irreducible represen-
tations of SP,, just like those of the Poincaré algebra P,, can

be separated into four categories (we discard the case
P, <0):

i) P2=M?*>0;

(ii) P>=0 but P, not identically zero;
(iii) P2 = — M?*<0;

(iv) P, =0,V A.

The representations that are interesting for physical applica-
tions fall into categories (i) and (ii). Category (i) is com-
posed of the so-called massive representations.

. LITTLE ALGEBRA

We now proceed to look for the little algebra corre-
sponding to categories (i) and (ii). That is, we look for the
generators of SP, that leave invariant a particular form of P,
which we choose to be the one corresponding to a collinear
frame,*

P, = Py(1,0,...,0, z) (3.1)
with

=T— (M/P,)?, O<zl,

which clearly satisfies P, P4 =
responds to

M—»O:}Z—»l,

M 2. The massless limit cor-

while for z5# 1, we are in the massive case. The even genera-
tors of SP,; which leave invariant Eq. (3.1) are

L,=J,,
(3.2)
Ly =Jg_ 1 +20o, bj=1lbud—2.
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They satisfy the commutation relations

[L; LX) = —4is,'*L, ",
[LyL %1 = —2i8,*L; )%~
[Lig_1, L7 '] = —i(1 =22)L/.

IJ’

3.3)

When z5 1, we can normalize the L;; | generators to write

[L,,,L k’] = - 4i6[i[ij]” s

Lk,d—l . (& a—1 l
L‘J’ = —418[‘ Lj] _—
J1-72 vV 2

3.4)

d—1 L""'_l o [ _
[ i = — 416[1[1Ld— 1 ]d 1 >

which are the commutation relations of SO(d — 1). When
z = 1, we cannot do that, rather we get from (3.3)

[L,L¥] = —ais,* L, )",
[L;.L kd — l] = — 21'6[,-"L“"‘
[Li,d—ULj,d— 1 ] =0

3.5)

which is the Lie algebra of the Euclidean group in d — 2
dimensions E(d — 2). This is the Wigner-In6nu contrac-
tion of Eq. (3.4).

Now we turn to the odd part of the little algebra. Since
the Majorana charges Q commute with the momentum, they
will also be part of the little algebra. In order to clarify the
meaning of the anticommutation relations (2.1f), we turn to
the light-cone coordinates,

P=P,T*=4(P,T*+P_I'" +PTH),

with
y =P+P,_,, T*=T4+T""", (3.6)
Then we can introduce the projection operators,
M, =4I +tTo,_,). 3.7)

These projection operators play a very important role in the
massless case. They satisfy the following relations:

r+0¥ =4I, ,
m,r.

n,r, =r_m
=F:tni =

+=l:,

(3.8)

Making use of IT , we can split Q in two pieces,

g, =0,0, (3.9)
which also satisfy the Majorana condition,

0, =0,T,=0,7C=0I, (3.10)
because of the following properties of I

c'mn,’"c=M,, O, '=m, . (3.11)

From (2.1f) we can derive the anticommutation relations
forQ,,
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{0% ,0% Y=1P (T*C~H*#,
{02, 0% }=4P (T~ C~ 1),
{@2 .07 }=P(I'II.C~H**,
{0 02 }=P(P'I_C 1),

(3.12)

This implies that in the collinear reference frame (3.1) we
have two mutually anticommuting sets of Majorana charges,

9% .05 }=4P (T*CH¥,

{Q2 .02 }=4P_(T—C 1), (3.13)

{ge.0% }={0= 0% }=0.
In the massless limit we have

P_=0=>{0*,0%2 }=0 (3.14)
andsince Q' , = Q% (CT,),, we have

{g_, 0" }=0, (3.15)
which implies

Q_=0. (3.16)

So in a massless representation, we have only half as many
odd generators in the little algebra as in the massive case.
This is precisely what happens in four dimensions.*

Applying the projectors IT . to the superspace coordi-
nates

6, =M,0c0, =61, (3.17)
which implies
a a
—_——'=H —, 3-18
30+ * 36 (318

Then, from (2.2), (3.9), (3.17), and (3.18) we get the fol-
lowing superspace representations for Q | :

[ d 1
0. =G TP ) 19
which in the massless case
d
P_=0 _ = 3.20)
=>Q_=i 5. (

implies that the representation of the little algebra is given by
a superfield which does not depend on @,

é(x,0)=¢(x,6_), P_¢(x,6_)=0. (3.21)

In order to complete the structure of the little algebra, we
have to look at the commutation relations of the even with
the odd part. In the massive case they are simply the ones
corresponding to the fact that the Q transforms according to
the spinorial representation of SO(d — 1).! In the massless
case we have

[VpQs: 1= —/2DT,Q, ,
[Jor +Jia_1,@:] = — (/2)T,T,Q_,
[Jo: +Jia—1,@_1=0.

(3.22)

So the condition @_ = Ois respected by the E(d — 2) gener-
ators and @, provides the grading which is quite similar to
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the one of the SP, algebra since @, corresponds to the
spinor representation of the SO(d — 2) generators J; and
commutes with the noncompact ones,

[Jij’Q+] = - (i/z)rijQ+ s
[Jo.' + Ji,d—l’Q+] =0,
{0,.0.}=4P. T*C1.

(3.23)

The representations of the algebra (3.5), (3.23) are labeled
by a representation of the underlying E(d — 2) algebra
which serves as a Clifford vacuum for the action of the 0, .
As indicated before, this representation is in general infinite
dimensional. Again the interesting representations will be
the finite dimensional ones corresponding to vanishing “lit-
tle mass.” This means that all the noncompact generators
vanish and therefore they are described by a SO(d — 2) rep-
resentation instead, acting as a Clifford vacuum. These are
the representations one obtains from taking the massless
limit of massive representations. When we talk of massless
representations we mean this type, where not only the mass
P? vanishes but the little mass as well.

As mentioned in Sec. 11, in the particular case of ten
dimensions, we have Weyl projectors which respect the Ma-
jorana condition. We can apply them also in the massless
case since they commute with the light-cone projectors

[0, ]=0 (3.24)
so that we can define the Majorana spinors,
Q‘f’:ﬂ‘i’HiQ. (3.25)

Since the @+ and the Q ~’ are mutually anticommuting, to
keep them both would amount to working with an N =2
extended super-Poincaré algebra, which is not our intention
here. We will only keep Q ‘*. So our massless superspace in
ten dimensions will include only the anticommuting coordi-
nates,

0 =M""MN_6 (3.26)
and we have the representations
a 1
(+) _; 2 +g9 (=)
e —'(a§<_—>+4P+r o= ) 327
a3 1 )
(+) _ 4 +g(—)
DY _1(69‘_" 4P+F /AN ),
and the anticommutation relations
{Q (++ )a,Q (++ )ﬂ} — %P+ (H(+)F+C —l)aﬂ ,
{D (++ )a’D (++ )B} - _ % P+(H‘+’F+C“)"‘9, (3.28)

{Q (++ D (++ } =0,
We will call SP{;", the ten-dimensional super-Poincaré
algebra whose grading is provided just by Q (.

IV. CASIMIR OPERATORS

The basic object for the construction of Casimir opera-
tors for the massive representations of SP,, is'

Usp =Jus + (2/P2)PEJE[A Py )+ (1/4P%) QPFABQ'
4.1)
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This object is singular when P2 = 0. One could consider the
nonsingular object

Vg = lim P?U, 4.2)
P20 ’

but there are two problems with this operator. First, the

contribution from the odd part of the algebra disappears, as

we can see by using light-cone coordinates and going to a
collinear frame,

(1/4P*)QPT ;0
=(I/P)Q. T TQ, + (1/P_)Q T T 30_,
(4.3)
which in the limit becomes, by Eq. (3.16),
lim OPT ;,0=P.Q_T*T,,0 =0. (4.4)

So V5 only carries contribution from the Poincaré subalge-
bra P,. Second, all the Casimirs,

Tr V"= VA,A2V42A3 PR VA,,Al (4.5)

vanish and they do not allow us to distinguish between dif-
ferent massless representations. The same is true for the
squares of the generalized Pauli-Lubanski tensors,’

Wi oy =PiaVaue Vayay, ;- (4.6)
This is so because

Ve =2P5Jg Py, 4.7
is orthogonal to the momentum,

P4V, =0, (4.8)
when P2 =0,

So these operators are not useful to describe the massless
representations of SP, as defined in Sec. III.

What we can do is to describe these representations by
means of the Casimir operators of the little algebra. Since we
are interested in representations whose little mass vanishes,
we would encounter the same problem mentioned above
should we try to use the Casimir operator for the graded
E(d — 2) algebra (3.5), (3.23). Instead we will look direct-
ly at the invariant operators of the graded SO(d — 2) alge-
bra. In analogy with the massive case, we start by construct-
ing an operator which commutes with Q ,

U, =J,; - (i/8P,)Q. T T,0.,
[U;.2]=0.
Therefore any scalar or pseudoscalar constructed out of the
U; will be an invariant operator for the graded SO(d — 2)
algebra.

In order to know how many independent operators we
need, we have to look at the algebra satisfied by the U;,

[U,,U%] = —4i8,%T,1, (4.10)

i s
which is precisely the algebra of SO(d — 2). This is the way
it should be, because we know that the irreducible represen-
tations of a graded Lie algebra are characterized by an irre-
ducible representation of the even part; therefore, since here
the representations of the graded SO(d — 2) algebra are de-
scribed solely by objects constructed out of the Uy, it is only
natural that they obey a SO(d — 2) algebra. Casimir opera-

(4.9)
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tors for the algebra are the traces
TTU"=U,"U>" - lJ,."", (4.11)
which are all scalars while in even dimensions we also have
the Pfaffian,
1
21-22(d — 2)/2)
X €y, T

iyiy ig_3ig_o?

Pf(U) =

(4.12)

which is a pseudoscalar. A complete set of independent oper-
ators® is the following.
(a) Ford odd,

C,=Tr u», p=12,.,[0(d—-2)/2].
(b) For d even,

C,=TrU?, p=12,.,(d—-2)/2-1;
Clu_nn = 26 =272((d = 2)/2) PR(U) .

For the next section we need expressions which are appropri-
ate for d = 10. They are

U,=J; — (i/8P,)Q )T T,0" (4.13)
and the complete set of Casimirs is
C,=TrU%», p=123; C,=24Pi(U). (4.14)

Finally, let us close this section by mentioning that the eigen-
values of these operators for any irreducible representation
in terms of the highest weight vector, for all the classical
groups, have been given in a beautiful series of papers by
Perelomov and Popov.” A translation of their results suitable
for our needs can be found in Ref. 1.

V. THE MASSLESS SCALAR SUPERFIELD IN TEN
DIMENSIONS

What we can call the Casimir approach to decompose a
general superfield consists of computing the eigenvalues of
the Casimir operators by writing the appropriate representa-
tion for the operators J 5 [i.e., 2,z in Eq. (2.2)] and then
finding the representations corresponding to those eigenval-
ues.? Different irreducible pieces can be separated by either
using appropriate projection operators or solving equivalent
differential equations. In four dimensions these procedures
have been explained in the papers of Ref. 3, for instance,
while in Ref. 1 they have been applied in detail to 11-dimen-
sional case.

The simplest case corresponds to the scalar superfield,
which means

3,5 =0 (5.1)

in Eq. (2.2). Then from Egs. (4.9), (2.2), and (2.3), one
finds (let us remember that P; = 0 in our reference frame)

U; = — (i/8P,)D, I T,D, (5.2)

in the general case while, by using Eq. (4.13) instead of
(4.9), we get

Uy, = —~ (i/8P,)D ‘T T,D»’

in ten dimensions.

(5.3)
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The first Casimir is then

N2
C,=TrU*= ( ~ ?) DT, D
+
XD T T/D ), (5.4)
This operator can be manipulated by successive Fierz trans-
formations, as described in Appendix A to obtain

C = —14. (5.5)

There are three irreducible representations of SO(8) which
correspond to this eigenvalue which are precisely the three
eight-dimensional ones. They are tabulated in Table I along
with the eigenvalues of all the Casimir operators (4.14).

For dimensional reasons, only two of these representa-
tions are included in the massless scalar superfield. It is also
clear that one of the representations must be bosonic (true)
while the other must be fermionic (spinorial). So we either
have [1] @ [111] or [1] @ [14} — 4]. We will see below how
to resolve this ambiguity.

Here again we encounter the fact that C, is a number,
just like in the massive case.” This implies that C, cannot be
used to separate the irreducible pieces and one must resort to
higher Casimir operators or some other method to separate
them. This is a reflection of the fact that there is no scalar or
pseudoscalar operator quadratic in D (*’, unlike the 11-di-
mensional case where we have DD for instance.

In order to resolve the ambiguity in the decomposition
of ¢(x,0 ), we will derive a relation between C, and C ;.
By a Fierz transformation, one can derive the identity

B (++ )F_Fi|iz‘D (++ )D (++ )F_PisiJD (++ )
= —3P.D (++ )F_Fi,i, r,.D (++ )
+ ]!6 5 (++ )r‘——r‘iliz an
xT. . D(++ )E(++)F_an-D (++) .

1y

(5.6)

Antisymmetrizing in the indices i,...,i, the first term vanish-
es due to the Majorana condition. Furthermore, the identity
Fi, rmnrig‘] =D, + 46[:‘, m5i, "Tii (5.7
implies
3 D ha )F_F[il.‘,D + D - T,.D (+)
=4 D (++ )F_Fi‘. ] -i‘mnD (++ D (++ T-T™D (++ >

(5.8)
Now from the definition of I';,, we get
D (++ )F_Fip ] _'_‘m"D (++)
=1€. . iy, 0T LD (5.9)

and substituting in (5.8) we get the self-duality condition
for U, U,

izig ]2

Ui, Uiy = (/8¢ . ., ;... ., UMUS (5.10)

This self-duality property allows us to express the pseudo-

scalar operator C; in terms of the scalar ones C, and C,,
C,=¢é"""U,U,6U,U,

By Y iyiy Y isie g
— 2]4 6—‘1' i "neir — U]I.’ZUij4U. . U .

=8C,>—16C, +80i Tr U3, (5.11)
where we have expanded the product of the two Levi-Civita
symbols and made use of the commutation relations (4.10).
The Casimir Tr U ? is not independent. In fact, for the group
SO( p), we have the identity

TrU?=[(p—2)/2)i Tr U2. (5.12)
So for us Tr U3 = 3i C, and we get finally
C; = 8C,? — 240C, — 16C,
= 4928 — 16C, . (5.13)

According to Table I, Eq. (5.13) is satisfied by the represen-
tations [1] and [1111] but not by [41} —1]. So ¢(x,0 )
contains [1] and [444]. The field content of each of the
irreducible pieces is given in Table I1. As will be clear in the
next section, the result is obtained by reducing the Kron-
ecker products shown in the table. Let us note that the irre-
ducible superfield [1] contains precisely the physical states
of the supergravity multiplet in ten dimensions and nothing
else.

For completeness, we will give the field content of the
general massless chiral superfield,

8
$(x,0 =3 0.9 T"F, . (x) (5.14)

n=0

separated by powers of @ " in Table III.

For n > 4, we have the same representations as for 8 — ».
Comparing Tables II and III, we see that the main difference
between the two irreducible pieces lies in the
@)% - - - @)% gector, where one of them inherits the
field [2] of ¢(x,0 ‘=) and the other one inherits [1111].
There are four possible choices of ¢ (x,8 ‘ii 7). If we consider
&(x,0 ), the field content is again given by Tables Il and
ITI, where now entries correspond to 6 (*’", and Egs.
(5.10), (5.13) remain unchanged. Instead, if we consider

TABLE IL Field content of the irreducible pieces in ¢{x,0 ).

.. . ) R Irreducible
TABLE I. Casimir eigenvalues for irreducible representations of SO(8). superfield Fields
Dimension €, G G ¢ [ [11x[1] [21,[11],[0]

(11X (341 [3#4]. 4 -4

[1] 8 — 14 308 — 14714 0

(14431 8 - 14 » — 140 2520 (3331 (33431 X (34341 [1111], [11], [O]

{14 — 41 8 — 14 &1 — o —2520 (a1 x{1] [3#3]. (-1

564 J. Math. Phys., Vol. 28, No. 3, March 1988 P. Kwon and M. Villasante 564



TABLE III. Field content of ¢(x,8 ().

SO(8) representations

n inF,. . .,
0 [0]

1 (14 — 4]
2 [11]

3 [3444]

4 (21, [1111]

#(x,0 ) and/or ¢(x,0 ) we have to make in Tables
II and III the interchanges [Lii] « [} —1],
(3] < 38 —4], [1111] & [111 — 1] and there is an
overall minus sign in (5.10) and (5.13). Finally, let us men-
tion that, in spite of the above identification of fields power
by power in 6 ", we are still unable to write explicit expres-
sions for the irreducible pieces since we do not know liow the
fields in the jth power of @ =’ (j < 4) are related to those in
the (8 — j)th power. We will address this question in Sec.
VIIL

VI. WIGNER METHOD OF INDUCED
REPRESENTATIONS

It is very instructive to look at the Wigner method of
constructing the states of the representation in order to gain
a better understanding of the problem. The first step is to
divide the Q> (D *’) operators in Eq. (3.27) in two
groups ¢,¢" (d,dT) whose anticommutation relations corre-
spond to a Clifford algebra in standard form. Since Q ¢, ’ has
eight independent components, we will have four ¢ and four
gq' operators and similarly in the D sector. Then one proceeds
to construct a representation of the little algebra
(3.5),(3.23) as usual: from an irreducible SO(8) represen-
tation [€2) acting as a Clifford vacuum, ¢%|Q) = 0, one ob-
tains the remaining states by repeated application of the
“creation” operators ¢' until all possibilities are exhausted.
These states form an irreducible representation of (3.5),
(3.23) which we call |{}),

1Q): |Q),g%10).4% 4%, |1Q),....q% 4% gl 4%, 10) . (6.1)
The dimension of |3} is
_ 4 /4
dimQ= % (]) dim N =2*dim Q. (6.2)
ji=o

When we refer to the scalar superfield, then |Q) is just the
trivial representation of SO(8) and dim £ = 16.

Now one can proceed to apply the creation operators d ¥
to an irreducible representation |ﬁ) of the little algebra,
which now satisfies the new vacuum condition d “Q1) =0,
in order to generate a general superfield |Q}),

19): |Q).dL M. dLdLID),..dL - -dl ), (63)
whose dimension is, of course,
dim O = 28dim Q. (6.4)
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We can see, just as in the massive case in Ref. 2, that we
cannot obtain the irreducible representations involved by
taking antisymmetrized Kronecker powers since the opera-
torsg}, (ord ) do not form an irreducible representation of
SO(8) (this group has no four-dimensional irreducible rep-
resentations). So the alternative procedure followed in Ref.
1 does not work here and, even though one might guess the
answer by playing with dimensions, only the Casimir ap-
proach provides an unambiguous solution.

The complete set of states-of ¢ (x,8 <) will be given by
the above procedure taking |2) as the trivial representation
of SO(8): |0), and it is displayed in Table IV. We have sepa-
rated the states corresponding to the irreducible pieces [1]
and [4331], which, of course, must be done at the “d level.”
Since d [, is a fermionic operator, it is clear that the bosonic
representation described by the “superweight” ! [1] must
contain only states with an even number of d! while the
fermionic one, with superweight [114], must contain the
states with an odd number of  }. This will become relevant
in Sec. VIIL

The even powers of d}, (eight operators in total) span
the representation [ 1] of SO(8) while the odd powers (also
eight in total) span the representation [4111] instead. On the
other hand, the set of powers of ¢!, (even and odd, 16 opera-
tors in all) span the reducible representation [1] & [1114] of
SO(8). Thus in Table IV we just have the states correspond-
ing to the Kronecker products given in Table II.

VIi. SIMPLIFIED FORMS OF THE CASIMIR OPERATORS

In this section we will present some simplifications of
the Casimirs C, and C; which will give us the means to
compute their eigenvalues directly. Let us call

M= (—8P, /IYUS
=D (++ )F—FHD (++)
— (CF—Fin(+)) D (++ Ya,a, , (7'1)

where we have used the definition D&’ %
=D ... p %] Using the formulas of Appendix
A of Ref. 1 to reduce the D ' tensors we get

a,a;

MIEM = M — 24P M+ 112P 25 (7.2)
if we define, in general,
j(")ij.__ (Cr—rihn(“)a,a, N
X (CF_FI,,jH(+))a2,,_laan (++ Ya,  ras, ) (73)

TABLE IV. States of ¢(x,0 ™) separated into the irreducible pieces.

Q) ) |2)
1 1
(1] dld}, g,
dldldldl, qL.ql, |0)
(4] d} q..d..q,
didldl gL q%.q.4k,

P. Kwon and M. Villasante 565



Taking the trace of Eq. (7.2) and using (5.12), we get
M 5 =0. (7.4)
Multiplying (7.2) by .# ;' and using (5.12) again we get also
j(z)ij/ji=/jij(z)ij=0- (7.5)
Squaring (7.2), taking trace of the result, and making use of
(7.4) and (7.5), we arrive at

Tr #*=Tr M, + 616 448P%, (7.6a)
or

TrU*=(—i/8P, ) Tr 4}, +39. (7.6b)
Note that the constant 3! appears in Table I. Again we can
reduce the product of D .’ tensors appearing in Tr #%,, to
get after some algebra

Tr 4%, =Tr M 4, + 8X8I P4 . a7
Therefore we have for C,,
C,=(—i/8P ) Tr M 4 +%, (7.8)
where, according to (7.3),
Tr M 4 = (CTT, AP, X -+ -
X (CT~F ), De %, (1.9)

A similar treatment for the operator C; gives in turn the
result

Ci=(—i/8P.)' M}, + 1260 (7.10)
with
"/24) = 61'1' ' .is(CF_ri,iz I-IH-))az,a2 X
X (CF_Fi,i,, H(+))a,a,,D (++ o ey (7.11D)

There are only eight nonvanishing operators D ¢,* ’* that by
choosing an appropriate representation of the Dirac algebra
(see Appendix B for details ), we can make correspond to the
values a = 1,...,8. In that case all objects with eight totally
antisymmetrized o indices will be proportional to the Levi-
Civita symbol. Thus we have

D‘++ N L ) ) (++)123~--s, (7.12a)
(CT-T, "), . - - (CT~ T M), =Aé,. . .0
(7.12b)
6i,~ - (CF_Fi'iZH(+))[a,a2 e (Cr—ri7i.n(+))a7as]
=A'e,. . ., - (7.12c)

The constants 4 and 4 ' can be calculated and their values are

A=2", 4'=2", (7.13)
Therefore we have
C,=(1/8P)*2" X 8D F)12¥ 8 L o7
= (1260/P_*)D (123 8 L o (7.14)
and
C;=(1/8P, )*2'"'x8ID ' "% 1 1260
= (20 160/P_*)D (T3 " ® 4 1260. (7.15)

566 J. Math. Phys., Vol. 29, No. 3, March 1988

The eigenvalues of D {,*’'?* **® can be obtained from very
simple considerations. First, we note that if two operators
d,d "7 satisfy

{d’d T} = P+ » {dad} bt {d 1'9d T} =0 s
then the operator C = }[d,d " ] satisfies

C2=(P,/2)°. (7.16)

Since D {7 ’'?*" " ‘% js the product of four such operators made
out of four independent, mutually anticommuting such 4 ¢,
it satisfies

(D(++)123"-8)2= (P+/2)8 (7'17)

and from this we obtain the eigenvalues of C, and C

308, 2520,
2=[;%,. C.;={O. (7.18)

which are precisely the values of Table I. Expressions
(7.14), (7.15) for C, and C are considerable simplifica-
tions over the initial definition of these operators.

VIil. IRREDUCIBLE COMPONENTS OF ¢(x,0'-)

We devote this section to the irreducible pieces of
#(x,0 ) and give explicit expressions for them. In princi-
ple this is straightforward if we use projection operators>
constructed out of Casimir operators since we know the
eigenvalues. The result of this procedure is

— 3o

2 2
=———¢(x0")
C;—2520
=—4—2T¢(x,0(__)), (81)
C, — 308 _ C. _
L= ey %6y,
Puas = 3 T305 #0 = ) = 550 )

The projection operators in terms of C, or C are simple
since they contain only one factor. But even so, this proce-
dure is not practical given the fact that both C, and C are
very complicated operators containing eight covariant de-
rivatives, even with the simplifications of the previous sec-
tion. The usual alternative procedure of solving equivalent
differential equations is not at all different here, since the
equations to solve are

Cyp(1y) = 3084, or Cid;; =0 (8.2a)
and
Cobuin1 =% Busnr of Ch By 1 =25204y,y,, -
(8.2b)

We recall again the fact that there is no simpler operator in
this case, like DD in other dimensions.

In this paper we will follow a different approach which
makes use of the Cartan subalgebra of (4.10), whose genera-
tors are

H o=Uy_ 1, I=1,.4. (8.3)
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From basic group theory, we know that simultaneous eigen-
states of the operators H, will also be eigenstates of the Casi-
mir operators. These eigenstates |¢) satisfy

where H= (H,H,H,,H,) is a vector operator and
W = (w;,Ww,,Wws,w,) is called a weight. The eight weights of
the vector representation [1] of SO(8) are

( £+ 1,0,0,0), (0, +1,0,0), (0,0, +1,0), (0,0,0,+1)
(8.5)
and the weights of the spinorial representation [1141] are
(£4£4£45 2D (8.6)

with an even number of + and/or — signs.
Let us start with the eigenstate corresponding to the
highest weight (1,0,0,0),

(HlyHZ’H3’H4)|¢') = (1’09010)|¢) . (8‘7)

Following Ref. 1 we will use a Grassman—Gaussian as an-

satz:

e@(_-)ra(_—) , (8.8)
with " = A 'T'"*T';, the exponent is the most general bilinear
in @ as defined in (3.26).

Applying D (+’ [given in (3.27)] to (8.8) we get
Dl T _gire e P T

— (i/4)P (T8 ) A
(8.9)

We will now show that the solution of (8.7) is given by (8.8)
with A ¥ = a6,!'6,/! and will determine the value of a. In this
case Eq. (8.9) becomes

D(Hre e"a Crer et
+
. - CZASuR) i - Rkt
=2ia(T*r,,0 )" - 12

— (/P (THO)a @ T Tf " (810)

Next we will split D > with the projection operators,

Im, * =i(1iir1,2) (8.11)
and define
d* = HliD(++) . (8.12)

They satisfy the anticommutation relations

{d vad —ﬁ} - _ £P+{H1+H(+)F+C_l}aﬁ,
{d —2d *F} = — 4P {II,” IFT+C}*, (8.13)
{d+2d+*}={d~*d~*F}=0,

which show thatd ~ and d * are, respectively, the creation
(raising) and annihilation (lowering) operators of a fer-
mionic Clifford algebra. Now if we apply II, * to Eq. (8.10)
we obtain
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d _eag (-or+r, 0

—(—2a— (i/4)P )T+, 0 (e T a0

d +eaa (r*r,,0¢?

= (2a — (i/8)P, )T 11,76 e T2

(8.14)
Choosing a = F (i/8) P, we derive
d—e” (i/8)P, 8 °T*T,,0¢ ) =0,
d +e(i/8)P+§(~_)F+r1.29(—_) —0 (8.15)
Therefore

F (/8P B 8¢

= j: e ’
He TP TTa0 g0 12234,  (8.16)

~ (i/8)P, 8 7r"r,,86 7 (i/8)P, 6 7°r+r,,0 )
& + 1,2 and e - 1,2

Hleq: (i/8)P, B r* T 07

so e are the
eigenstates corresponding to the highest and lowest weight,
respectively. They are also the Clifford highest and lowest
state, respectively, of the algebra spanned by d * and d .
One can use either state to generate the rest of the representa-

tion. For definiteness we will use the highest state

— (/)P 8T+, ,0¢ ) . ..
e : . We can obtain the remaining states
by applying an even number of d ~ to the highest state for a
total of

2

4
z(zj)=l+6+l=8

j=0
states. This is equivalent to use the lowering operators E of
the SO(8) algebra in the Cartan basis since they are quadrat-
ic in d 7, as explained in Appendix C. We note that if we
apply an odd number of d ~ to the highest state we will get

(2 )=+
zzj_1"4+ =8

Jj=1
fermionic states (at thed level) which together will form the
[4444] representation (see Sec. VI).

Of course in order to have a representation of the super-
Poincaré algebra SP{;", we must also apply all possible op-
erators Q (. These can also be split

g* =I,+*Q"’, (8.17)
which satisfy
qiewi/sw*a(: TR 0, (8.18)
as opposed to Eq. (8.15). Therefore we have the expressions
4 2
4)111:2 d+a....d+“zjq—ﬁ....
Kk=0j=0
X g —-ﬁke — (i/8)P,B8 7T, ,0¢ >
X Fo. ., g (%) (8.19a)
and
4 2 va
q>[““]= 2 Zd+a....d z/—nq—B....
K=0,=1
X q—ﬁke— (/8)P, 8 T ,0 )
XFy. .y 88X, (8.19b)
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each with 2* X 8 = 128 components.
In order to proceed further we note that

dte= iHF aB et (i/8)P, 8 7'I*r,,6<?

ad eF (/8P TT, ,0 )

XF (8-203)
and
to_ xe eq: (i/8)P, 8 r+r 0 )
=iIlF%
X a@‘?_) ej:(i/swj‘: rer e’ ) (8.20b)
-8
Replacing this in Eq. (8.19a), we get
<I>[”_ z z lk+21n+a. . Hl-'-azjyy
j=0k=0
an_ﬁlal . Hl—ﬁkake, (i/8)P,8°7T+T,,0 )
<H"" ReT ~6k(0(_— ) Fa.~ -y - By x),
(8.21)

where here the Grassmann Hermite polynomials' are
H‘Vl' . “Yn(o (- ))
— PR 0 J a
- g (=) )
ae —" ae —¥n
— (i/4)P+§(‘— )l"*'l', 20 (_— )

Xe i , (8.22)

and, finally, after an obvious field redefinition, we can write

2 4
® e—(./sw 8 r+r 0 Z e+
= P

XH““ cay B ﬁk(a (_— ))¢a|' ey Byt B (X) N
(8.23)
where the ¢, . . By - B, (%) satisfy
I-Il‘_ ap‘y'ﬁa,' crap 'azj;B,~ < B (x) = 0 ’ P = 1!--'12]"
B (8.24)
nl ’7 al"'a)ﬁﬁl"' '...ﬁk(x)=0, r=1;---,k-
In a similar way
(DUHH ___-e—(i/sw;e‘: r+r e L Y-t
i=1Kk=o0
XHal' cag_ B Bk(e (_— ))
Xy, . cay_ By B (x), (8.25)

where the ¢ fields satisfy the restrictions above.

From formulas (8.23) and (8.25) we see that alsoin ten
dimensions the irreducible superfield are expansions in
terms of the eigenfunctions of a Grassmann oscillator.?

The expressions (8.19) and (8.23) are asymmetrical in
the sense that one of the elements of the Cartan subalgebra
(namely H,) is privileged. In order to obtain more symmet-
rical expressions we look for more general Gaussians. If we
take
¥ &= ot le @ T
with

(8.26)
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Adg oy = F /8P, 8 _ 6%, K=1234,
it is easy to show that
Hy®=Uy_1,¥' P = +6¢". (8.27)

Thus the & give us all the eigenstates of the Cartan subal-
gebra corresponding to the weights in (8.5) and therefore
span the whole representation [1].

The appropriate projection operators now are

Me* =4I £iTyx_12x) > (8.28)
which we can use to split @ ¢,*’.
gt =M%0 i
— ], £ FWBPB T Tog 07 V]
X 96—
X e;t(i/S)P,,@‘_—’r*rzx_l_ZKe‘_—’ i (8.29)

The gy * satisfy

x TXE = (8.30)
for every K = 1,...,4. There is no point in splitting D ¢+’
since we have already considered all the states of the repre-
sentation [ 1] whose weights are (8.5) and not only the one

corresponding to the highest weight. Then the superfield
P, will be given by

Q)= 2 Z g ™ g Ty PR (x)

K=1n=0

zq+a|...

X(K)F(K .—) (x)

(8.31)
and using Eq. (8.29)
‘D[”— Zl z i n;a.ﬁl .. nKa X(_f)
XH(K)B." ﬂn(g(_—))F(K_._-i-.) (x)
E g | Ay 3 | B s X
K=l n=0
XH L% Pe O FE), (x), (8.32)
where
(KB, Bapg (—
HZF (0(_ ))
=e:F(i/4)P*¢_9(_"I‘+sz—l,zx9(— » 4 e d
80‘“’ 36 %
Xei“mp*a(‘_)FT"“""‘G(‘ " (8.33)
Redefining indices
K for (K, + ), K= 1,"-’4:
k=[S
(K +) 8—K+1, for (K,—)» K=1,.4,
(8.34)
we get finally

8 4
q)“]___KZ Z (k)H(k)ﬁn Bn(e(—))¢(k) ﬁn(x),

(8.35)
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where the fields ¥5. .5 (x) must satisfy

n(k)ﬁ’r¢ﬂ Y. 8,8 (x) =0, p=1,.,n. (8.36)

IX. CONCLUSION

In this paper we have analyzed the massless representa-
tions of the super-Poincaré algebra with particular emphasis
on the ten-dimensional case. We have used the Casimir ap-
proach to obtain explicit expressions for superfields which
are irreducible under the corresponding little algebra.

Due to the fact that we have used the massless condition
P? =0 from the beginning, these are on-shell superfields:
they carry physical field components but no auxiliary fields.
A simple comparison of the number of components of ¢, |
with the number of degrees of freedom of the supergravity
multiplet in ten dimensions® quickly illustrates this point.
This is a well known fact.!® In order to study the auxiliary
field structure, one must relax the condition P> = 0, i.e., one
must look at the massive case. In doing so, one must enlarge
our superspace to include # " and in the expansion

d(x,0 (_— ),0 (+—— ) )

8
— (—)ay -
= 2 6 x
n=0

the superfield ®@(x,6 ¢ ) carries the physical fields while
the other ones carry the auxiliary fields.'°

The techniques we have applied here to decompose the
massless scalar chiral superfield ¢ (x,0 ¢ ~’) into its irreduci-
ble components can be extended to the massive case and the
results will be shown elsewhere. However, knowing the
structure of the massless field must be important in its own
right if one wants to know which irreducible pieces of the
massive case are the off-shell extension of each massless
piece and also if we want to write Lagrangians for them.

n(—)a, —
6, "br ., (x,07),
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APPENDIX A: FIERZ REARRANGEMENTS
We have the general Fierz identity,

0.MQ,0:NQ,
= Xz/l(])QlMo NQ4Q30 2,

iZAmQ,Mo NQ, Tr[0;(26,,)C ']

'-‘D

- 2/1(])/1 (J)QlMO N(2£,4)C0,0,

J

A()H)@MO;N(2£,,)CO;Q, ,

J

+ (A1)

l>|~‘ |>

where @,,...Q0, are Majorana spinors which satisfy
{02,086} =2£3F, ab=1,23,4, O, is a complete set of
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A X A matrices which are orthogonal under trace,

Tr[0,0;] = AA())d;,
and finally
(CO)HT=A"(HCo, .

If we take the basis {0, } to be made out of T" tensors, we
have, in ten dimensions,

1_)(++)0jD(++) =0
unless
0, = ) PSS DR PN O F_IF,-J-
or I' ;;, times the same matrices. Therefore one can write
B(+)MD(+)B(+)ND(+)
= (1/2A)D(+)Mﬂ(+)r"’l"
XD (++ )r rr '2D (++ )
_ (P /4)E(+)MH(+)F+ND(+)
+ (2P /A)D (+ )M'H(+)I'\+F NI"I]I;D ( + )

iiéy

q’

ND (++ )

LT

(A2)

where we have used

D‘*’F D= —(P./A)A.
Here A is the dimension of the Dirac matrices,

A=32.
Ifweput M = N =TI""in (A2), we get, after some arithme-
tic,
D <++ )I‘_Fi,iz'D (++ D (++ )T (++ )

(A3)

= — 14X (8P,)? (A4)
which immediately gives
C,=-14. (A5)

APPENDIX B: A PARTICULAR REPRESENTATION OF
THE DIRAC ALGEBRA

Let us start by denoting with a subindex to the left the
space-time dimension of the I'" algebra and the associated
charge conjugation matrix. Thus

., ,C are 2172 %2172 matrices.

Then a particular representation in ten dimensions is
C=4Cwrio,, Ty=ileo0,,
T, =l 0005, j=1,..8,
IFy=gle (—i)o,,

where, if we keep descending,
C=¢Ce0l,
sl =l ®i0y,
Ls=¢ls® (—i)oy,

Ji=1®0,,
1=2,..7,
Ts=6l2..7>
and
L =4C0(—0o,,
I'm=alm®02,

l2=4®ioy,
m=3,.,6,
ol 7=4®lo;,
with
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4C= 2C®I,
4r3=21®( —i)O‘],

.C=lo,,

4F4=0'1®i(72,
5 2

Je=.®io,.

In this decomposition we have
I°=el, j=1..8,
2= —¢l, 1=2,.7,
Inl=—4d m=3..6,
wCau T C 7 = (=)o T, k=1,.5.
The constants 4 and 4’ in

(CT-T, 5[+, + * + (CT™T, M),

=A€, .. .4,
€, . (CTTH)y e (CTTT7)y,
=A'€,. . 4

can be computed by contracting the indices with
(65 6C 1™ % - - - (gL 4C ™)™

The right-hand side gives then
A X224 PI(Ly C 1) =244

in the first case and
A2 Pf(TyC 1) =2'414"

in the second.

The left-hand sides can be computed independently by
expanding the antisymmetrization. The calculation is quite
tedious, but one finally gets

2% 4!
in the first case and

215x 4!
in the second, so that

A=2", A4'=2".
Now we turnto D ¥, Since it is a Majorana spinor, we have
D (++ )aCaB =D (++ )Tr Foyﬁ

& Dt =DGH(CT,),, -
This implies

{D (++ )a ,.D (++ )Tﬁ} — P+(H(+)H+ )aﬂ .

In our representation

(sl 0)
H*‘(o 0/’

({0 )
’ 0 1l — 5T (5)) ’
I O
0 ; 0
sl = (6; _ 61) , mm*={o o ’
0 0
o O 0
Cro = 0 6C .
0 0

So
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(+)t (+)6 +)t__ p(+)1s
D+l -_D+ ’ D(+2T"D+ s

D(++3)T= —D(++)8, D(+"})T=D(++)7.
Therefore
D(++)l' -8 =D(++)16D (++)25D (++)38D (++ )47
4 1 .
_ _[D(++)1,D(++i)T],
=1 2

as claimed in the text.

APPENDIX C: EXPRESSIONS FOR THE SO(8)
OPERATOR IN THE CARTAN BASIS

Let us start by defining the operators
H_(,T’) = %(I-f" iﬂFz_,_ 1,21) ’ J= 17--',4 y M= + 1 ’

(C1)
and the product
S (=

Py = Hl 11, . (C2)
With these we can define

dynimne = Prgnin, D L. (C3)
Then, from the commutation relation,

[U;.D %] = — (i/2)(T ;D) (C4)
one can easily show

[H;d,,. . 5] =514, 0 J=1.,4, (CS)

where H, are the operators of the Cartan subalgebra (8.3).
Clearlyd,, . .., increases or decreases the eigenvalues of H,
by } depending on the sign of 77,. In fact, from (8.11), we see
thatd _ , , , canbe considered the components ofd ~ and
d, ., ., thecomponents of d *. But these are too many
since we know thatd * and d ~ have four components each.
Sohalfofd,, .. ., mustvanishidentically in our 8 =’ super-
space. Indeed

Y 8= — r(u)rol—\9<:> | L ~8H(+)n+ _— H(+)H+ i

(Cé6)
On the other hand
l-\1~--st_“m =P, s M=MN273Ns - (CN
Therefore
a,. . ...=P,. .. n+1m.,p
=41+ A -T" %P, ., OTH1,.D
(C8)
and we conclude
d,.. ,=0whenyp= +1. (C9)

The operators corresponding to the root vectors in the Car-
tan basis of the SO(8) algebra are given by
E(ne; +1'¢))
=3y 1271 + MUy,
+ MUy 105 — M Usppy), IJ=1234.

(C10)
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Making use of Eq. (5.3), (C10) then becomes

E(né; +1'¢;)

Fop =5, T, MPTm=s,fw. (1)

Using (C13) and the orthogonality of I1{*’, we can express

= — (/8P ) DT TT™D ), (C1D)  E(q2, + 7'¢,) in terms of d;,. . . Let us work out, for in-
where stance, E(né, + 7'é,). Note that
B = AV (Tyoy +02y), 7= x1, I= 1,....4.
(C12) D(++) — Z H{E.) e H£§4)D (++) . (Cl14)
&= 1
The I'{ matrices anticommute among themselves and also
satisfy We have
]
. - o ' ,
E(ne, + ') = __t [z HF') N H,‘f"D (++)] CF‘FY”I"?”[E “gé’.) e Hﬁg‘ D (++)]
8P, |7 £!
- 8}’; 225(++’H§§') e n‘(‘ﬁ.)r—f‘gmf*én’)ngﬁ) e Hﬁg")D (++)
+ & &
i
== 8P ; 677:51 6"7"526711—5|’57I'-§2'6§3v§3'6§4v§4'
+ &
Xl_)(++)ni§‘) .. H‘(‘f.)r—fgn)fgn')ngé‘.’) R Hﬁg")D (++)
) S (YR
== Z dﬂﬂ'53§4r I‘{‘ﬂ)rgﬁ )dfm'vé's—g. . (C15)

8P, £ Th16 54

Let us consider in particular 7 = 1, 9’ = + 1. Then, recalling (C9), we obtain

E(—2+&)=E(—-11000) = — (i/8P )(CTT{T{* ) pd® , , , dP , __ +d*, __df ., .)

— (/8P ICT T T ) [d® , o A% . __]-

(C16)

The E operators corresponding to other root vectors can be computed similarly. Schematically, they are given by

E(r1r2r3r4) ~ [d"ll"h"h"h ’d§l§2§3§4] s Ip = 5(7’1 + §I) 4 I = 1""’4 ’
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The group theoretical concepts of embedded representations and dynamical structure groups,
distinct from dynamical symmetry groups, are introduced in order to describe the common
physical situation in which collective bands of states of a many-body system are well described
by an algebraic collective model even though the states may not span an invariant subspace of

the many-body Hilbert space.

I. INTRODUCTION

A symmetry group of a quantum mechanical systemisa
group made up of transformations of the Hilbert space that
commute with the Hamiltonian. Thus the degenerate eigen-
spaces of the Hamiltonian carry representations (not neces-
sarily irreducible) of the symmetry group.

The value of symmetry groups in physics is well under-
stood. It is also well-known that group and algebraic struc-
tures play vital roles under more general circumnstances. In
particular, dynamical symmetry groups, which do not com-
mute with the Hamiltonian, have recently attracted wide-
spread interest."

A dynamical symmetry group of a quantum mechanical
system is a group of transformations of the Hilbert space
whose irreducible subspaces are invariant under the action
of the Hamiltonian. Dynamical symmetry groups of interest
often contain full symmetry groups as subgroups and hence
irreps that, in general, contain sequences {bands) of sub-
irreps of the symmetry subgroup. Thus the irreducibie sub-
spaces of a dynamical symmetry group need not be eigen-
spaces of the Hamiltonian. A familiar example is the
n-dimensional harmonic oscillator which has Sp(n,R) as
dynamical group and su(n) as symmetry group.

We point out here that even this generalization can be
further extended with advantage. We shall define what, for
want of a better name, we call simply a dynamical structure
group. The essential ideas underlying the concept are famil-
iar in physics in the context of the adiabatic approximation,
but, as far as we are aware, the associated group theory has
not been discussed. To illustrate, consider the rotational
states of a diatomic molecule. The question arises as to
whether or not an observed band of rotational states of the
molecule spans an irreducible representation of a suitably
defined rotor algebra. It will be shown in this paper that
nonequivalent irreps of a rotor algebra are distinguished by
distinct deformation shapes of the system. In the simple ro-
tor model, the deformation of a system is defined by its quad-
rupole moments. A system with a well-defined deformation
is then one with fixed quadrupole moments in the body-fixed
{principal axes) frame. However, in practical situations
there are inevitably vibrational shape fluctuations and, as a
consequence, the physical states of the system have a distri-
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bution of deformations. It follows that they straddle a corre-
sponding distribution of irreps. Nevertheless, if the vibra-
tional frequencies are large in comparison with the
rotational frequencies, it can happen that the distribution of
deformation shapes of the system is very slightly perturbed
by the rotational motion, and that, in the adiabatic limit, a
simple rotational structure is maintained. One may then ob-
serve sets of states of constant intrinsic structure (i.e., con-
stant distributions of deformation shapes) that are meaning-
fully described as rotational bands and that, in isolation, are
indistinguishable from states of an irrep of the rotor algebra.

In such a situation, it is evident that the rotor algebra is
playing a vital dynamical role in describing the relative prop-
erties of rotational states even though the structure of every
state may be described very poorly by the states of any single
irrep of the rotor algebra. We therefore introduce the con-
cept of an embedded representation which expresses this phe-
nomenon in precise algebraic terms.

The admittance of embedded representations opens up
the possibility of applying algebraic techniques to much
more general situations than was hitherto recognized, e.g.,
to situations where one has neither a full symmetry nor a
dynamical symmetry of the Hamiltonian, but where there is
an adiabatic decoupling of collective and intrinisic degrees of
freedom to such an extent that it is a good approximation to
freeze the intrinsic structure in a description of the relative
properties of low-lying collective states.

The analysis of such dynamical structure and embedded
representations also throws light on the interpretation of the
significance of a model’s success in explaining a limited set of
physical data. The traditional approach to the interpretation
of physical phenomena is to make models that fit the known
data and then to use them to make further predictions which
can be subjected to experimental test. In doing this it is clear-
ly important to focus on data which provide significant tests
and which can distinguish different models. The existence of
embedded representations implies that many predictions fol-
low from the relative dynamical structure of states and,
hence, that agreement of an algebraic model’s predictions
with the data may not imply the existence of a full dynamical
symmetry. In other words, the relative properties of a num-
ber of states in isolation may be the same as they would be if
the states were to belong to an irreducible subrepresentation
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of a Lie algebra, whereas, in fact, they only belong to an
embedded representation.

Similar observations have been used to formulate suc-
cessful theories of relative dynamical structure, such as the
equations-of-motion formalism.> They also explain why
models are often much more successful than they superfi-
cially have any right to be. For example, many theories based
on independent-particle approximations, such as the Har-
tree—Fock and random-phase approximations, are remark-
ably successful even in situations where the independent-
particle approximation has little reason to be good.

The main objective of this paper is to analyze the cir-
cumstances under which a Lie algebra can exhibit embedded
representations. We shall analyze in some detail the basic
rotor and vibrator algebras, which are of fundamental im-
portance in the theory of many-particle collective structure.

. COLLECTIVE MOTIONS OF A MANY-BODY SYSTEM

Enormous simplification can be achieved in the treat-
ment of the collective states of a many-body system if the
variables can be separated into subsets of collective and or-
thogonal intrinsic coordinates and the many-particle Hilbert
space factored into a direct product of collective and intrin-
sic Hilbert subspaces. This is possible, for example, for cen-
ter-of-mass motion and, as a consequence, the treatment of
many-particle center-of-mass motion is trivial.

However, for collective motions in general it is not pos-
sible. Nevertheless, one frequently observes bands of collec-
tive states that are well described by collective models ex-
pressed in terms of relatively small numbers of collective
degrees of freedom. Such models are usually justified by the
argument that collective motions are slow (adiabatic) in
comparison to the more rapid intrinsic motions. As a conse-
quence, the intrinsic structure of the system may be very
little perturbed by the collective motions.

For the purposes of this analysis, a collective model is
defined as a triple (H “°™*,g,I"°°LL) of a model Hamiltonian
H “°™ acting on a Hilbert space H°°'L, a dynamical Lie
algebra g of collective observables, and a unitary representa-
tion (I"“°'") of g carried by HECML,

A model will be called “simple” if the representation
(I"OLL) is irreducible.

The spectrum of H “°LT is said to consist of collective
bands, where a band is a set of states belonging to a common
irrep of the dynamical collective algebra. Thus, by defini-
tion, a simple collective model features a single collective
band.

To understand the success of a collective model, one
seeks to embed the states of the collective model in the mi-
croscopic many-particle Hilbert space of the system.

Let H be the microscopic Hilbert space for the system
and suppose that it carries a unitary representation T of g.
Let I' = 2, T be a direct sum of irreps. Let H be the mi-
croscopic Hamiltonian for the system and let H ‘© be its
projection to the irreducible subspace H*’ for the irrep ',
Let |Aa) be an eigenstate of H ‘¥ of eigenvalue ES,. We
may assume that the set of states {|1a)} defines an ortho-
normal basis for the Hilbert space. The Hamiltonian can
then be expressed
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H=Ho+ V,
where
H, =2H“’
A

and ¥ is defined by its matrix elements
Vrap = [PAH BN 442
red® 7 o, A=A
Since the irreducible H*’ subspaces are invariant under the
action of the Hamiltonian H,, it follows, by definition, that g
is a dynamical algebra for H,. Furthermore, if €J is some
conveniently defined intrinsic energy for H* (e.g., for a
ladder representation, the expectation value of H, in the low-

est weight state), then collective energies & ,, can be defined
by

E ga = 6'2 + gla!
and the Hamiltonian H,, can be expressed
HO =fICOLL + HINTR

where H “°'t and H™™® are defined by their matrix ele-
ments

(Aa|HMA'B) = 6,,:8,p € ras

Aa|HNTRA'B)Y = 0,2:0,p € .
The full Hamiltonian is then

H=HCOLL+HINTR+ V

It is noteworthy that this decomposition of the Hamilto-
nian is obtained without reference to collective or intrinsic
variables and without factorization of the Hilbert space.

When there is a multiplicity of equivalent irreps, ¥ de-
pends on the particular combinations selected. If ¥ can be
made negligible, g is a dynamical symmetry algebra for the
system and we derive the collective model. ‘

An interesting question now arises as to whether or not
the absence of irrep mixing is an essential condition for the
observation of pure collective states. Is it possible to embed
collective model states in the microscopic Hilbert space in a
way that admits the possibility of large irrep mixing interac-
tions?

Ill. DEFINITION OF AN EMBEDDED REPRESENTATION

Let g be a Lie algebra and I a (reducible) representa-
tion of g on a Hilbert space H. Let I', be the projection of I'
onto a subspace H,, of H; i.e., if Xeg and {|a) } is an orthonor-
mal basis for H, defined such that a subset of basis vectorsis a
basis for Hy, then, for any |a)eH,,

T,(Da) = 3 18)BIT(X)]a).
BeH,

If I, is a representation of g, we call it an embedded repre-
sentation. Note, however, that an embedded representation
is not generally a subrepresentation.

For example, given a representation I of g, we may de-
fine a set of submatrices I',; i.e., for each matrix I'(X), Xeg,
we define a submatrix I', (X) such that
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(X)) * =
I'X)= * *  x
* x  x

If I'; is a representation, then it is an embedded representa-
tion.
If, relative to some basis, I is of the block form

TF.(X) * =
rx=| o * o«
0 0 =*
for all Xeg, then I, is a subrepresentation of I'.
If T is of the block form
* * *
X)) =|0 TpX) =|,
0 0 *

for all Xeg, then I, is the quotient of two subrepresentations
of I', sometimes called a subquotient representation.

Any subrepresentation or subquotient is an embedded
representation. It is possible, however, to find examples of
embedded representations which are not subrepresentations
or subquotients, but the requirement that the submatrices
{I'p (X); Xeg} be a representation is a strong condition.

IV. THE ROTOR GROUP AND ITS LIE ALGEBRA

A dynamical group for the rigid rotor is the semidirect
product [R*]SO(3) of an Abelian normal subgroup R’ and
the rotation group SO(3). A group element is a pair (¢*,Q}),
where » is an element of the R® Lie algebra and Q is in
SO(3).

The R®> Lie algebra is spanned by a set
{Q,; v=0, + 1, + 2} of quadrupole moments which trans-
form under rotations as the components of an L = 2 spheri-
cal tensor, i.e.,

0,-90,=3 0, Z2,(0), 0e50(3),
m

where &7 is an L = 2 Wigner rotation matrix.
The group product is given by

(eiwl’ﬂl) . (eiwz’ﬂz) = (ei(w, +ﬂ|.w2)’0102)'

A. Unitary irreps of the rotor algebra

Unitary irreps of the rotor group and its Lie algebra are
easily derived by Mackey’s theory of induced representa-
tions,® as first shown explicitly, to our knowledge, by
Weaver, Biedenharn, and Cusson.*

Let the elements of R® act multiplicatively on the wave
functions of a Hilbert space of square integrable functions of
the coordinates of a many-body system by

Q. ¥(x) =0, (x)¥(x),

where @, (x) is a quadrupole moment of the many-particle
configuration x. Let SO(3) act by a representation Z.

Since R® is Abelian, its irreps are all one-dimensional
and are carried by a single eigenstate |g) of the commuting
R® basis operators, i.e.,

0.l9) =4q.|9).
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Let
lg?) = Z(Q)|g), QeSO(3).

Since

RA(WQ,|9) =3 Q. D%, (D)%) =q,1¢%),
n
it follows that

0. 14" =4 14",
with

g =Y D5.*(Qg,.

The set of states {|¢®); QeSO(3)} constitutes an
SO(3) orbit. We pick a representative point on this orbit
having the property that ¢ ., =0, ¢, =¢_,. We let this
point be the reference state |g) and refer to it as the intrinsic
state. The nonvanishing quadrupole moments ¢, g, at the
representative point are likewise referred to as the intrinsic
quadrupole moments.

The isotropy subgroup of the intrinsic state is the subset
of SO(3) rotations that leave |¢) invariant up to phase. If ¢,
is nonzero, the isotropy subgroup is D,, the group generated
by rotations through angle 7 about the principal axes. If
g, = 0but ¢g,#0, the isotropy subgroupis D _ , i.e., the group
of all rotations about the symmetry axis plus rotations
though 7 about any perpendicular axis. The only other pos-
sibility is that all the quadrupole moments are zero, in which
case the intrinsic state is rotationally invariant and the iso-
tropy subgroup is the full SO(3) group.

We consider first the generic case. It is well-known that
D, has four irreps, all one-dimensional, and labeled by ¢,,
€, = + 1. Thusthe corresponding one-dimensional irreps of
the semidirect product group [R*]D, have four labels (g,
4, €1, €,) and satisfy

Z(m,0,0)|q) = €,lq), Z#(0,7,0)|q) =€&lg).
Orthonormal basis vectors for the generic irreps of

[R®]SO(3) are given by the set of all state vectors of the
form

|GIMK ) = f ARGy Wy (),

where

(¢®g™) =6(g—¢)8(Q — ),

/ 2+ 1
V()= [—=T-
e (A1) 167%(1 + 8xo)

X[ Dix*(Q) + 6(— 1) XDy, * (D],

with J, M, K integers and K restricted to either all even or all
odd values such that ( — 1)* = ¢,. Wave functions repre-
senting these state vectors are given, in Dirac notation, by

Yk (Q) = (¢°|¢/MK ).

Finally, from the actions of R®> and SO(3) on |¢"), given
above, we obtain the induced representations of the
[R3]SO(3) operators,
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Q) Yk () =Y 4.9, * (D) ¥k (D),

T(0)Wi (Q) = Vi (0™'Q).

For an axially symmetric representation, i.e., g, = 0, we
observe that the irreps of [R3]D_ are labeled by (g, X, €,),
where K is a positive or zero integer and €, = + 1. Basis
functions for the corresponding induced irrep of [R°]SO(3)
are then given by the set of all wave functions of the form
Wi (), but with K now held fixed.

The constancy of K for an axially symmetric irrep is
easily understood, because if g, = 0, then

r.) = 40-@,2;0*(0),
and there is no mechanism for connecting wave functions
W, and ¥, with K #K .

For the same reason, one easily shows that the spherical-
ly symmetric irreps, for which all quadrupole moments are
zero, are characterized by fixed values of J. A spherically
symmetric irrep of the [R3]SO(3) group is an irrep of
SO(3) and a trivial identity representation of R°.

B. Embedded representations of the rotor algebra

If we start with a generic irrep (gp9,.€1,€,) of
[R 3]1SO(3) and restrict to a subspace of states of K = const,
we immediately see by inspection of the results of the last
section that I'(Q, ) projects

r(Qy ) _‘FP(Q;;) =4 gio*(ﬂ)-

Thus the subspace carries an embedded representation (g,
K.e,) of [R*]SO(3).

This extremely simple result is already of considerable
physical significance. For it expresses the known result that,
in isolation, bands of states of a triaxial rotor having K as a
good quantum number are indistinguishable from axially
symmetric rotor states. In this context we recall that bands
of states of constant K naturally occur for a triaxial rotor if
two of its principal moments of inertia accidentally happen
to be equal, which can happen, as pointed out by Meyer ter
Vehn,’ even though g, #0.

Consider next the situation in which, instead of a single
[R3]SO(3) irrep, we have a direct sum of a distribution of
irreps and a basis for the carrier space given by state vectors

nIMK) = [ 40 [ dg 8, (@)1 ¥iur ),

where {4, ()} is a set of weight functions and dg is any
suitable measure such that

f dq #%(q)9,(q) =6,,,.

We now have basis wave functions, again in Dirac notation,
of the form

W)k (3:2) = ¢, (@) Wik (D).

The action of [R3]SO(3) on these wave functions is defined
by

F(Qy )\P:MK (q’ﬂ) = 2 qv ‘@fw*(n)wiMK (q’Q))
T (W)W px (¢, Q) =W, 0 (g0 'Q).
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Now restrict to the subspace of states of n. = const. This
restriction can be expressed as a projection

¥(g,Q)-¥Y(Q) = qu #*(9)¥(g,)),

under which
Woak (4:2) = Wi (Q).
Under this projection, I'(Q, ) projects to I'» (Q, ), where

To(Q)Whx (0) = T {q,) D2,* (@)W (),

with

{q.) =qu 4,16, (D

Thus, although the subspace of states of fixed » does not
carry a subrepresentation of T, the projection I', is never-
theless an irrep of the [R]SO(3) Lie algebra. Therefore I,
is an embedded representation.

~ This demonstrates explicitly the known result that, in
the adiabatic limit, a soft vibrational rotor can exhibit bands
of states which, in isolation, are indistinguishable from those
of a rigid rotor.

The structure of the carrier space for an embedded rep-
resentation of the rotor algebra is remarkably similar to that
of a standard sub-irrep. Whereas the carrier space for a sub-
irrep is spanned by the SO(3) orbit

{lg™ = 2(Q)|g); QeSO(3)},

the carrier space for an embedded representation is spanned
by the SO(3) orbit

{|g") = Z(Q)|4); QeSO()},

where

18 = f dq 6, (@)a).

The characteristic feature of the rotor algebra is that the
matrix elements of its irreps depend linearly on some of its
irrep labels. Consequently, it becomes possible to mix states
from irreps with different values of these labels in a way that
preserves a parallel linear relationship with some average
representation labels. Evidently, this possibility exists for
other semidirect sum Lie algebras with Abelian ideals.

It is of interest to discover if physically significant em-
bedded representations can occur under more general (non-
linear) circumstances. It would seem to be unlikely or, at
least, that the circumstances would have to be artificially
contrived. However, for physical applications, one is also
very interested in situations that closely approximate em-
bedded representations. These appear to be much more
widespread and relevant for the construction of tractable
theories based on the adiabatic approximation.

Consider, for example, a sequence of irreps of a Lie alge-
bra in which the matrix elements vary smoothly as functions
of the representation labels. It may then be a good approxi-
mation, in some situations, to make a linear approximation
for the dependence over some relatively narrow range of ir-
reps in order to construct approximate embedded represen-
tations, as for the rotor algebra.
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In the following we shall illustrate this possibility for the
Heisenberg—Weyl and symplectic Lie algebras.

V. THE HEISENBERG-WEYL LIE ALGEBRA

For simplicity, we consider the first Heisenberg-Weyl
Lie algebra hw(1), which is the most familiar dynamical
algebra for vibrations in a single degree of freedom. The ex-
tension to higher Heisenberg—Weyl algebras is straightfor-
ward.

A basis for the complex extension of hw(1) is given by
the set of operators {4,B,A} having the commutation rela-
tions

[BA4] =A, [Ad]=[AB]=0.

A. Irreps of hw(1)
Alowest weight state |4 ) for a unitary irrepis defined by
T'(B)[A)=0, TPA)A)=41]1),

where A serves as a label for the irrep. An orthonormal basis
for the irrep is defined recursively by the equation

I A)|A,n) =JA(r+ 1) |A,n +1).

Thus we obtain the matrix elements for the A irrep,
Am + 1|TP ) |An) =4 (n + 1S,
(A,n|TP(B)|A,m + 1) = (A,m + 1|]TH (4)|4,n)*,
(Am|TP(A)|A,n) = A8,,,.

The T’ irrep is seen to be related to the more familiar
A=Y irrep by

YY) =JyAla, TYB)=Jyla, TPA)=2Al,
where
at—_—r(l)(A)’ a=r(l)(B))

and I = I'"'Y(A) is the identity operator.

B. Approximate embedded representations of hw(1)

Consider now the situation in which, instead of a single
hw(1) irrep, we have a direct sum I' = 2, ' of irreps and
an orthonormal basis for the carrier space given by state
vectors

|¢v’n) = z ¢v,l I’l’n)’
A
where {@,; } is a set of coefficients such that
z ¢/’/1 ¢vi = 6 uv*
A
If we restrict to a subspace of states of v = const and put

A=A45+¢
where

Ao={(4) =§_‘, |21,

we obtain
($,,m + 1|T'(4)|d,,n)
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(#,.n|T(B)|p,m + 1) =(¢,,m + 1|T(4)|8,,n)*,
<¢v’m|F(A)I¢V’n> =6mn/10’
where

(62) = ; ,¢wl lz(/1 —/10)2-

It follows that we have an approximate embedded represen-
tation of the hw(1) Lie algebra provided (€%) €84 3.

An alternative, and possibly more useful, construction
of an approximate embedded representation for the Lie
group HW (1) and its Lie algebra hw(1), which is equiva-
lent to the above to within the limits of the approximation, is
to construct the carrier space of the embedded representa-
tion as the span of an orthonormal basis of states which satis-
fy the equations

P(B)|¢v)o> =01 (¢V’0|F(A)I¢‘V’O> =ﬂ'0’

r (A ) |¢v 9”)
(8,n|T(BA)|$,,n)' %
Although in quantum mechanics one is accustomed to
considering only A = 1 irreps of the Heisenberg—Weyl alge-

bras hw(n), corresponding, with a suitable choice of 4, B,
and A, to the commutation relations

[xyp] = lﬁ[y

with #i fixed at the value given by Planck’s constant, other
representations with A 51 (or, equivalently, with #i different
from the Planck value) exist mathematically and could exist
in physics. It is conceivable that what one sees in physics are
embedded representations with only mean value of # given
by the Planck value, and that higher energy representations
exist with orthogonal distributions of #.

Note also that, although the Heisenberg—Wey! algebras
are the simplest dynamical algebras for describing vibration-
al dynamics, they are not the most appropriate in all situa-
tions. The normal mode vibrations of a composite system
with internal degrees of freedom may be more appropriately
described by a symplectic algebra, for example, as we now
consider:

‘¢vrn + 1) =

VI. THE sp(1,R)~su(1,1) VIBRATOR ALGEBRA

For example, Sp(1,R) is the appropriate dynamical
group for a theory of monopole (breathing mode) vibrations
of nuclei.®

A basis for the complex extension of the Lie algebra
sp(1,R) is given by a raising operator 4, a lowering operator
B, and a u(1) operator C with the commutation relations

[CA] =24, [CB]= —2B, [BA]=4C.
A lowest weight state for a unitary irrep of sp(1,R) is defined
by :

T(B)|N,0) =0, T (C)|N,0) =N|N,0),

where N, a positive integer or (for a spinor irrep) a positive
half integer, serves as a label for the irrep. One easily shows
that orthonormal basis states are defined recursively for
such an irrep by the equation
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T™(4)|N,n) = [4(N +n)(n+ D2Nn 4+ 1).
The matrix elements of the sp(1,R) operators are given in
this basis by
(Nym + 1T (L) |[Nyn) =8, [4(N +n)(n + 1)]'7?,
(Nn|[T™(B)|Nym + 1) = (N,m + 1T (4)|N,n)*,
{(N,m|T®(C)|N,n) =6, (N + 2n).

Now consider a band of states,

) = ; Cw|N.n),

that straddle a distribution of sp(1,R) irreps. Write
N=N;+ 4,
where

No={(N)=T |Cy[’N.
N

We then easily find that
(B o1 [T |8, =8, [4(No+ m) (n + D]V
X{(1 — (A /8(Ny+n)* + ),
W lTB) Y1) = (W1 [T (A [P,
(4. T (O ¢, = 8,0 (No + 21),
where

(A% = > [Cy (N — Np)2.
N
It follows that, in the limit of 8V 2 large compared with (4 ?),
(A 2)/8(N, + n)?—0 and the set of states {|¢, ) } carries an
embedded representation '™’ of sp(1,R).

We again observe that an alternative, and possibly more
useful, definition of the (approximate) embedded represen-
tation is to define its carrier space as the span of the ortho-
normal basis states which satisy

P(B)|¢o) =0, (¢o|r(c)|¢o) 2N0v
T
i¢n+l) bt (¢HIF(BA)‘¢")”2,

where I' is the reducible representation of Sp(1,R) given by
the direct sum of the irreps I'Y.

These are significant results because they mean that one
can use sp(1,R) as a dynamical structure algebra for the
description of nuclear monopole vibrations, even though it
may be overly restrictive to assume that the physical states
belong to a single irrep. More important, however, is the fact
that the sp(1,R) Lie algebra is prototypical of richer dynam-
ical structure Lie algebras, such as sp(3,R), which has fea-
tured widely in the theory of nuclear collective states.’

VII. DISCUSSION

We have shown that the success of an algebraic model in
describing subsets of observable properties of a many-body
system does not necessarily imply the existence of a corre-
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sponding dynamical symmetry group for the system. It may
only imply the existence of a dynamical structure group. In
particular, we have shown that the observation of bands of
states that accurately obey the predictions of the rotational
model does not imply that the states of the band belong to an
irreducible subspace of the rotor algebra. They may belong
only to an embedded representation.

It will, of course, be recognized that, given sufficient
experimental data so that one can extract matrix elements of
a basis for a Lie algebra between all physical states of a sys-
tem, it is possible to distinguish between an embedded repre-
sentation and a subrepresentation. The indistinguishability
arises in practice when one considers a restricted set of data
involving, for example, the states of a single collective band,
and ignores the often small matrix elements connecting these
states to other possibly higher energy states.

Although perhaps not recognized explicitly, these con-
cepts have been implicitly used in physics both in the context
of the adiabatic approximation, as we have already dis-
cussed, and in what is often referred to as renormalization.
For example, to take into account the corrections to a model
due to coupling to neglected states, one often assigns renor-
malized values to the parameters of the model, such as effec-
tive masses or effective charges, different from their physical
values.

However, the explicit recognition that one can use dy-
namical structure groups, which are neither symmetry
groups nor even dynamical symmetry groups, opens up the
possibility of more extensive applications of group theory in
physics than hitherto. For example, it has long been main-
tained that the application of Elliott’s SU(3) model of nu-
clear rotations® should be restricted to light nuclei because
one knows that, in heavy nuclei, the spin-orbit interaction
mixes SU(3) irreps strongly. As we show elsewhere,® one
can in fact admit very large mixing of SU(3) irreps by the
spin-orbit interaction and still retain the essential properties
of SU(3) bands.

In a forthcoming paper® we investigate the application
of the concepts of dynamical structure and embedded repre-
sentations to the microscopic description of nuclear collec-
tive structure.
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Cauchy surfaces in a globally hyperbolic space-time

Jan Dieckmann
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With the help of volume functions it is shown that a globally hyperbolic space-time possesses a
Cauchy surface which is a three-dimensional, connected, spacelike C* hypersurface.

. INTRODUCTION

It is a widely used theorem that every globally hyperbo-
lic space-time M possesses a Cauchy surface which also is a
C= hypersurface of M. Sachs and Wu! called it “one of the
folk theorems of the subject,” since an elegant proof of this
statement is still missing. (In fact, there is a proof that every
globally hyperbolic space-time possesses a Cauchy surface in
Geroch,? and also a sketch of a proof of the announced result
in Ref. 3.) In this paper we will give a proof of the above
result. We shall use the terminology and notation of
O’Neill.*

il. GLOBALLY HYPERBOLIC SPACE-TIMES

In the following proposition we call afunctiont: M —Ra
time function, if

p<qg = t(p)<tlqg) (pgeM).
If o is a finite Borel measure on M with
Ao >0 (BAUCM),
(il) o(Bd 1= (p)) =0 (peM),
we call the functions

t=(p):= Foll *(p)) (peM)

( future or past) volume functions. In Ref. § it is shown that
such a measure always exists.

Proposition: Lett —,¢ * be volume functions in M and let
f=In(—t"/t*). The followmg are equivalent: (i) M is
globally hyperbolic; (ii) # is a continuous time function and
for all causal, inextendible curves y we have Ran(roy) =
and (iii) 7 ~! ({a}) is for all @ €R a Cauchy surface.

The proof may be found in Ref. 6.

Now we are able to prove the announced theorem.

Theorem: A space-time (M,g) is globally hyperbolic iff
a C* manifold N, and a diffeomorphism ¥: Ny X R— M ex-
ist with W (N, X {a}) being for all ac R a spacelike, connect-
ed Cauchy surface.

Proof: “=" Let t* be volume functions. Due to the
proposition the function

t=In(—2"/t*)
is a continuous time function. In Ref. 7 it is shown that we
can smooth a continuous time function receiving a C~ -time
function ¢ with

[E—0(@)l<1 (peM),
and dt is timelike. It follows that the level surfaces of 7 are

spacelike hypersurfaces of M. In fact, they even are Cauchy
surfaces; for letae R, N,: = ¢ ~'({e}), and ¥ be an inexten-
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dible, timelike curve. Because ¢ is a time function, ¥ can meet
N, at most once. Because

Hp)<|tp) —t(p)| + 1) <a [pet ~'({a—1})],

1(p)>1(p) — [t(@) —t(p)| >a [pet ~'({a+1D)],
thefactthat7 ~!({a + 1}) are Cauchy surfaces, and the con-
tinuity of 7, ¥ must meet NV, at least once.

To construct ¥ we need a lemma.

Lemma: The map p: M — N, which takes each peM to
the unique point on the Cauchy surface N, at which the
integral curve of the timelike C~ -vector field grad ¢ through
p meets N, is a submersion.

Proof of the lemma: Let peM. The integral curve a,
through p meets N, in a unique point a, (#). Because the
maps

iu(.)-=(p(. +u))
where ® denotes the flow of grad 1, are diffecomorphisms,
N: =@ _, (N,) is a hypersurface through p. Moreover, Nis
transversal to grad ¢ since

d®,(gradt,) = [®, ©,](0)
= [®(P(p,u),")]'(0)

=a,, (0) =gradz,,, .

Since we also have grad 7, #0, there is a chart (x,U) at p,
such that gradt = 3, on Uandx(N) C(u")~'({0}), where
©' is a natural coordinate function on R* (see O’Neill®).
Obviously we have

plo=o,o0x orox,
where 7: R* > (') ~'({0}) denotes the natural projection,

which shows that p is a submersion. v
Now we construct the inverse of ¥: The C* map

U: M NyXR, p—{(p(p)t(p))

is bijective and, because t and p are of maximum rank, even a
diffeomorphism. Since M is connected and

Ny = 1r°\P(M ),
where 7: No X R— N, denotes the projection, N, is also con-
nected. The map ¥: = ¥~ ! has all required properties.

“4="" A space-time possessing a Cauchy surface is glo-
bally hyperbolic.® |

'R. K. Sachs and H. Wu, Bull. Am. Math. Soc. 83, 1155 (1977).
2R. Geroch, J. Math, Phys. 11, 437 (1970).
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Diffeomorphisms, orientation, and pin structures in two dimensions
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(Received 1 July 1987; accepted for publication 23 September 1987)

A set of generators for the modular group of a surface with boundary, both in the orientable
and nonorientable cases is given. All inequivalent pin structures are constructed and their
transformations under these generators are computed.

I. INTRODUCTION

In Ref. 1 we solved the following problem: given a com-
pact, connected, orientable, two-dimensional Riemannian
manifold 3 without boundary, compute the action of the
orientation preserving diffeomorphisms of 2 on the set of
inequivalent spin structures on Z. Since isotopic diffeomor-
phisms induce the same transformation on spin structures, it
is sufficient to determine the action of one particular repre-
sentative in each isotopy class. The group of isotopy classes
O (Z) = 7y(D £+ 3), which we call the modular group
of X, has a finite set of generators, for which representative
diffeomorphisms are known (the Dehn twists). Therefore
the problem of determining the action of an arbitrary diffeo-
morphism on spin structures is reduced to that of determin-
ing the action of a finite number of diffeomorphisms.

In this paper we address the analogous problem for an
arbitrary compact, connected manifold (henceforth called a
surface). Since we are going to discuss orientation reversing
diffeomorphisms and nonorientable surfaces, we do not
work with spin structures, but rather with pin structures
[i.e., prolongations of the bundle of orthonormal frames to
the double covering of the full group O(2)]. This is ex-
plained in more detail in Sec. II, where we also collect some
basic facts on the topology of surfaces. In Sec. III we consid-
er the case of an orientable surface with boundary and com-
pute the action of the full diffeomorphism group on pin
structures. In the rest of the paper we discuss the case of a
nonorientable surface N, possibly with boundary. In Sec. IV,
we give explicit representatives for the generators of the mo-
dular group Q2(N). In Sec. V we give a complete description
of all pin structures on N. The group O(2) has two inequiva-
lent double coverings Pin* (2) and Pin~(2), which have to
be treated separately. For instance, we will find that depend-
ing on the topology of N, pin structures exist for one of them,
but not for the other. In Sec. VI we compute the action of the
generators of (N) on pin structures and we find the orbits
of this action. In the two appendices we collect some supple-
mentary topological results on nonorientable surfaces.

The motivation for this work came from the problem of
modular invariance in superstring theory. Surfaces with
boundary occur in the Feynman integral representation of
the vacuum amplitude for open strings and of the scattering
amplitude of closed strings. Nonorientable surfaces appear
in the theory of nonoriented strings.

) On leave of absence from L.F.T., Uniwersytet Wroclawski, Poland.
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Il. PRELIMINARIES

In this section we recall some basic facts on the topology
of surfaces, their diffeomorphism groups, the double cover-
ings of the linear and orthogonal groups in two dimensions,
and pin structures.

We denote 2, an orientable surface without boundary
of genus g; it is homeomorphic to a sphere if g = 0 or to the
connected sum of g tori if g>> 1. Removing from X,  disjoint
open disks D,,...,D, we obtain a surface 2, , with boundary
consisting of n circles d,,...,d,,. Every smooth compact, con-
nected, orientable surface is homeomorphic, and actually
diffeomorphic, to X, , for some g,n. We will always work
with a specific realization of =, as a surface embedded in R?,
symmetrically with respect to the plane reflections K
(i = 1,2,3) which invert the ith axis (see Fig. 1). The first
homology group is H,(Z,,Z) =2* and H,(Z,,Z)

= Z®%+ "= 'for n>1; the generators are the cyclesa,,b, for
A4 = 1,...,g drawn in Fig. 1 and the cycles d,, for h = 1,...,n,
with the relation

Yy d,=0.

h=1
We denote N, (g>1) a nonorientable surface without
boundary of genus g; it is homeomorphic to the connected
sum of g real projective planes. Removing from ¥, n disjoint
open disks D,,...,D, we obtain a surface N, , with a bound-
ary consisting of » circles d,,...,d,,. Every compact, connect-
ed, nonorientable surface is homeomorphic,’ and actually
diffeomorphic, to N, for some g,n. For our purposes it will

2.1

(b}

vyl

b,y b
x' ..o
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FIG. 1. The surface 3, for (a) g even and (b) g odd.
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be convenient to use an alternative picture of a nonorientable
surface. Let J = K,K,K, be the total inversion in R, i.e.,
J(x'x%x%) = (—x', — x* —x*). Consider the surface
S,_, (g>1) embedded in R* as before (see Fig. 2) and
remove 2n disks D, with A=1,..,2n such that J(D,)
=D,,_ .- Then J restricts to an orientation-reversing,
fixed point-free diffecomorphism of =, _, ,,, which generates
a group Z, = {Id, J}. The quotient 3, _1,2./Z,1s acompact,
nonorientable surface with boundary consisting of n circles.
It can be thought of as the part of 3, _ , ,, with x'>0 subject
to the identifications (0,x%,x*) = (0, — x?, — x*). Thisis the
connected sumof 2, _,,,, and a projective plane, if g is odd,
or 2 ,_,, and a Klein bottle if g is even, with » disks
removed in both cases. We show in Appendix A that these
spaces are homeomorphic to N, ,,. Therefore

Zg— l,Zn/ZZ = Ng,n .

The natural projection 7: 2, _,,, =N, is a double cover-
ing. The first homology groupis H,(N,,Z) = Z*~'®Z, and
H((N,,,Z) =25*"~"for n>1. We shall use the same sym-
bol foraloopon £, _,,, and the projection onto N, of the
part of that loop which lies in the half-space x'>0. Then, the
generators of H,(N,,,Z) can be listed as follows:
AyyeesB g 1y20 D1sesb g 13720 €g_1)/2> B1p-d, With the
relation

2cg—n2 —g_nn) + 3 4 =0, (2.2)
h=1

ifgisodd, anda,...,.a,/2, by,...0/2, d,...,d,, With the relation

2a,,+ Y d, =0, (2.3)

h=1

if g is even. The orientation reversing generators are
C(g— 12 forgodd and b, for g even.

Let D(Z,,) be the group of diffeomorphisms of X, ,.
We have two chains of inclusions

Dy(3,,) C D,;(2,,) C Dy(3,,) CD(Z,,)
and

D,(2,,)CD + (2,.) CD(EZ,,),

where D, D,, Dy, and D * denote the subgroups of D con-
sisting of diffeomorphisms which are isotopic to the identity,

ey

) T

FIG. 2. The surface 3, | for (a) godd and (b) geven.
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leave the boundary pointwise fixed, map each connected
component of the boundary to itself, or preserve the orienta-
tion, respectively. Here and in the following by isotopy we
always mean smooth isotopy, i.e., homotopy through diffeo-
morphisms. We denote

Q(Z,,) =mdD(Z,,)) =D(2,,)/Dy(Z,,)
and, with obvious notation, we have inclusions
0,(%,,) CQR(Z,,) COZE,,)
and
0,(2,,) COT(Z,,) CQE,,).
Similarly, for a nonorientable surface, we have
Dy(N,,) C Dy(N,,) CDg(N,,) CD(N,,)
and

Q5(N,,) C Qp(N,,) CQN,,) .

In all cases, ) will be called the modular group.

In two dimensions, every homeomorphism is continu-
ously isotopic to a diffeomorphism and furthermore, if two
diffeomorphisms are continuously isotopic, they are also
smoothly isotopic. Therefore, the modular group of a sur-
face can be identified with its homeotopy group (the group
of continuous isotopy classes of homeomorphisms). This
will allow us to use known results on the homeotopy groups
of surfaces.

A spin structure on an oriented #-dimensional Rieman-
nian manifold M is a prolongation of the bundle of oriented
orthonormal frames to the group Spin(n), the double cover-
ing of SO(n). As discussed in Ref. 1, in order to define rigor-
ously the transformation of spin structures under orienta-
tion-preserving diffeomorphisms, it is necessary to use
instead the prolongations of the bundle of ali oriented frames
to the double covering of GL™ (n). If f is an orientation
reversing diffeomorphism of M, or if M is not orientable,
then the derivative 7f is an automorphism of the bundle of
all frames. To define spinors on M and their transformation
under fin these cases, it is necessary to use a prolongation of
the bundle of frames to a double covering of GL(»). The
group GL(n) is retractable to its maximal compact sub-
group O(n) and its two double coverings are retractable to
the double coverings of O(n), denoted Pin*(n) and
Pin~ (n). This is easily established using the Iwasawa de-
compositions of GL(#n) and its double coverings.

The general discussion in Secs. IT and III of Ref. 1 can be
repeated in this more general case, the only modification
being the nonuniqueness of the double covering of GL(n). A
prolongation of the bundle of frames to a fixed double cover-
ing of GL(n) exists if and only if there exists a prolongation
of the bundle of orthonormal frames to the corresponding
double covering of O(n) (i.e., a pin structure). Further-
more, when they exist, there is a bijective correspondence
between prolongations of the bundle of frames to a fixed
double covering of GL(#n) and prolongations of the bundle
of orthonormal frames to the corresponding double covering
of O(n). The topological conditions for the existence of
Pin* (2)— and Pin™ (2)—structures are, respectively,

w,+w} =0 and w,=0, 2.4
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where w, and w, are the first and second Stiefel-Whitney
classes of M. Furthermore, when pin structures exist, they
are classified by H'(M,Z,) = Hom(H,(M,Z),Z,). In prac-
tice, the transformation of prolongations under diffeomor-
phisms can be computed working almost all the time with
the groups Pin * (n), so in the following we will always talk
about pin structures rather than prolongations of the bundle
of frames. In this paper we shall use the charts and local
trivializations of the bundle of frames of =, which were in-
troduced in Sec. 4 of Ref. 1. In order to be able to give a
unified treatment for all genera g>0 we have to define the
chart U also in the case of the sphere [this was not needed in
Ref. 1 because S? admits only one spin structure and
Q*(S?%) = 1]. This we achieve by declaring the equator to
be the loop ¢, and introducing a coordinate neighborhood Z,
of ¢, with coordinates ( {,,z,). Then we define an atlas of F
on the open covering U, U’, U ", where U= Z,, U’',and U "
are the northern and southern hemispheres and the fields of
frames e,e’,e” are defined by Eqs. 4.10, 6, 7 in Ref. 1, respec-
tively. This ensures that the transition functions of F have
even winding number and have lifts to the group Spin (2).

Finally, we describe the double covers of O(2). To the
Euclidean space R’ are associated two Clifford algebras
C *(2), which are generated by two elements y,,¥,, with the
relation

v+ yvvi=£25; (i=12),
respectively. We shall use a 2 X 2 matrix representation with
¥y, =0; [forC*(2)]ory, = — lo; [for C ~(2)], where
o, are the first two Pauli matrices. The group Pin* (2) is a
subgroup of C * (2), respectively, consisting of two con-
nected components. The identity-connected component
Spin(2) consists of elements of the form exp(sy,¥,) with
0<s<2w; the other component is obtained by composing ele-
ments of Spin(2) with y,. The covering homomorphism p:
Pin* (2) - 0O(2) is defined by

1

pla)y,=aya ",

p(na)y, = —rava”'yi ',
where the ¥, are regarded here as a basis for R*C C *(2).
Notice that 0<s<# parametrizes an open path in Spin(2)
joining 1 to — 1, which covers a loop in SO(2) starting and
ending at 1.

fora e Spin (2),

lil. DIFFEOMORPHISMS AND PIN STRUCTURESONZ_ ,

The group Q% (Z,) and its action on spin structures
have been discussed in Ref. 1. A set of generators for (2, )
is given by a set of generators for 1" (=, ) plus (the isotopy
class of) an orientation-reversing diffecomorphism. In the
presence of a nontrivial boundary there are additional gener-
ators. It is convenient to regard X, , as a subset of 2, and
represent the generators of (2, , ) by diffeomorphisms of
3, ; some of them will be isotopic to the identity on =, but
not on X, since an isotopy on X, , must consist of diffeo-
morphisms which map the boundary to itself. Consider the
loops a,,b, which wind around the A4th handle, for
A = 1,...,8;loops ¢, which connect the 4 thand the (4 4+ 1)-
st handle, for 4 = 1,...,g — 1; loops 7, 5, which intersect
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D, and wind around the A th handle, for 4 = 1,...,g and
h=1,...,n; loops ¢, which intersect D, and D, ,, for
h=1,.,n—1 (seeFig. 3).

Let £denote anyone of these loops. We introduce local
coordinates in a tubular neighborhood U[¢] of £ by choos-
ing an orientation preserving diffeomorphism of U[¢] onto
the open annulus {zeC|1 — £<|z| <1+ £} in such a way
that the oriented loop ¢ is mapped onto the clockwise orient-
ed circle |z| = 1. In the case of the loops a,,b,,c, these co-
ordinates are related to those introduced in Ref. 1by U [a, ]

=X, Ulby1=Y,, Ulcal =Z,, 2| — 1 =X4, V4524,
—argz=y,,9,, {,, respectively. In the case of the loops
P4 Sqn, We assume also that the disk D, is mapped onto the
disk |z + 1| < £/2 and furthermore in the case of the loops 7,
the disk D, , is mapped onto the disk |z — 1| <£/2. For
each # we define a diffeomorphism f[¢] called the twist
around Zas follows: it is the identity in the complement of
U[¢) and on U[¢]

fI€1: azexpl — 2 — 14(()z| — 1/¢)],

for f=a,b,c . (3.1)
flel: Z'—>Z'eXP[ 2y =14 (2ﬂ—_l_ﬁ>
£
—2\/—_1,1(—2|2|;1—_5)]’
£
for £=r4, San » (3.2)
itat zr—»z-exp[ —J=1z (2 |z| — 1 +£)
€
~\/—-—1/1(—2|z|_—1_—£)]’
€
for £=1t,, (3.3)

where A is a smooth function such that A(s) = 0 for s<0,
A(s) = wfors>1, and dA /ds>0. This definition agrees with
the one given in Ref. 1 for f[a,],f[b,],and f[c,]. The
effect of these twists on the annulus is shown in Fig. 4: the
spiraling lines are the images under the twists of the intersec-
tion of the real axis with the annulus.

For the orientation-reversing generator we take (the
isotopy class of the restriction to 2, of) the reflection K,
assuming that the disks D,,...,D, are placed on Z_ insuch a
way that K;(D, ) = D,. Notice that the total inversion J
would not work for odd n.

It was proved in Ref. 3 that 1(Z, ) is generated by the
following set: {f[a,],f[b4] for A=1,..8 f[c,] for
A=1,..8—1 f[ra), f[sam] ford=1,..8 h=1,.,n

Dh Dh'H

FIG. 3. The twistson 2.
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(a)

FIG. 4. The twists (3.1), (3.2), and

®) (3.3).

(©)

flt] forh=1,..n—1; K,}. In the special cases g =0,
g=1orn=0, n=1, some of these generators are not de-
fined and 2(Z,, ) is generated by the remaining ones. We
observe that this is not a minimal set of generators; for in-
stance it was provenin Ref. 4thatf[a, | with4 = 3,...,gcan
be expressed as combinations of the remaining f[a,],
S[b4],and f[c,]. It can also be seen that f[r,, ., ] and
Sf[54n+1] are isotopic to f[t,]1 Y [ran]f[t.] and
fIt]" sl f [t ]

The generators for the subgroups Q" (2, ,), Q5 (2,,),
and ,(Z,,) are obtained from those of (2, ,) by omit-
ting the generator {K,}, the generators {f[#,] for
h=1,.,n—1} and the generators {K; f[t,] for
h = 1,...,n — 1}, respectively.

On =, (n>1) there are 2’+"~! inequivalent spin
structures labeled by (2g+ n)-tuples of numbers
(E1yeensigs JusesJgs Kiseenky,) , €ach equal to O or 1 and with
the relation

S k, =0mod2,

h=1

(3.4)

which derives from (2.1). All spin structures on 3, have
the same Sgi_n(Z) bundle F, which is the restrictionto 2, of
the bundle Fof Ref. 1. In place 0of 4.12-4.16 in Ref. 1 we now
have bundle morphisms 7, : F—F defined by

nuk(é(x))=e(-x)ruk (x), (3.5
where 7y, : U—SO(2) are such that composed with the loops
a,,b,,andd, (regarded as maps S 1, 2, ) they have wind-
ing numbers i,, j,, and k,, respectively. This can be
achieved by placing the disks D,,...,D, in Z,ifg = O0and Y, if
g>1 (see Fig. 5, where Y, has been slightly extended) and
modifying the functions 7;; on the shaded strips in such a way
that crossing the strip between D, and D, , ,, the function
ry Totates by 2mg, withg, =3 _, k..

Every spin structure (ijk) extends uniquely to a
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v Y i

1 \l ¢

- -1/ /2 7
€

—, 0‘

FIG. 5. Extension of the chart Y, in the presence of boundary.

Pin*(2) and a Pin—(2) structure, both of which will be
denoted again (ijk). In particular, having fixed the structure
group, the pin bundle is the same for all pin structures.

The transformation of pin structures under (1(X,, ) can
be determined counting the winding numbers of the three
terms on the rhs of (4.22) in Ref. 1. For this to work it is
necessary that the homology generators and their images
under f be contained in U; this is true for f[a,], f[b4],
f[c4],and K;, and will also be true for £ [ 7, ],/ [54x ], and
S [t ] provided we deform theloops 7,4, 5,44, and 2, insucha
way that they are entirely contained in U. We observe that
the middle term in (4.22) is the only function which has
values in GL(2) and in general not in O(2); however, it can
be deformed into a function which has value in the subgroup
O(2) without altering its winding numbers. In practice, the
winding number of Ao¢’is determined counting how many
times the vector tangent to fo¢ winds with respect to the
frames e on U.

Most of the labels (ijk) are invariant under the action of
the generators, so for each diffeomorphism we list only the
labels which are changed,

Sflas]): jar>ja +6upis»

f[bB]: iy—iy+845jp,

Slesl:jarrja+ (Gup + 6,451 )ip +ip y + 1),

f[er]: Ja—>ja + 04k, ,

SSBm 1t g is + 045K

f[tm]: k, —ky + (84 +8mar1) Ky + K1)
Since K; leaves all pin structures invariant the orbits of

Q(Z,,) are the same as the orbits of (2, ,). Forn =0,
they are characterized by the invariant
g
(i) = 2 G+ +1D; (3.6)
A=1
the pin structures with ¢ = 0 (resp.1) are called even (resp.
odd). For n>»1 and k = 0, the orbits are the same as in the
case n = 0. If k0 there are [n/2] orbits (where [ ] de-

notes the integer part of a number) which are characterized
by the integer

k=73 k.

h=1

3.7

Because of (3.4) the labels &k, that are equal to 1 must occur
in pairs, so X is even.

. InTable I we list all the orbits of (2, , ), together with
their invariants, cardinality, and a representative pin struc-
ture for each. We recall that 2[n/2] denotes the largest even
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TABLE . Orbits of 2(Z,,,) and Q*(3,,).

K @ Standard form Cardinality

0 0 (0,...,0; 1,.,10,..,0) 281284 1)
0 1 (0,...,0;1,...,1,6,0.,...,0) 28128 1)
2 — 0,...,0; 1,..,150,...,0,1,1) 223( )

2m —_ o,..,0; 1,.,10,.,0,1,...,1) 225( )
2[n/2] — 0...,0; 1,...,1;,0(n+ 1),1,...,1) 22‘ (afnr21)

integer which is <z and we use the abbreviation &(r)
=n—2[n/2] [ie., 8(n) =0 for n even, and 1 for n odd].
The groups (2, , ) and Q,(Z,, ) have the same or-
bits, because they have the same set of generators except for
K, which leaves all pin structures invariant. Here k itself is
invariant. If k=0, @(i, j) is also invariant and there are
again two orbits corresponding to even and odd pin struc-
tures. If k20, there are 2"~ ! orbits, characterized by k. In
Table II we list all the orbits of Q5 (2, , ); the invariant vec-
tors k are ordered as if they were binary numbers.

IV. GENERATORS FOR Q(N,, )

We saw in Sec. II that the double covering of N,, is
2, _1.2.- Every diffeomorphism of N, , lifts to two diffeo-
morphisms of 2, _,,, which commute with J. One of these
preserves the orientation and the other, being obtained from
the first by composition with J, reverses the orientation.
Conversely, every diffeomorphism of £, _, ,, which com-
mutes with J factors to a diffeomorphism of ¥, ,,. Thus there
is an isomorphism between D(N,,) and D " (2, _,,,)
NC(Z,), where C(Z,) denotes the centralizer of
Z,={1d,J}in D(Z, _,,). There follows that the genera-
tors of (N, ,) can be represented by diffeomorphisms of
2, _ 1,2, Which are isotopic to diffeomorphisms which com-
mute with J. On the other hand, if we have a diffeomorphism
f such that supp fN J(suppf) = and which does not
commute with J, we define a “‘symmetrized” diffeomor-
phism f;

f= fIfJ.

Since supp JfJ =J (suppf), f commutes with JfJ and f

commutes with J.
Consider first the twists around the following loops

(which do not meet the plane x' =0):a, for4 = 1,...,[ g/
TABLE IL Orbits of 2, (Z,,,) and 0, (3,,).
k @ Standard form Cardinality
0,...,0 0 (0,...,0; 1,...,1:0,...,0) 28-1(26 4 1)
0,....0 1 (0,...,0;1,...,10;0,...,0) 28-1(28— 1)
0,...0,1,1 — (0,...,0; 1,...,10,...,0,1,1) 2%
0,.,0,101 — (,..,0; 1,..,1:0,..,0,1,0,1) 2%
1,...,1, —
Gn+1) _— (0,,0; L..y131,...,1,8(n + 1)) 2%
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2]; b, for A=1,.,[(g—1)/2]; ¢, for A=1,..,[(g

—2)/2); ryy for A=1,.,1g/2], h=1,..,n; s,, for 4
=1.,[(g—1)/2),h=1,..,n,and ¢, forh=1,.,n—1.

The corresponding symmetrized diﬁ'eomorphisms
f[aA B f[b 1 f[‘-'A I f[rAh B f[sAh B aﬂdf[th ] project
onto the diffeomorphism of N, , which will be denoted again
fla.l, fba]s fleads f[rA,,] S[s4n], and f[¢,] since
they are twists and can be described in local coordinates on
N, . by Egs. (3.1)-(3.3). Indeed, N, , can be identified with
the intersection of =, _, ,, and the half-space x' >0 with cer-
tain identifications if x' = 0. Therefore every symmetrized
diffeomorphism of 2, _ , ,, whose support does not intersect
the plane x! = 0 can be immediately regarded as a diffeo-
morphism on ¥, ,

Now cons1der the loop ¢,, which we draw as in Fig. 6.
The twist f[7, ] can be chosen to commute with J, but its
support crosses the plane x' = 0 and it does not project to a
twist on N, ,. The diffeomorphism of N, , defined by /|2, ]
will be denoted o, and called a “slide,” since it can be de-
scribed as sliding D, through a Mébius strip and back to its
original position (see Appendix B); notice that o, reverses
the orientation of the boundary d,,. Similarly the composi-
tion of twists f[t,,]‘l' f[t,,_l] ¥t 1f[t,,_,]
X - f [ 2 ] projects onto aslide o, that reverses the orien-
tation of d,,.

Next, consider the twists around the remaining loops
rA,, and s,. It can be shown that for

=[(g+2)/2],...e— 1L h=1,.,n, f[r,,,,] andf[sA,,]
prOJcct onto transformations isotopic to o}, '© f [7e— 4n]°0n
and o} 1Of [Sg— a1 190> respectlvely For geven, the projec-
tion of f [$4/2.1] is isotopic to o;7. So these twists do not
produce any new generator of (N, ).

The only generators of (2, _,,,) that have not been
used until now are the twists around the loops that cover the
orientation-reversing loops, namely f[c_,,, ] for g odd
and f[b,, ] for g even. They cannot be symmetrized and
have to be replaced by a new type of transformation, called
“Y diffeomorphisms.” Since they appear already in the case
when there is no boundary, we begin by assuming n = 0. The
support of a Y diffeomorphism is any closed subset B C N,
homeomorphic to &, (a Klein bottle without a disk); in
particular this implies that Y diffeomorphisms exist only if
g>2. For any such subset # one can define, up to isotopy, a
Y diffeomorphism, in a way which is described in Appendix
B. For our purposes, it will be more useful to have a descrip-

(a)

tn

(b)

FIG. 6. The loop #, and the (dashed ) region where the functions r, haveto
be modified in the presence of a boundary.
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tion of the lift of a Y diffeomorphism to 2, _ , ; furthermore,
we can restrict our attention to a Y diffeomorphism with a
fixed support, since all the others can then be obtained by
composition with twists. Consider the subset W of X, _,
which is bounded by the curves fand J( f), if giseven, and e
and J(e) if g is odd (see Fig. 2). These subsets are homeo-
morphicto =, , (atorus without two disks) and project onto
subsets W of N, which are homeomorphic to N, , . We define
diffeomorphisms y of 2, ; with support W. Regard W as a
subset of 3, embedded in R? as in Fig. 7.
The diffeomorphism y is defined by

y=JoToK,,

where T is a rigid rotation by 7 of the disks D, and D, in the
direction of the arrows, joined smoothly to the identity on
the region which is bound by the dashed lines. Since y is the
identity on D, and D,, when W is regarded as a subset of
3,1, this transformation can be extended smoothly by the
identity in the complement of W.

The diffeomorphisms y commute with J and therefore
project to diffeomorphisms of N, with support W which are
shown in Appendix B to be Y diffeomorphisms in the sense
of Ref. 5. It can be seen that y is isotopic to the following
combinations of twists:

y=(flece—vrlf[big-1r]1"
°f[bgenn] D fle]l™!, g odd,

y=(f[bg2]°f 4]
°flecg—n D fLLf171,

However, these combinations of twists do not commute with
J and y cannot be expressed as a combination of twists on
N,

In the case of surfaces with nonempty boundary, it is
convenient to choose the support of y in such a way that y
does not move the boundary. In addition, in order to apply
the method of Ref. 1 to the transformation of pin structures
on N, ,, it is necessary that the support of every diffeomor-
phism of £, ,,, representing a generator of (}(N,,) be
contained entirely in the domain of a local trivialization of
the bundle of frames (specifically, U). These two require-
ments can be met by deforming the curves e and f of Fig. 2 in
such a way that they run parallel and sufficiently close (at a
distance <£/2 in the charts X, Y,Z) to the curves b, _,,»,
Cg—1r2s Bgrnn and €y 2y, by, C4pn, Tespectively.

g even.

FIG. 7. The support of the diffeomorphism y.
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Then, W can be regarded as a tubular neighborhood of these
curves.

For n = 0, it was shown in Refs. 6 and 7 that (N, ) is
generated by the following set {f[a,],f[b,] for
A=1,.,g-1/2 f[C,] for A=1,.,(g—3)/2;y}
for g odd{f[a,] for A=1,.g/2; [f[by,] for
A=1,.,(g—2)/2;f[c,] for 4 =1,..,(g —2)/2; y} for
geven.

Using the results of Scott® it can be shown that Q(N,,)
is generated by the sets given above plus the following:
{f[ra] for A=1,.,[g/2]; h=1,..n; f[s,] for
A=1,,[(g—D2Lh=1..nf[t,]forh=1,.,n—1;
o, forh = 1,...,n}. Inthespecialcasesg = lorn =0,n =1,
some of these generators are not defined and (¥, , ) is gen-
erated by the remaining ones [in particular Q (N, o) is triv-
ial].

The generators for the subgroups ,(N,,) and
Q;(N,,) are obtained from those of Q2 (N, ,) omitting the
generators {f{t,)forh=1,.,n—1} and the generators
{f[t] for h=1,.,n — 1; 0, for h = 1,...,n}, respectively.

V.PIN STRUCTURESONN,,

The main result of this section will be the following.

Proposition: A nonorientable surface of odd genus and
without boundary admits only Pin™—(2) structures. In all
other cases N,, admits both Pin™(2) and Pin™ (2) struc-
tures.

In the course of the proof we shall explicitly construct
all the inequivalent pin structures on N, ,, as quotients of pin
structures on the double covering; this will provide a natural
way of labeling them and we shall see that their number
agrees with the general cohomological result.

Letp: F— N, , bethebundle of framesof N, , and p5 : Fs
—2,_ 1, be the bundle of frames of 2, _,,,. There is a
canonical isomorphism of F5 to the pullback 7*F = {(x,e)
€3, _ 12, XF|m(x) = p(e)} given by e—{ps (e),Tm(e)).
Let Z, be the subgroup of Aut F5 generated by 7J. Thereisa
canonical isomorphism of the quotient Fs /Z, to F given by
[e]l—Tm(e). In the following we shall identify objects which
are related by these canonical isomorphisms.

If (F, 1) is a Pin*(2)—or a Pin~ (2)—structure on
N, ., we can construct, respectively, a Pin*(2)—or a
Pin~ (2)—structure (Fs Mz)onZ, ,,, asfollows:

Fy = mF={(x,8)e3,_ 1 ,, XF|m(x) = p(e)}

with p = pon and 75 (x,€) = (x,77()). This pin structure is
invariant under J, in the sense that there exists alift of J to an
automorphism 7J of F5 such that 5;0TJ = TJoyy, and
furthermore

(TN =1d;, . (5.1)
For instance, we can take
TJ(x,8) = (J(x),8). (5.2)

We observe that since (77)? = 1d £ the only other possibil-
ity is (7J)? = y, the automorphism of F; given by right
multiplication with — 1. Conversely, if a Pin™ (2)—or
Pin~ (2)—structure (Fs,7s ) on 3, _ 12+ is invariant under
Jand (5.1) holds, we can define, respectively, a Pin* (2)—
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or Pi{l‘ (~ 2)—stmc£ure (f‘,n) on N,, as follows: we take
F=Fs/Z, where Z, = {Idpz,TJ} and define 7: FoF by
n({€lz,) = [7z (&) ]z,- This gives us a method to construct
pin structures on N, , from pin structureson 3, _,,,. _

The quotient of the pullback of a pin structure (F,)
under the group iz generated by (5.2) is identical to (f’,n).
It follows that every pin structure on N, , can be obtained by
the method described above from some pin structure on
2 —-1,2n"°

‘ The quotient of inequivalent pin structureson X, _, ,,
yields inequivalent pin structures on N, ,, . This will be seen in
each specific case later on and can be proven using covering
space methods.? As discussed in general in Ref. 1, there exist
precisely two lifts of J, which differ by composition with y. If
(5.1) holds for one of them, it also holds for the other, so
they generate two different subgroups of Aut 5 which we
denote Z{*? with #&{0,1}. Taking the quotient of a symmet-
ric pin structure by these two subgroups yields inequivalent
pin structures on N, . It can be seen, however, that the bun-
dles F; /Z$” for £= 0,1 are isomorphic as pin bundles. The
problem of the isomorphism between the pin bundles corre-
sponding to different pin structures will be discussed else-
where.

The action of J on pin structures can be determined
again using the method of Ref. 1. We have to extend the
bundle charton U toabundle chart on UUJ(U). This can be
done in a straightforward manner by choosing the frames on
J(X,) to be given by

e(J(p)) = TJ(e( p)) ( ‘(1) (1))

for pe X ,. For the pin structures we assume ry, ( p) = 1 for
peJ(U)\U.InthechartZ ,_,, , (forgodd) and Y, (for
g even) the function ry, have to be modified in such a way
that when composed with the loops b, _,,,, (41 1)/2»
d,,....d,, they have winding numbers j , 1), j( g+ 1y/2
ki,....k,, (for g odd) and when composed with the loops
by, 8y, d,,....d,, they have winding numbers j /5, i/,
k,....k,, (for g even), with the relation 2", k, = 0 mod 2
in both cases. This is achieved by changing r,;, on the shaded
strip in Fig. 6 in such a way that crossing this strip between
d, and d, , the function ry rotates by 2mg, with g,
=3"_ . k,.

Counting winding numbers, we find that the action of J
is iy _ 43 Jadg—a + Buig—12 + 045+ 12)9n5 ki
ko 41 fOr g odd and i iy _ 4 + 84, 0/2Gn3 Ja—dg— a5
k,—ky, _ ., for g even. Therefore the symmetric pin struc-
tures, i.e., those which are invariant under J, are character-
ized by

iy=Iy_,,

Ja=Jg—a+ Bag_12 t0az+102) hzl Ky »

kh =k2n—h+l ’ (5.3a)
for g odd, and

iA =ig—A +6A,g/2 hzl kh’

jA =jg—A s (5.3b)

kh =k2n—h+1 ’
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for g even. In particular, the first equation in (5.3b) written
for A = g/2 implies that for g even

qn = Z kh = 0 .
h=1

We now examine which invariant pin structures satisfy con-
dition 5.1. This will determine whether Pin*(2)—or
Pin™ (2)—structures exist on N, . 5

In local trivializations of Fy and F5 over U defined by
frames e and &, the lifts 7/ and TV are locally represented by
functions A and % which, due to our choices of trivialization,
have values in O(2) and Pin* (2), respectively. Condition
5.1 then reads

RJ(p)R(p) =1 (5.5)

[the case (7V)? = ¥ corresponds to having — 1 on the rhs].
Since we have a choice between two possibilities, it will suf-
fice to check (5.5) at a single point.

If g is odd, let p be the point whose coordinates in the
chart Z ,_,,,, are ({,z) = (0,0) [see Fig. 6(a)]. In this
chart J: (§,2)—~({ + 7, —2), so J(p) = (7,0), h(0,0)
=h(m0)=(3%" 9), and A(00)= +y, *h(m0)
= X7

The relation between the sign of 4 at the two points has
to be determined by continuity. We begin by considering the
case n = 0. Using (4.10) in Ref. 1 we find

(5.4)

eo=(}
(- (20 2 (2) ).

(5.6)

Using (4.14) and the coordinate transformation (4.2),
(4.3) in Ref. 1, we have

rg($,0) =R (2i(g— nnt (“‘ %) +2i¢g4 104 (g-:—‘”)) .

Since the pin structure is symmetric, we can put i, _,),,
=i(g41ys2- Then from (4.21) in Ref. 1 written for f=J,

pla(£,0))
= rU (; + 17',0) _lh(;,O)r“ (;;0)

_ (l 0)
"\ -1
< (-2 (20 -2 (=) )
T—2¢ T—2¢
XR (21'( o [,1 (i) +4 ( — —5-)
€ £
(594 (-5
£ £
Ifi ,_,,,, =0 the second rotation is the identity matrix; if
i g—1y,2 = litrotates by 277 and back as § grows from O to .
Therefore, in both cases, this is a path in SO(2) which starts
and ends at the identity and is homotopically trivial. How-
ever, when £ grows from O to 7, the argument of the first

rotation decreases by 27, and therefore h must change sign: if
h(0,0) =y, then h(m,0)= — ¥, and vice versa. So

(5.7
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h(m,0)h(0,0) = — (¥,)? and condition (5.5) holds for the
group Pin~(2). Therefore, if g is odd, N, admits only
Pin~ (2) structures. (See Ref. 10forg = 1.)

Now consider the case n>1. If ¢, = 2i_, k, =0 then
(5.6) and (5.7) remain valid and we obtain a Pin~ (2) struc-
ture on N, ,. If g, = 1, the second rotation matrix in (5.7)
will have to be modified for those values of § such that
( ¢ + m,0) is in the shaded strip in Fig. 6(a); as a result of
this modification, it will rotate by 27 when £ grows from 0 to
. Altogether the rhs of (5.7) rotates by 4+, so 2(7,0)2(0,0)

= (7,)? and condition (5.5) holds for the group Pin*(2).

If g is even, let p be the point whose coordinates in the
chart Y, are (d,y) = (7/2,0) [see Fig. 6(b)]. Then J( p)
has coordinates ( —7/2,0) and the function h: Y,
—~GL(2) which represents locally 7Jis A(, y) = (; _9).
Using (4.14), (4.16), (4.21) of Ref. 1 and (5.4) we have

PR (3,0)) = rg (& + 7,0) " h(3,0) 7y (3,0)

(o DRl () (Z))

In particular p(a( +7/2,0))=(5 _{) so h(7/2,0)
= + y,and h( — 7/2,0) = + ¥,. To see how the sign of &
atd = — w/2isrelated to thesign at ¢ = 7/2 weuseagaina
continuity argument. If j,, =0, p(h(z? 0)) is constant and
therefore also h is constant. So A( — 7/2,0)k(7/2,0)
= (7,)? and condition (5.5) holds for the group Pin* (2).
Ifj,,, =1, p(h) rotates by 27 as «f grows continuously from
— /2 to /2 and therefore & must change sign. So if we
choose i(7/2,0) = 7. we must have h(—7/2,0) = — Y2
and vice versa; there follows that A( — 7/2,0)k(7/2,0)
= — (%,)? and the condition (5.5) holds for the group
Pin~(2). Altogether, we find that if g is even, a symmetric
Pin* (2) structure on X, _, ,, projects to a Pin* (2) struc-
tureon N, , only ifj,,, = 0 and a symmetric Pin™ (2) struc-
tureon £, _, ,, projects toa Pin™ (2) structure on N, ,, only

if j,» = 1. This completes the proof of the proposition.

We now count the pin structures that we have con-
structed. We consider first the case n> 1. If g is odd the sym-
metric pin structures on X, _, ,, have labels (i;,...,i )2,
i(g—l)/z""!il; jl""’j(g—l)/Z’j(g—1)/2""’j1; Kyyoeskns
k,,..k) with=}_ k, =1forPin*(2)and 37 _, k, =0
for Pin~—(2). Thus there are 2+ "~ symmetric Pin*(2)
structures and 2 ¢+ "~ 2 symmetric Pin~ (2) structures. If g
is even, the symmetric pin structureson 2, _, ,, have labels

(T g2y 2 ’ig/Z kg 2y/20mibss JiresJ g— 2721 Jar25

Jig—2y7290000d15 Kiseeisk sk 5ok ) With jg,, = 0 for Pin™ (2)
andj,,, = 1 for Pin~(2), and with the relation (5.4) hold-
ing. Thus there are 22"~ 2 symmetric Pin* (2) structures
and 2¢* "~ 2 symmetric Pin~ (2) structures. From the gen-
eral discussion earlier in this section, each symmetric pin
structureon 2, _ | ,, gives rise to two inequivalent pin struc-
tures on N, , which differ in the value of the label £ There-
fore in all cases we will get 28+ "~ ! inequivalent pin struc-
tures on N,,. If n =0 there are 2¢~' symmetric pin
structures of each type on 2,_, and they give rise to 2
inequivalent pin structures on N,.
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Because of the symmetry (5.3), we use as labels for pin
structures on N,, the following: (ij...oiiz_1y,23
Jusdig—1ys2s kpek,;€) with 25k, =0 for Pin™(2)
and 2} _,k, =1 for Pin*(2), if g is odd, and (Fiseensigras
Juesdig—2y23 Kiseesk ;€Y wWith 25 _ | k,, = Ofor geven. The
labelsi,,j,, k,, and £are associated to the homology genera-
torson N, ,: a,, b,, d, and the orientation reversing loop,
respectively. Differences in these labels can be interpreted as
the value on the corresponding loop of a homomorphism
from H,(N,,,Z) to Z,.

The fact that for the group Pin* (2) on N, , with g odd
251 k, #0 shows that the labels (ijk¢) cannot be inter-
preted naively as a homomorphism from H,(N,,,Z) to Z,,
as is usual. The fact that at least one of the labels k, must be
nonzero is equivalent to the statement that these Pin* (2)
structures cannot be extended to the interior of the disks
D,,....D, togive Pin™ (2) structures on N,. We could correct
this peculiarity of the labeling using the freedom to perform
affine transformations (e.g., redefining k—k, + 1). In this
case the ( g+ n) tuples (ijk#) could be interpreted as a
homomorphism H,(¥N, ,,Z)—Z,. In the following we shall
stick to the previous notation.

VI. THE ACTION OF (N, ,) ON PIN STRUCTURES

In the previous sections we have described the diffeo-
morphisms and the pin structures on N, , in terms of diffeo-
morphisms and pin structures on its orientable double cover
2, _12n- In this section we shall use the results of Sec. III,
together with some additional information, to determine the
action of diffeomorphisms on pin structures on N,

LetfeD(N,,)and f5€D(Z, _,,,) beoneofi 1ts two lifts.
Given a pin structure (F 7)on N, Ve.ns there is a pin structure
(Fs Ms) on 2, ,, such that (F,7) is its quotient under a
group Z, generated by one of the two lifts 7J. The map f5
transforms (Fy,75 ) into some other pin structure (Fy,9%);
so in the following diagram all solid arrows commute:

s Thh— Ay

g \"' _________ '1;_-|\-j';
Yoy d
A==t "

(6.1)

—

N /7

The transformed pin structure (¥',5') is defined by the re-
quirement that there exists a map 7/ F' — F (dashed arrow)
which forms a commutative square with %', and Tf. From
the square on the left-hand side of the upper cube, (F',7’)
must be the quotient under a group Z, of (Fy % ); but
(Fs »7% ) projects to two inequivalent pin structures on N, ,
which differ in the value of the label £ so (6.1) does not
entirely determine the transform of (F,7) under f.

To determine the transformation rules of the label £, we
observe that since Tf; commutes with 7 we must have

Tfs oTJ = ()% TIoTF;s (6.2)
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withg=0or g=1 If -sz commutes with 7/ {g=0), then
we can define Tf by

IfeD) = [T @],
where [ ] denotes equivalence classes with respect to the
group Z, generated by 7J; if Tf; “anticommutes” with 7J
(g =1) the same definition works provided the equivalence
class [2] on the ihs is taken with respect to the group Z,

generated by the other lift of J, namely, y07‘J. This means
that under f

O =F1q. (6.3)

We now consider the transformation properties of pin
structureson 2, _, ,, (not necessarily symmetric) under the
lifts of diffeomorphisms of N, ,. The transformation of the
labels ijk under the twmtsf[aA] f[b B f[c,,] f[rA,,]
f [54n] f [#4 ] can be immediately obtained from the results
of Sec. I11 (the position of the boundaries on the surface does
not affect the transformation properties of pin structures).

The effect of f[¢, ] is only to interchange k, with k,, , ,
and to transform j,_1,2J c-132 +Kas1r Jig+ 1102
—fg+ 12 + Ka if g is 0dd and ig iy, + Ky, Jen—den
+k, + k, ., if g is even. The support of y is chosen as in
Sec. IV in such a way that y does not move the boundary.
Therefore, y leaves k invariant and it transforms i, _,,,,
gy 12 + 25y ks igr 2 lig—102 + 251 ki
Jig—vnigenn +Zh-1 Kk, and joo 0000
+35_ kyforgoddand iy, —iy, + i, 22 + g 212
Jg—vndg-nn tign +1,
+ Jga + 1for g even.

These transformations simplify somewhat on symmet-
ric pin structures. In particular, one finds then that for g
even, j,,, is invariant and for g odd 25 _, k, is invariant, in
accordance with the fact that the structure group Pin* (2)
cannot be changed.

and  ji.ianndgrnn

J

To determine the transformation 01’ the label £we re-
write (6.2) in the local trivialization of Fs over U,

RAT (xR, () = (= Y, (fz (), (x) (6.4)

where 7 - and h, are the local representatives of Tfs and 77,
respectively. Since we have a choice between two possibili-
ties, it is sufficient to check this formula at a single point. All
our generators are such that there exists a point peU which is
not in the support of /; and such that ry, ( p) = 1forallijk.
Then h,( p) and hf(J ( p)) must be either 1 or — 1, and fur-
thermore &,( f; ( 2)) = k,( p). The value ofhf at p can be
fixed arbitrarily tobe 1; the value of & -atJ( p) isdetermined
by continuity. In particular, if there exists a path in U joining
p to J( p) which lies entirely in the complement of the sup-
port of £, then A (J( p)) = I;f( P) =1 and therefore ¢ = 0.
Direct inspection shows that this is the case for all our gener-
ators except 7 [@,/, ] for g even.

To determine the transformation of £ under f [a,,, ] we
choose the point p to have coordinates (4,y) = (7/2,0) in
the chart Yg,2 as in the discussion of Sec. V. Then we have
E’J(P) hJ f[ag,lz](P) and kf(p)
h{J(p))= 4+ 1.The relative sngn ofkf atpandJ( p)is the
winding number of the function

pla (X)) = rg(f[agn 1 (s (X)rig (%)

along the path s—(&#,y) = ( —s5,0) with — 77/2<s<17’/2

This winding number is i,,, so we get hf(J (X)), (%)
= (—)*%, and & ( f{ /2] (2))-,(x) = y,. Comparing
with (6.4) we find ¢ = i,,,. We now collect the transforma-
tion rules for pin structures on N, under the generators of
Q(N, ) which were listed at the end of Sec. IV. We use the
labeling of pin structures which was discussed at the end of
Sec. V. Since most of the labels are invariant, we only list
those which are changed. For g odd,

f[aB] Ja—J4 + 84pip, B=1,.,(g—1)/2,
f[b ] ig—iy + 8455
f{CB} Jar2ja + (645 +'§AB+ 1 Yipg+ipgy, + 1), B=1,..,(g-3)/2,
»: lg-nn>ig—nn — Z ky s (6.52)
Slrem]: Jaia + S4pkm B—-l, S(g—1)/2, m=1,.,n,
f[s,gm]:l ig—ig + 6,5Kms
St ]: Kok + (B +0pmi 1 Mk + k), m=1,n—1,
Oy’ j(g-— 1)/2““’]'(;;—1)/2 +k,, h=1,..,n,

and for g even
Sflaz]: Jar2ja + 845l B=1,.,08—2)/2,
Slbs]: ig—iy + 8,5/,
Sfla..1: ol + iy,
f[CB]’ Jarda + (B4p +6A,B+ g +igey + 1), B=1,.,(g—4)/2,
Slee—nnls Jg—vnig—nn tig_nn i +1,

. Jig—22 + 1, for Pin*(2),

» Jeg—22F> o 2o/s for Pin~ (2), (6.5b)
Slrem}: Jajs + 645k, B=1,.,08—-2)/2, m=1,..n,
S58m]: ig—ig + 6,45Kms
fltn]: ky—sky, + Bpm +O4mi1) K +kp 1)y m=1l.,n—1,
Oyt by gy + Ky h=1,.,n
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We now discuss the orbits of the action of (¥, ,) on
pin structures. We begin with the case n = 0. If g is add, N,
only admits Pin~ (2) structures, and they are all quotients of
even pin structures on X, _,, i.e., pin structures for which
@(i, j) = 0 with @(i, j) defined as in (3.5). So there is no
invariant coming from the parity of the pin structure on the
double cover. However, £and

(g—1r2

>

A=1

Y(ij) = (G +D0+D

are invariants. Using the method of Sec. IV, Ref. 1, it can be
seen that for the values (¢,¢) = (0,0), (0,1), (1,0) and
(1,1), it is possible to transform the Pin™(2) structures to
standard forms which are given in Tables Il and IV. Soforg
odd there are four orbits.

If gis even, iy, isinvariant; in facti,,, + 1 = @(ij), i.e.,
the pin structures on N, with i,,, = 0 (resp.1) are quotients
of odd (resp. even) pin structures on Z,_,. In addition, if
i,,, = Oalso ¢ isinvariant. For (i,,¢) = (0,0) and (0,1) it
is possible to bring the pin structures to standard forms. If
iy, = 1, the situation is different for Pin™ (2) and Pin™ (2).
All Pin*(2) structures with ,,, =1 can be transformed
into each other. For Pin™ (2) structures with i,,, = 1 there
is a further invariant

(g—2)/2

>

A=1

P(ij) = G+ DG +D.

Every Pin™— (2) structure with (i,,,,¥) = (1,0) and (1,1)

TABLE III. Orbits of 2(N,,,) for g odd.

can be brought to a standard form. Altogether, if g is even,
there are three orbits for the action of () on Pin*(2)
structures and four orbits for the action on Pin~(2) struc-
tures.

Next we discuss the case with nonempty boundary
(n>1). If g is odd, every Pin™(2) structure must have
31 _ . k, =0mod 2. If k = 0, the structure of the orbits is
the same as in the case without boundary. Ifk #0, ¥ (ij) isno
longer invariant but ¢ remains invariant. Thus there are
2[n/2] orbits with k#0, labeled by ¢ and by « defined in
(3.7). For g odd, every Pin™ (2) structure must have 2 _,
k, = 1 mod 2, therefore at least one coefficient k, must be
equal to one. Again ¢ is not invariant, but ¢ remains invar-
iant. Thereare2[ (n + 1)/2] orbitslabeled by £ and «. If gis
even and k = 0, the structure of the orbits is the same as in
the case without boundary. If k#0, neither i,,, nor ¢ nor ¢
are anymore invariant. So there are [n/2] orbits labeled by
«. In Table III we collect the standard pin structure and the
cardinality of each orbit. The orbits for # = 0 are the same as
forx =0 (i.e., k=0).

Finally we discuss the subgroups Q;(%,,) and
Q,(N,,). In Q5 (N, ,) welack the twists f [ #, ] which gen-
erate permutations of the boundaries, hence k is an invar-
iant. The structure of the other invariants is the same as for
the group Q(X,,); only the number and the cardinality of
the orbits is different. For k = 0 everything is as in the case of
Q(N,,, ); for k#0 we have the following situation: for g odd
and Pin—(2) there are 2(2" ~! — 1) orbits labeled by k and
¢, each containing 22~! pin structures; for g odd and

For Pin™ (2)
'3 4 ¥ Standard form Cardinality
0 0 0 (0,...,.0; 1,.,1; 0,...,0;0) 208-3/2(9(s-012 1 1)
0 0 1 ,...,0; 1,...,1,0; 0,...,0;,0) 208-372(9(s- 2 _ 1)
0 1 0 0,..,0; 1,..1; 0,...,0;1) 208-372(2(s-172 4 1)
0 1 1 (o,...,0; 1,...,1,0; 0,..,0;1) 208-072(2(s-2 _ 1)
2 0 — 0,...,0; 1,..,1; 0,...,0,1,1;0) 28-1(2)
2 1 — (0,...,0; L..1; 0,...,0,1,1;1) 2813
2m 0 — (0,...,0; - 1,...,1; 0,...,0,1,...,1;0) 281y
2m 1 — ....,0; 1.1 0,...,0,1,...,1;1) 261 )
2[n/2] 0 — ©,...,0; 1,.,1; 8(n+ 1),1,..,1;0) 28—t (2fns2))
2[n/2] 1 — {0,...,.0; 1,..,1; 8(n+ D),1,.,1;1) 25" Y (30nny)
For Pin*(2)
K 4 Standard form Cardinality
1 0 0,...,0; 1,...,1; 0,...,0,1;0) 281N
1 1 (0,..,0; 1,...,1; 0,...,0,1;1) 281
2m+1 0 (,...,0; 1....,1;0,..,0,1,...,1,0) Ll G
2m+1 1 (0,...,0; 1,...,1;0,...,0,1,...,1;1) 28— '(1':,,+ 1)
2[(n+1)/2] 0 (,..,0; 1,...,1; 8(n),1....,1;0) 2"'(2'}(,,+ ns21)
2[{(n+ 1)72] 1 ,..,0; 1,...,1; 6(n),1,...,1;1) 25 lime i)
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TABLE IV. Orbits of (¥, ,) for g even.

For Pin— (2)
x iy 4 ' Standard form Cardinality
0 0 0 — 0,..,0; 1,..,1; 0,..,0;0) 282
0 0 1 — 0,0, 1,..1; 0,..0;1) 26-2
0 1 — 0 0,....0,1; 1,1 0,...,0;0) 208-2/2(9(8=272 4 1)
0 1 — 1 (o,...,0,1; 1,...,1,0; 0,...,0;0) 208-2/2(9(s=272 _ 1)
2 — —_ — 0,...,0; 1,...1; 0,...,0,1,1;0) 28(3)
2m — — — o,.,0; 1.1 0,..,01,..,10) 25(3.)
2[{n/2] — — —_ ©....,0; 1,..,1;6(n + 1),1,..,1;0) 25300 1)
For Pin™* (2)
K ion 4 Standard form Cardinality
0 0 (0,...,0; 1,...,1; 0,...,0;,0) 28-2
0 0 1 0,...,0; 1,...,1; 0,...,0;1) 282
0 1 — (0,.40,1; 1,...,1; 0,...,0;,0) 281
2 — —_ 0,...,0; 1,...,1; 0,...,0,1,1;0) 25(%)
2m — — (,...,0; 1,...,1;  0,..,0,1,...,1,0) 281 )
2[n/2] — — w0 1., 1;8(n 4+ 1),1,..,,1,0) 2% (3t2))

Pin* (2) there are 2" orbits labeled by k and ¢ each contain-
ing 28~ ! pin structures; for g even there are 2" ~' — 1 orbits
labeled by k#0, each containing 2 pin structures, indepen-
dently of the structure group.

In the case of the subgroup 2, (N, , ) we further lack the
slides which reverse the orientation of the boundaries.
Everything is as in the case of Q (N, ,) except for g even

TABLE V. Orbits of Q, (N, ) for g odd.

and k0. In this case, independently of the structure group,
i,/ is invariant; in addition, if i,,, = 0 also ¢ is invariant.
For i,;, =0and 1 thereare2(2"~'— 1) and 2"~ ' — 1 or-
bits, respectively. In Tables V and VI we collect the standard
pin structures and the cardinalities of the orbits of Q, (N, , );
the invariant vectors k are ordered as if they were binary
numbers.

For Pin™(2)
k 4 ¥ Standard form Cardinality
0....0 0 0 0,...,0; 1,..,1; 0,...,0;0) 20(8-3/2(9(g-172 4 1)
0,...,0 0 1 (0,...,0; 1,...,1,6; 0,...,0;0) 2(8=3/2(9(g-1/2 _ 1)
0,...,0 1 0 0,..,0; L,..,1; 0,...,0;1) 208-/2(9(8- 172 ¢ 1)
0,...,0 1 i (0,...,6; 1,...,1,0; 0,..,0;1) 208=-372(9(8-72 _ 1)
0....0,1,1 0 — 0,...,0; 1,..,1; 0,...,0,1,1;,0) 281
0,...,0,1,1 1 — 0,...,0; 1,..1; 0...,0,1,1;1) 28!
1,..,1,8(n + 1) 0 — ©,..,0; 1,..,1;1,...,1,6(n + 1);0) 28!
1,..,1,6(n+ 1) 1 — 0,...,0; 1,...,1;1,..,1,6(n + 1);1) 28~}
For Pin* (2)
k 4 Standard form Cardinality
0,...,0,1 0 0,...,0; 1,...,1;  0,..,0,1;0) 281
0,...,0,1 1 0,...0; 1,...,1;  0,..,0,1;1) 281
0,...,0,1,0 0 0,...,9; 1,..,1; 0,..,0,1,0,0) 28t
0,...,0,1,0 1 ....0; 1,...,1; 0,...,0,1,0;1) 28!
1,..,1,6(n) 0 (0....,0; 1,...,1;1,...,1,8(n);0) 28!
1,..,1,6(n) 1 (0,...,0; 1,...,1;1,...,1,8(n);1) 287!
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TABLE VL. Orbits of (N, ) for g even.

For Pin~(2)
k iy 4 Y Standard form Cardinality
0,..,0 ] 0 — 0,..,0; 1,...L 0,...,0;0) 282
0,...,0 0 1 — 0,...,0; 1,...,1; 0,..,.01) 282
0,...0 1 — 0 (0,..,01; 1,..,1; 0,...,0;0) 208-D2(p(8=72 4 |
0,..,0 1 — 1 0,..,0,1; 1,...,10; 0,,...,0;0) 20e-D2(9te- D72 _ 1)
0,..,0,1,1 0 0 — 0,..,0; 1,...,1; 0...,0,1,1;0) 282
0,..,0,1,1 0 1 — (0,...,0; 1,...,1; 0,..,0,1,1;1) 282
0,..,0,1,1 1 — — (0,..0,1; 1,...,1; 0,..,0,1,1;0) 28-1
1,.,1,6(n + 1) 0 0 — (0,000; 1,01 1., 1,6(n + 1);0) 28-2
L..,LLA(n+ 1) 0 1 — ©,..,0; 1,...,1; L...,1,8(n + 1);1) 28-2
1,...1,8(n+1) 1 — 0,..,0,1; 1,...,1; 1,...,1,8(n + 1);0) 28-1
For Pin* (2)
k ign 4 Standard form Cardinality
0,..,0 0 0 0,05 1,...,1; 0,....0;0) 282
0,...,0 0 1 0,...,0; 1,...,1; 0,..,.0;1) 282
0,..,0 1 — (0,...,0,1; 1,...,1; 0,...,0,0) 281
0,...,0,1,1 0 0 (0,..,0; 1,...,1; 0,...0,1,1,0) 2872
0,..,0,1,1 0 1 0,..,0; 1,...,1; 0,...0,1,1;1) 28-2
0,...,0,1,1 1 —_— 0,..,0,1; 1,...,1; 0,..,0,1,1;0) 28!
1,....1,8(n+1) ] 0 ©,...0; 1,....1; 1,...,1,8(n + 1);0) 28-2
1,...,1,8(n+ 1) 0 1 ©,..0; 1,....1;1,...,1,6(n + 1);1) 282
1,..,1,0(n+1) 1 ©....0,1; 1,...,1;1,...,1,8(n + 1);0) 28!
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APPENDIX A: TWO MODELS FOR NONORIENTABLE
SURFACES

Given two surfaces M, and M,, one can define a third
surface, called the connected sum of M, and M,, by remov-
ing an open disk from M, and one from M, and sewing to-
gether the resulting boundaries. All surfaces can be obtained
by forming connected sums of simple building blocks.

The basic building block of nonorientable surfaces is the
real projective plane, which can be visualized as a disk with
the points on the boundary antipodally identified. Removing
an open disk from a real projective plane we obtain a surface
with boundary which we call a crosscap. It is convenient to
visualize a crosscap as an annulus with the points of the
interior boundary antipodally identified, as symbolized by
the cross in Fig. 8(a). Cutting along the diameter BPA,

A c B
(a) ) : \
]
e [P0 bt 1,
4 \
! \
]
1
B Bg D A

FIG. 8. A crosscap is homeomorphic to a Mdbius strip.
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PRP we get a square with two slides oppositely identified, as
in Fig. 8(b). Thus a crosscap is homeomorphic to a Mobius
strip. Diameters in Fig. 8(a) correspond to vertical lines in
Fig. 8(b).

The next simplest nonorientable surface is the Klein
bottle, which is usually pictured as a square with the sides
identified as in Fig. 9(a). Cutting along the segment AB,
sewing the lower dotted triangle to the upper one along the
side AA, and then straightening everything we get the alter-
native picture in Fig. 9(b), in which the vertical segments
AB and AMNB are pairwise identified as shown. This figure
shows that the Klein bottle consists of two Mdbius strips
(dotted rectangles) sewn onto the ends of a cylinder and
therefore is homeomorphic to a sphere with two crosscaps,
or equivalently the connected sum of two real projective
planes. Removing an open disk from a Klein bottle, we ob-
tain a surface with boundary which can be drawn in three
alternative ways, as in Fig. 10. Figure 10(a) shows a disk
with two crosscaps; in Fig. 10(b) the sides of the square are

@z T >» @

FIG. 9. A Klein bottle is homeomorphic to N,.
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FIG. 10. A Klein bottle with a disk removed.

identified as in Fig. 9(a). In all cases the boundary is the
broken line and we have drawn two homology generators a,
b.

A nonorientable surface without boundary N, of genus
g, defined as the connected sum of g real projective planes,
can also be thought of as a sphere with g crosscaps. If g3,
N, can also be regarded as the connected sum of a Klein
bottleand N, _,. This is seen by dividing N, into a region W
containing two crosscaps as in Fig. 10(a), and its comple-
ment. We can use for W the picture in Fig. 10(c); keeping
one end of the tube fixed, slide the other through the gth
crosscap. As a result, we obtain an ordinary handle attached
toN,_,. This shows that N, is also the connected sum of a
torus and N, _,. This process can be iterated [( g — 1)/2]
times until one (for g odd) or two (for g even) crosscaps are
left. Thus N, is the connected sum of (g — 1)/2 toriand a
real projective plane, for g odd, and ( g — 2)/2 tori and a
Klein bottle, for g even. For more details see Ref. 2.

APPENDIX B: SLIDES AND Y DIFFEOMORPHISMS

We discuss in more detail some of the diffeomorphisms
of a nonorientable surface which were introduced in Sec. III.
In particular, we describe slides and ¥ diffeomorphisms di-
rectly on N, ,, viewed as a sphere with g crosscaps and »
open disks removed, and relate this to the description of their
lifts to =, _, ,, which was given in the text.

A slide is a diffeomorphism of ¥, , whose support is the
dashed region in Fig. 11(a), homeomorphic to a Mébius
strip with a disk removed. It can be described as sliding the

FIG. 11. The slide.
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(o]

FIG. 12. The Y diffeomorphism.

disk through the crosscap and back to its original position.
The boundary of the disk is mapped into itself with the orien-
tation reversed. Figure 11 (b) shows the effect of the slide on
the segments EC and DF. Notice that the slide is the identity
on the path AMNB.

The support of the diffeomorphism f[z,]on Z, _,,, is
a cylinder intersecting the plane x' = 0, with two disks re-
moved, invariant under J, which projects onto a closed sub-
set of N, , homeomorphic to a Mdbius strip with a disk re-
moved. It is easy to see that the diffeomorphism o, is a slide,
as defined above.

A Y diffeomorphism of N, (g>2) has a support W
which consists of the shaded region of Fig. 11(a) together
with a crosscap as in Fig. 8(a) sewn along the boundary
ADBC. Itis a slide joined smoothly to the reflection through
the diameter AB in the crosscap. In order to relate to the
definition given in the text, we observe that W is homeomor-
phic to a Klein bottle without a disk. Making use of Fig.
9(b), we can identify W with the complement of the disk
HEIGFLH in Fig. 12(a). The effect of the Y diffeomor-
phism is shown in Fig. 12(b): it is the identity on the circle
HEIGFLH and on the circle ABNMA and reflection
through the center in the upper rectangle ACBADB.

In the case g = 2, n = 0 (the Klein bottle), Fig. 12 rep-
resents the whole surface; the complement of W in N, is a
disk, with its boundary sewn to W along the circle
HEIGFLH. In this case there is a smooth isotopy which
rotates the central disk by ¢ in the clockwise direction, with
0<t< 7. Att = 7 we obtain a diffeomorphism which consists
of reflections through the center in the upper and lower rec-
tangle. Translating back from Fig. 9(b) to Fig. 9(a), this
corresponds to a reflection through the center of the whole
rectangle. It can be seen that this is further isotopic to a
reflection through a vertical axis going through the center,
which is the description of the Y diffeomorphism of the
Klein bottle given in Ref. 5.

Theisotopy of the Y diffeomorphism defined above with
the diffeomorphism y defined in Sec. I11 is easily established
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when we observe that since the double covering of the Klein
bottle is a torus, we can identify the rectangle in Fig. 12 with
the part of the torus in Fig. 7 with x>>0.
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The relation between the Nambu—Goto string in D dimensions and the two-dimensional o
model defined on the Grassmannian manifold SO(D — 1,1)/80(D — 2) XSO(1,1) is
investigated. For D = 3 and D = 4 the Nambu-Goto string is identified with a definite sector
of the Grassmannian o model. For D = 3 the remaining sector is again a string model with an

additional term in the Nambu—Goto action.

1. INTRODUCTION

The recent proposal that all superstring theories' are
contained in the purely bosonic string theory in 26 dimen-
sions has made the bosonic string a focus of interest once
again.” The bosonic string can be described as a two-dimen-
sional o model whose dynamical variables represent the
world sheet of the string. The action is then proportional to
the area of the world sheet swept out by the string in space-
time.> Equivalently one can view the action as a harmonic
map from the two-dimensional string space into the Min-
kowski space. In the latter formulation, the metric is varied
independently.*

This paper is an attempt to describe the string in terms of
the orientation of the string area element in Minkowski
space. Just like the area swept out by the string, the orienta-
tion of an area element on the string is a function of two
string coordinates. The orientation of the area element is the
same as the orientation of the plane tangent to the string at a
given point on the D-dimensional Minkowski space and is
characterized by variables belonging to the Grassmannian
manifold SO(D — 1,1)/{80(1,1) XSO(D —2)].> Here
SO(1,1) is the subgroup of SO(D — 1,1) that contains Lor-
entz transformations on the timelike two-dimensional plane
tangent to the string at a given point, and SO(D — 2) is the
rotation group acting on the subspace of Minkowski space
orthogonal to the string area element at that point. Our ac-
tion is again the standard two-dimensional o model action,
whose dynamical variables now represent the orientation of
the area element of the string. Minimizing the action, we
obtain the field equations, whose solution set contains all of
the Nambu—~Goto string solutions and more.

Investigating this model in detail in three dimensions,
namely starting from the SO(2,1)/80(1,1) o model, we
note that the equation of motion can be integrated readily. If
some integration constants are chosen to be zero, then our
model is equivalent to the Nambu-Goto® string model. It is
also possible to reverse this process and show this isomor-
phism starting from the string model. For both models, the
integrability condition turns out to be the Liouville equa-
tion.® On the other hand, when the integration constants are
chosen to be nonzero, we get a distinct model, which is dis-
tinguished from the Nambu-Goto string model by the pres-
ence of an additional term in the action, a term somewhat
reminiscent of the Wess—Zumino term. Again the classical
isomorphism between these models can also be shown by
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starting from the modified string model action. This time,
the integrability condition is the cosh-Gordon equation.

In an attempt to mimic the same process in four dimen-
sions we consider the SO(3,1)/{S0O(1,1) Xx50(2)] o mod-
el. Again integrating the equation of motion and setting
some constants of integration to zero, we can identify the
dynamical variables of the ¢ model with the conventional
string variables. Since our coset space is isomorphic to the
coset space SO(3,C)/S0(2,C), our model has an intrinsic
complex structure, which is reflected in the fact that the
integrability condition of this model is the complex Liouville
equation. It is again possible to reverse this process and ob-
tain the o model from the string model.

Polyakov® has shown that the Euclidean string action
when modified by an additional extrinsic curvature term
leads to an SO(D)/[SO(D — 2)xSO(2)] ¢ model pro-
vided some integrability conditions are imposed on the mod-
el. On the other hand we start from the Minkowskian version
of this o model without any additional constraints and show
that in three dimensions it indeed leads to an additional term
in the string action.

Il. THE BOSONIC STRING IN A LORENTZ INVARIANT
GAUGE: A GEOMETRICAL APPROACH

In the classical bosonic string model, the evolution of
the string is described by two parameters ¢, i = 0,1. The
dynamical variable is the position X*(o°%0") of the string.
The standard action is

2
Sz%fhaﬂmv 3. X 3,X —deth do,  (2.1)

where the metric in the string space # *# and X are varied
independently. Since no derivatives of 4 appear in the action,
it can be eliminated using its equation of motion. The action
then becomes the Nambu~Goto action

S=u2J\/ —deth d?o, 2.2)
where
haB = ﬂ#v aaX” aBX Y. (23)

The invariance of this action under arbitrary reparametriza-
tions can be used to choose coordinates u and v such that

X2=X2=0 (2.4)

and
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0 1)
= 2.5
haﬁ e/i(l 0 ’ ( )
where we have introduced
=X,X,. (2.6)

Here and hereafter subscripts denote partial derivatives.
With the choice in Eq. (2.4), the equation of motion be-
comes linear

X, =0. 2.7)
The parameters u and v are related to the standard timelike
and spacelike parameters’ 7 and o as
(2.8)

Equations (2.4) and (2.7) retain the following reparametri-
zation invariance:

T=u+v, o=u—0.

2.9)

The geometrical meaning of this invariance is as follows:
Consider the area swept out by the string in Minkowski
space. At each point of the string construct a light cone. The
intersection of this light cone with the timelike string sheet
defines two directions X, and X, which are arbitrary up to
reparametrizations described by Eq. (2.9). In some formu-
lations this invariance is used to choose the light-cone gauge

X+t=X4+X"1=u+o. (2.10)

u-u'(u), v-v').

However, for our purposes, a choice of coordinates # and v,
invariant under Lorentz transformations, will be more con-
venient.

To this end, consider the dynamical variable x(u,v).
The first derivative vectors X, and X, as we recall, are the
lightlike directions on the plane tangent to the string at the
point (#,0). One of the second derivative vectors X, is zero
due to the equation of motion. The other two, X, and X,
have components both parallel and perpendicular to the
string sheet. The perpendicular components

§Equ _iuXru 775qu _/i'vXu (211)

are spacelike. The significance of the two vectors & and 7 is
further emphasized upon noting that they are the nonvanish-
ing components of the second derivative tensor V,V,X.
When & and 7 are reparametrized using Eq. (2.9), they
transform in the following way:

=€) 1(G)

On the other hand, using the equation of motion we obtain

(2.12)

§v = —ﬂ’quu’ Ny = _ﬂ'quu- (2.13)
Using Eq. (2.11) together with Eq. (2.13) we get
(%), =2£,=0, ("), =277, =0. (2.14)

Therefore £ * is a function of #, and 7 is a function of v only.
The transformation described in Eq. (2.12) is used at this
point to choose & and 7 as unit vectors. This choice uniquely
determines the parameters # and v up to an interchange of u
and v and up to a sign. To sum up, the invariance in Eq. (2.9)
is used to set

£= -1, 7P*= —1. (2.15)
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With this choice the Lorentz invariance of the gauge is mani-
fest.

Ill. THE SO (D -1,1)/[SO(1,1) X SO(D— 2)] c MODEL
AND THE BOSONIC STRING

The M =S0(D—1,1)/[SO(1,1) XSO(D —-2)] o
model in two dimensions can be described starting from the
action

S= J tr P,P, dudy= —‘1‘- f tr(8,m =2 3,m*)du dv.
G.1)

Here P is the projection operator related to the coset space
element m by

m~lom=1-2P, (3.2)

where o is the involutive automorphism of the symmetric
space M, and obeys

=1 (3.3)

The coset space element m can locally be obtained by expon-
entiating the component of the Lie algebra of SO(D — 1,1)
orthogonal to the Lie subalgebra SO(1,1) XSO(D —2).
The equation of motion obtained by varying m in the action
Eq. (3.1) can be expressed in terms of P to yield

[PuP] =0 (3.4)
Since M is a Grassmannian manifold associated with the
family of timelike planes through a given point in Minkow-

ski space, the projection operator P can be parametrized in
terms of two null vectors » and s,

om=m"o,

r2=s2=0, rs= 1 (35)
Then Pis given by
P® = pHg¥ 4 rVsh, (3.6)

A plane can also be characterized by an antisymmetric bi-
vector. Hence we can define the matrix F,

FBY = phgv _ pPg# 3.7
and

F*=P. (3.8)
The equation of motion [Eq. (3.4)] is then equivalent to

[Fu,,F]=0. (3.9)
We note that

F=e A (X4X7 —X1X") (3.10)

satisfies Eq. (3.9) identically, with X, and X, obeying Eqs.
(2.4) and (2.6). We therefore conclude that the solution set
of Eq. (3.9) contains all the Nambu—Goto string solutions
and “more.”

IV. THE ISOMORPHISM BETWEEN THE 0 MODEL AND
THE BOSONIC STRING MODEL IN THREE DIMENSIONS

In this section we shall explicitly show how to go from
the o model to the bosonic string model and back via the
Liouville equation in three dimensions. To this end we start
from the SO(2,1)/S0(1,1) o model action

S=fdudv[§u-§,,—e“(§2—1)]. (4.1)
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Here e —* is just a Lagrange multiplier and we have the cor-
responding constraint

E=£0—-61—-¢&i=—1 (4.2)
The equation of motion

£, = —e *E (4.3)
can readily be integrated to yield

(8.). = (8). =0 (4.4)

In the first part of this section we shall be dealing with the
case

£ =&=0 (4.5)
This choice will lead to the Nambu-Goto string. Using the
invariance of the action [Eq. (4.1)] under reparametriza-
tions [ Eq. (2.9) ], we can choose the right-hand sides of Eq.
(4.5) to be constants other than zero. The consequences of
this alternative will be investigated later in this section.

Noting that the case where &, §,, and §, vectors are
linearly dependent is trivial, we take these three vectors as
independent. Using a method introduced by Pohlmeyer,® we
expand the second derivative vectors §,,, and §,, in terms of

€ E,,and§,:

guu = _A’ugu’ guv = —/I'vgv' (46)
Here we have used
.6 =e ™% (4.7)

which follows from Egs. (4.2) and (4.3). Since " is an inte-
grating factor for the differential equations (4.6), we find
that ¢* £, is a function of v and ¢*§, is a function of u only.
With the definition

X =e't,, X,=-—¢€, X, =0, (4.8)
Egs. (4.6) reduce to the equation of motion of the Nambu-~
Goto string, Eq. (2.7). So with Eq. (4.8) we relate the o
model dynamical variables §, and §, to the Nambu-Goto

string variables X, and X,. Furthermore, substituting Eq.
(4.6) and (4.7) in the identity

guv .guu = - (gu 'gu )uu + guu .gvv! (49)
we obtain the Liouville equation
A, —e* (4.10)

Now we want to reverse this process and obtain the o model
from the bosonic string model. We use the spacelike vectors
m and § defined through Eqgs. (2.11)~(2.15). We further
note that

En=A1,¢" (4.11)
In three dimensions, since the vectors § and v are both per-
pendicular to the plane tangent to the string at the point

(u,v), they have to be either parallel or antiparallel. They
turn out to be antiparaliel. Since our metricis (+ — — ),

E=—m, En=1 (4.12)

So Eq. (4.12) along with Eq. (4.11) yields the Liouville
equation. Similarly from Eq. (4.12) and from Egs. (2.11)-
(2.15) wecalculate €, E,,and §,,. Then we sec that §, and
g, are indeed null vectors. Finally using the Liouville equa-
tion® we obtain Eq. (4.3), whereby we establish the isomor-
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phism between the Nambu—Goto string model and the spe-
cial case of o model in which §, and §, are null vectors.

Now let us consider the three-dimensional o model once
more, but this time let us investigate the case where the right-
hand sides of Eq. (4.5) equal some constants. For later con-
venience we start from the following action:

S=f[gu'gv+2Sinh/1(§2+l)]dudv. (4.13)
The equation of motion
E., =2sinh 4§, (4.14)

when dotted with §, and &, will yield Eq. (4.4) after using
the constraint equation (4.2). Using the invariance of the
action in Eq. (4.13) under the transformation of u and v as
specified by Eq. (2.9) one has

£=+2 Eg=-2 (4.15)
Note here that the sign difference between &2 and &2 has a
geometrical meaning. Since §, and g, are both perpendicu-
lar to the spacelike vector &, if one is timelike, the other one
has to be spacelike.

Expanding the vectors §,, and §,, in terms of the three
independent vectors &, &,, and §, we obtain

E,., =26+A,tanh 1§, — A4, sechA§,,

E,= —26+A,sechi§, +4,tanh 1§,.
When we multiply Eq. (4.16) by sech A and add, after some
manipulations we get

((E, + €*E,)/(cosh 1)), =((¢*E, — §,)/(cosh A)),.
(4.17)

We are finally in a position to establish the correspondence
between the o model variables £, and §,: the term inside the
left-hand side bracket in Eq. (4.17) is 2X, and the term
inside the other one is 2X,,. When we substitute the expres-
sions for §,, and &, defined in Eq. (4.16) in Eq. (4.9), we
get the cosh—Gordon equation

A, =2coshA. (4.18)

It turns out that the string action corresponding to this o
model characterized by the choice in Eq. (4.15) is

(4.16)

S§= f [((XH-X.,)2 —X2x2)2 4 -:;—x-x,, /\xu].
(4.19)

The additional term is also translationally invariant up to a
total divergence. It is a parity violating term whose dimen-
sion differs from that of the first term, just like the Wess—
Zumino term,’ first obtained using differential geometry
methods.!® The equation of motion is

X, =X, AX,. (4.20)
This equation, together with Eq. (2.4) and (2.6), yields
Xlz‘u = — eu, (4.21)

Again we define a spacelike unit vector § perpendicular to
the vectors X, and X,. Since e ~*X,, is also a unit vector
perpendicular to X, and X, in addition to Eq. (2.11) we
have

e, =E= —n. (4.22)
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Using Egs. (4.21), (2.11), and (2.6) along with the identity
Xi = — (X,X,)u + XX, (4.23)

we obtain Eq. (4.18), the cosh—Gordon equation as expect-
ed. When we calculate €, E,, and §,, from Eq. (4.22) and
use the cosh-Gordon equation, we get back Egs. (4.14) and
(4.15), thereby proving the isomorphism between the three-
dimensional o model in which the vectors §, and §, are not
null and the modified Nambu-Goto string, this time starting
from the string action.

V. THE ISOMORPHISM BETWEEN THE o MODEL AND
THE BOSONIC STRING IN FOUR DIMENSIONS

In this section we explicitly show the correspondence
between the o model and the Nambu-Goto string in four
dimensions. We again start from the string model in the Lor-
entz invariant gauge. However, since we are in four dimen-
sions, the vectors & and %, both perpendicular to X, and X,
do not have to be antiparallel or parallel anymore. So we
define

cos O="— &+). (5.1)
Since Eq. (4.11) still holds, we have
A, = —e *cosb. (5.2)

We know from Eq. (2.13) that £, and 7, are parallel to X,
and X,, respectively. Therefore we expand the other first
derivative vectors, £, and 7, in terms &, 7, £,, and 17, and
obtain
&, = —0,(cscO)n+6,(cot 0)¢ + (sec )7,
7, =6,(cot 8)n — 6, (csc @) + (sec 8)&,.
When we use the fact that &, is perpendicular to % we have
the identity

(g'ﬂ)uu =§u.77u _gu.”u' (54)
Substituting Eq. (5.3) in Eq. (5.4), we get, after some mani-
pulations,

(5.3)

6, =e *siné. (5.5)

Using this equation together with Eq. (5.2) we obtain the
complex Liouville equation

XY= —€ % (5.6)
where
y=4 +i6. (5.7)

Because the Liouville equation is complex now, it is obvious
that the ¢ model dynamical variable we have to define in
terms of the bosonic string variables X, and X, has to be
complex. To this end we define

F=e¢ *(,X, —t,X, +iX, AX,). (5.8)

Now we shall start from the SO(3,1)/[SO(1,1)
XS0(2)] ~S0(3,C)/S0O(2,C) o model that can be de-
scribed by a complex unit vector. We show that the integra-
tion of this model leads to Eq. (5.8). The o model equation
of motion is

F,, = e *F.
When dotted with F, and F, each, this equation gives

(5.9)
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(F3),=(F3),=0 (5.10)
after using the constraint

F2=1. (5.11)
We choose

F2=0, F2=0. (5.12)

Expanding the second derivative vectors F,, and F,, in
terms of F, F,, and F, we obtain

Fuu = _XuFu’ Fvv = _XuFu’ (513)

analogous to Eq. (4.6). This e* is an integrating factor for
Eqgs. (5.13) after the use of which Eqs. (5.13) reduce to
&F, =1(v), &F,=g(u). (5.14)

Here f and g are complex functions of the real variables u and
v, respectively. Because of Egs. (5.9), (5.11), and (5.12)
these functions are not arbitrary but subject to the following
constraints:

f2=g2=0 (5.15)
and

f2=g=1. (5.16)
For conveﬁience let us introduce

R=Ref, J=Reg, I=Imf, K=Img (5.17)

The J, K, R, and I are real three-vectors, in terms of which
Eqgs. (5.15) and (5.16) become

J2=K2 R2=I2,J2 =K2, R2 ___IZ’

JK=IR=J,K, =IR, =0.
Finally we are ready to define the four-dimensional bosonic
string variables

IRI = lJl =1, ,JI = |K| =1, (5.19)
where ¢ is the time component of the four vector x. The unit
vector perpendicular to both R and K is

(5.18)

X
v R x2_g (5.20)
t, (Rl 1|
Similarly
X
R Sy R (5.21)
t, K| ]
Using Eq. (5.14) we realize that
E,=ReF, =e~*((cos 8)R + (sin 8)1), (5.22)
B,=ImF, = e *(cos 8)I — (sin O)R). '
Analogously
E,=ReF, = e *((cos 8)J + (sin 8)K),
(5.23)

B,=ImF, = e~ *((cos 8)K — (sin 8)J).

These last four sets of equations, Eq. (5.20)—(5.23), lead to
F defined in Eq. (5.8). Hence we have shown the correspon-
dence between the o model variable F and the bosonic string
variables X,, and X, in four dimensions. As a result of the
complex nature of the variables F and y, it was not possible
to construct the string model related to the choice

F2 =p(u), Fl=gq(v), (5.24)

M. Arik and F. Neyzi 597



where p and ¢ are arbitrary functions. One can use the repar-
ametrization invariance to choose p and ¢ of unit modulus.
However the phases remain as functions of ¥ and ». For this
case, we could not find a consistent definition for the four-
vector X which would enable us to interpret this alternative
as a distinct string model in four dimensions.
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A number of Euler integrals involving Meijer’s G function with arguments

[2(1 —x)" '+ 8% 117, Ax(1 —x),and [@®*x + B2(1 — x)]%/[x(1 — x) ] are evaluated in
closed form. These results generalize and extend recent work on Bessel-function integrals. As a
by-product some new closed form expressions for Meijer’s G function are obtained.

I. INTRODUCTION

The integrals considered in this paper are generaliza-
tions of some recent results obtained by Glasser. This au-
thor found closed form expressions for the integrals

1

D, (a,B) =f u (1 —u)=3?

o
X[a2(1 _u)—l +62u—l]—v/2
xJ, (@1 —u)~' + B2u~)"?)du, (1)

1
‘I’o(a’,ﬂ) =f ul/l(l _ u)—3/2

(]
XJo(@*(1 —w) "'+ B2~ ")) du, (2)

1

Co(aB) =f 4121 — u) =112

0
XJo(l@*(1 —u) ™' +B%u™"))du,  (3)
where a and £ are positive constants; for the integral

1
A, =f [u(l —u)] =PI (A (u(1 — u))~"?)du,
0
v=0,1,2 4

(where a sign error has been corrected ); and for the integral

1
Bo=f u"2(1 — u) (A (1 —uw))~V)du . (5
0

These had occurred in a study of impurity screening at me-
tallic surfaces.
Here the following generalizations will be considered:

17029 aBya,,b,)

1
=J w*(l —u)*
0

XG,',',',’,"((dz(l _ u)—-l +Bzu—-l)—-l

aP
b )du, (6)

q

J™ea(Aa b))

b

q

1
=f u(1 —u)X'Gg;;(Au(l —u) a")du, N
0

and

*) Present address: Department of Materials Science and Mineral Engineer-
ing, University of California, Berkeley, California 94720.
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KrPi(aBa,,b,)

1 2 2 2
— * (1 — x' m,n((au+ﬁ (1“’“))
L ] T

:”) du,
q

(8)
where a, and b, is a contracted notation for {a,,...,a,} and
{bl,...,bq }, and will be used throughout whenever no confu-
sion is possible. Integrals of this form over the unit interval
are known as Euler integrals. The integrals 7 and J can be
seen to generalize (1)-(3) and (4), (5), respectively.

The function in the integrand is Meijer’s G function,®?
whose properties will be briefly described in the next section.
In short, the G function is a generalization of the hypergeo-
metric functions, and virtually all special functions of math-
ematical physics are particular cases of it. An extensive list
can be found in Ref. 2, and some new results have beefl col-
lected in the Appendix. In this way G functions provide an
important unifying concept, in the sense that any identity
involving them immediately applies to a large number of
special functions. Moreover, since G functions can be ex-
pressed as a loop integral, many results are relatively
straightforward to prove. It will be seen, for example, that
the present results, although of a greater generality than
Glasser’s, are much easier to obtain. Besides, it will be clear
from the derivation exactly which conditions have to hold
for the parameters x and x' in order for the integral to be
tractable.

In view of the relative simplicity of the integrand, the
present results are potentially very useful in physical appli-
cations (if necessary after a trigonometric substitution). The
methods applied in this paper also illustrate the power of
using G functions, defined as a complex contour integral, to
evaluate definite integrals. The literature on Meijer’s G func-
tion and closely related ones is extensive,” and attention is
drawn to related Euler integrals in Ref. 3 (3.4) and Ref. 5
(5.2). The present results, however, are not found in these
references, apart from the J integral, which is included here
for the sake of completeness.

1i. PROPERTIES OF MEIJER'’S G FUNCTION

In order to make this paper reasonably self-contained,
some of the G function’s major properties, which will be
needed in subsequent sections, will be listed here. Many
more results concerning this class of functions are known
and can be found in Refs. 2 and 3.

Meijer’s G function is most conveniently defined as a
Mellin—Barnes contour integral:
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a
G”:’"(Z P)
Pq bq

= Qm)~!
XJ r[_]""=l F(b_,—S)H]"=1 r(l—aj+s)
LH_;'l=m+1 r —‘bj +s)l'I}’=n+l r(aj —8)
X Z° ds. 9)

In this expression an empty product is to be regarded as
unity, 0<m<gq, 0<n<p, and a, and b, are such that no pole
in the first product of the numerator coincides with a pole in
the second product. The path of integration is to be chosen so
that the former poles lie to the right of it and the latter ones
lie to its left (for a full discussion of the possible choices, see
Ref. 2).
From the definition (9) it can easily be shown that

a 1-b
G"""(z ") = G"""’(z" ") , (10)
pq bq F-X 1— a,
and
a a,+o
z"G"‘*"(z ") = G";m(z d ) . (11)
»q bq P bq +0

|
Co 1 n miv| @
7) =y Carir (‘;V

- G m,n| ap G HV
»q nx b o7 wx
0 q

1

= VYUptrg+o
()]

Consequently the standard integral transforms involving
one G function can also be expressed as a G function. An-
other important result (again, under appropriate condi-
tions) are the Euler integrals

o a
f y“’(y—l)"‘”“G;';,"(zy ")dy
1 b,
_F(a B)Gm+l,n (Z aP’a) (14)
- - 1, 1 ’
P+ 1la+ B.b,
and
1 1 a,
f y A=yt G N ) dy
0 q
mn+1 a.a,
=T (a—-BG 7 1lz 5,8 . (15)

These three results illustrate why Meijer’s G function consti-
tutes an important unification as far as analytical integration
of special functions is concerned. Many integrals which have
been evaluated by methods specific to the case at hand turn
out to be special cases of the results (13)-(15).

IIl. INTEGRALS WITH ARGUMENT
[o3(1—u)~14+B2~]

It is easy to prove that the integrals in (6) obey the
recurrence relations

1702 apa,.b,) =177 (Ba,a,.b,), (16)
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G’"+ v,n+”(_,]_.al,...,am

. grals with parameters

The integral in (9) can be evaluated by means of the calculus
of residues. If no two of the parameters b,, h = 1,2,...,m,
differ by an integer or zero, the corresponding poles in (9)
are simple, and one finds the expression

a
G”f’"(z p)
»a\%|b,
m 7L, T'(b; — b,)* I}, T(1+b, —a)

>

WM, T(1+b, —b)IE_,, T(a,—b,)
1+b,—a
Xthqu—l(l +b, _bp: (— 1)"_"'_"2) (12)

valid when p < g, or when p = q and |z| < 1. The asterisks
denote that j#h, g h, respectively.

Relatively few integrals containing G functions are
known, but, as already noted, those that have been proved
are very important because the parameters can be special-
ized to yield many results concerning the special functions.
A key result is that the Mellin transform of the product of
two G functions canbe writtenasa G function (under proper
conditions, mainly to ensure that the integral is meaningful;
see Ref. 2):

— By — bisCoy — By 15y — bq)
— Ay —pyd,, — Ay e — @,
—d,a,, 54
+1 P ) i (13)
biyeisbpmy = Cosbp | 15005y
|
1707 aBa,,b,) = 1700 (aBa,,b,)
+ I;n:}'-"‘l’:g' (ayﬂ9ap’bq )’ ( 17)

and [using (11)]

I:,l;g""p'q(ayﬂyap sbq) = 0212}7'5"1 (a’B’aP + l’bq +1

+ BT (@Ba, + 1,b, + 1),
(18)

This means that, starting from a given couple (x,x’), all inte-
(x+jx' + k), jkeZ, can be
reached. Furthermore, it will soon become clear that only
integrals with x and x’ equal to a half-integer are tractable.
Hence it will only be necessary to calculate one tractable
integral, say x = x’ = — }, in order to obtain all other trac-
table cases.

First, however, the discussion will proceed completely
generally. Substituting the definition (9) of the G function in
(6) and interchanging the order of integration (assuming
that both integrals are absolutely convergent), one obtains

1
B—Zs

0

a2

w+s(1 -—u)x'+s[1 -—(1 ———B-——> u _sdu. (19)

2

This can be written as a hypergeometric formula using
Euler’s formula, so that one finds
B2 Fx+s+ DX +541)
F'ix+x"+25+2)
X Fy(x + s+ Lsx + x' + 25+ 2|1 — a®/B?). (20)
In general, this cannot be further reduced, but an important
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simplification would be possible if one could use the result
Filae— L2z = [§+30 =227, Q1)

since then the remaining loop integral can be identified asa G
function. There are only two cases in which this result can be
used directly, namely x= —1, x'= —}, and x= —3,
x' = — . However, by using the Gauss relations between
contiguous hypergeometric functions, any function of the
form
JFila+jib+ ke+1|z)

can be reduced to a linear combination of ,F,(a,b;c|z) and
one of its contiguous functions, with coefficients that are
rational functions of a, b, ¢, and z. This means that all inte-
grals with half-integer (x,x’) values can be reduced to the
twocases ( — }, — ) and ( — 3, — }). However, by using the
relations (16) and (18) it can easily be shown that the latter
result can be expressed in terms of the former. It is straight-
forward to prove from (20) and (21) that

I'?:';',g'z?‘. 172 (a’B’ap 9bq )

,a
=JFG;"::r:q‘+.((a+ﬁ>-2 i ‘(’)). (22)
q’
In Ref. 1 Glasser conjectured that
' 1 1 2 2 —1 2,,—1
b -
=Fla+p). (23)

The result (22) shows that this conjecture is true for any
function f that can be written as a finite (or infinite—pro-
vided that the series converges absolutely} linear combina-
tion of G functions. Closed form expressions for some of the
tractable (x,x’) values (x <x') are given in Table L In par-
ticular, these contain Glasser’s integrals (1)—(3) as a special
case.

From (12) it follows that the behavior of the G function
near the origin is determined by

min(by,)
z *, h=1,..,m.

(24)
In order for the integral (6) to be convergent one must have
Re(b, +x+1)>0, h=1,.m, (25a)
Re(b, +x" + 1)>0, (25b)

Moreover, the conditions

h=1,.m.

m+n—4(p+q)>0, (26a)
0<n<p <y, (26b)
I<m<g, (26¢)

must also be fulfilled to justify the previous operations. By
appealing to the principle of analytical continuation it is pos-
sible to relax these conditions (along similar lines as in Ref.
2, Sec. 5.6).

V. INTEGRALS WITH ARGUMENT AuA(1—u)

In this case the analysis is much more straightforward.
One first notes that

TTEPAAa,,b,) = A XTI (L, + x'b, + X),
(27)
so that it suffices to put x’ = 0 in the following. Next, after
substituting (7) in the definition (9) one needs to evaluate

J-n W — ) du = F'ix+s+ DI (s+ 1)
o Fr2s+x+2)
which is the definition of the B function. Expanding the I
function in the denominator by the multiplication theorem,
one finds that the resulting loop integral can be identified as a
G function, so that the final result,

) (28)

JoP9(Asa,.b,)
=2—(x+l)‘/'7;
110 —=xa, )
mn+ 2 M
XGP+2,q+2(4 by —x/2—(x+1y2)0

is valid under the same conditions [(25),(26)] as before.
Finally, it is worth noting that the J integrals are a special
case of the I integrals:

J et A,a,,b,) = 17079(1/4,1/A,a,,b,). (30)

From this one can conclude that Glasser’s second set of inte-
grals is included in the first set: By = W¥,(1,4) and
A, =A2"D, (4,4).

V. INTEGRALS WITH ARGUMENT
[a?u+B2(1—u)]?/ [L(1—u)]

The evaluation in Sec. III depended on the fact that,
after interchanging the integration over the unit interval and
the loop integration, the resulting ,F, (- ) could be written

TABLE 1. Evaluation of 1 777 (a,8,a,,b, ) [defined in (6)] in terms of G functions. The integrals with x > X', as well as those for other half-integer x,x’

values, can be derived from the relations (16)-(18).

x x' I;n‘;v.p.q
- - 2B [migs_n(@Biayb,)

_2|3@
I N (o

g
-3 4 17308 plaBag,by) — 1T p(aBa,,b,)
-3 3 175858 (aBa,by) — 17508, (aBa,,b, )
n:)

—4 -4 J;G;"i’;‘:q'_{,l((a-f-ﬁ)_z : p)

b,,0

a—-p8 ma 41 -2 —i’a") 182 ma a1 ( —2 i’ap)
~ : V{5zzﬁLABG”“”'"“'(("‘HS') b, —1 +ﬁa(¢r+3) Griilani\(a+P) 5,0
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as a binomial function. One may wonder if this method can-
not be extended to deal with other cases. An obvious candi-
date is the relation

Fi(—a,byb|2) = Fo( —alz) = (1 + 2)° (31)

This leads to the K integrals defined in (8). Working along
the same lines as before, one obtains the hypergeometric
function

Fi(x —s+ 1, = 2sx + x' 42— 2s|1 — &?/B?). (32)
Consequently, when x’ = — x — 2, (31) can be used to give

@0}
o,b,,)' (33)

By using the contiguous relations one finds that the integrals
are tractable for (x' + x)e{ — 2, — 3,...}. However, it turns
out that when x’ + x = — 1, the contiguous relations give
rise to an identity 0 =0. In that case the integral is a
F,(—a,b;b + 1|--+) that is proportional to an incomplete
beta function.” No further simplifications are possible, and
the same applies when (x’ 4+ x)€ N. In the present case the
recurrence relations are

2x
Ky = 2\/?(%) Gy 1fa"+1(4azﬁ i

K7oPi(aBa,.b,) = K7 (Basa,.b,), (34)
Ko apa,b,)
=K 7wke (aBa,,b,) + K7l (aBa,b,), (35)
K 7rPi(apa,b,)
=K. 12(eaBa, —4,b, — 1)
+B2K TS 12 (@Bia, — Lb, — 1), (36)

the first two being similar to (16) and (17). The second
relation allows the calculation of a K, . integral when that
corresponding to x + x’ 4+ 1 is known. The third relation
does not permit altering the sum x 4- x'—as opposed to
(18). The recurrence relation (35) together with (33) gives
rise to the final result

m,n,p,q
x,—2—x—1

27!
- 2&(5/@“[1 + %2—] G, (4(12[32

“p,%)
06,/
(37)

Again the conditions (25) and (26) are sufficient to ensure
the absolute convergence of the integrals and may in certain
specific cases be relaxed.

VI. FINAL REMARKS

The results presented here can be generalized in a num-
ber of ways. First, consider the integral

 du.

! . au+ b )“) a
X 1_ XGm,'l
J; w( )G rq ((u“(l —u)” q

b (38)

It is easy to see that this gives rise to

I (x —aus + 1, — 2as;x + X'+ 2 = 2as(u 4+ v)| ).
(39)
Therefore the method used in Sec. III can be applied if
i+ v =2 (x,x' half-integer) while the method used in Sec.
V can be applied if 4 + v =1 (x,x’ integer< — 2). The re-
sulting formulas are similar to those already found. Second,
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it is also straightforward to extend the present analysis to
deal with the H function of one or more variables.*” Since
these cases are less likely to occur in physical applications,
no explicit expressions will be given here.

In several places in this paper it has been stated that
certain conditions must be fulfilled in order for G function
integrals to be meaningful. The list of possible combinations
can be made very long and detailed, but they all amount to
ensuring convergence of the integral. To this end the inte-
grand must be well-behaved throughout the interval of inte-
gration, in particular in the endpoints. In the present case
this leads to conditions similar to (25) and (26). For the
Mellin transform (13), these would need to be supplement-
ed by an appropriate restriction to impose proper behavior of
the integrand at infinity. A very comprehensive discussion of
this problem can be found in Luke? (Sec. 5.6).

APPENDIX: NEW IDENTIFICATIONS OF G FUNCTIONS
AS NAMED FUNCTIONS

In the course of this work, some G functions identifiable
as known special functions, which are not contained in the
standard lists,”> have been obtained. Although these identi-
ties follow from a comparison of the present results (for par-
ticular values of the parameters) with Glasser’s,’ they have
been checked by an independent derivation, which will be
briefly outlined for each case below.

The first two identities are

1
Gf:‘z’(z l)=\/Ferfc(z), (A1)
%
G“’(z‘l )———2—si(2ﬁ) (A2)
PNlogo/ 7 ’

which follow from the integral representation for the func-
tions in the right-hand side and from (14). Note that these
two results imply that

L,~"Yp 'erfc(ap~V*)} = — (2/m)si(2at''?) (A3)

(Eq. 18 in Ref. 1), since the inverse Laplace transform ofa G
function is known [Ref. 2, Eq. 5.6.3 (10), where n -+ 1 in the
left-hand side should read n]. Next, one has

11
Gizﬁ(z

2 0) _ 72_—[si(2z”2) + 27" cos(2217)],

- %3%10’ T
(A4)

which follows from the definition (9) and the identity

MN—1-8G—C(—s)
rA+srg—sra —ys)
T'd—sr'(—s) I'(—1—ys)

= — 2 . AS
l"(l+s)I‘(1—s)+ (1l +s) (A3)

The resulting G function can be identified by (A2) and the
known expression of the cosine as a hypergeometric func-
tion.

The final set of identities is
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1,1 i )
G (’ (1 +v)/2,( — v)/2, — }
=2'"#[(u+v—1J,(22V)S,_,,_,(22'?)
—J,_, (221/2)S'u’v(221/2)]
2 DL+ +v)/2) R 1
+z N =t 072 e(u+v)>—1,
(A6)
1,1 4 — o—1/2 =2 1/2
G’m(z M—V’—%)_z I'(v)y —z="4,_,(22"%),
(A7)
1,1 %
Gis (z v,0, — %)
—- \/;F(V'*' %) [JV(ZZI/Z)HV_ . (221/2)
—H,(22'*)J,_,(22"/%)], Rev> —}. (A8)

These can be derived from (2), (4), and (5) in Sec. 19.1 of
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Ref. 6 and the Euler transform (15). It is not unlikely thata
search in tables of integrals, together with results such as
(13)-(15) might produce more new identifications, but
such a task has not be undertaken in this work.
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Bi-Hamiltonian formulation of the Kadomtsev-Petviashvili and Benjamin-

Ono equations
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It was shown recently that the Kadomtsev—Petviashvili (KP) equation (an integrable equation
in 2 + 1, i.e., in two-spatial and one-temporal dimensions) admits a bi-Hamiltonian
formulation. This was achieved by considering KP as a reduction of a (3 + 1)-dimensional
system (in the variables x,y,, y,,¢). It is shown here, using the KP as a concrete example, that
equations in 2 + 1 possess fwo bi-Hamiltonian formulations and zwo recursion operators. Both
Hamiltonian operators associated with the x direction are local; in contrast only one of the
Hamiltonian operators associated with the y direction is local. Furthermore, using the
Benjamin-Ono equation as a concrete example, it is shown that intergrodifferential equations
in 1 + 1 admit an algebraic formulation analogous to that of equations in 2 + 1.

1. INTRODUCTION

This paper investigates symmetries, conserved quanti-
ties, recursion operators, mastersymmetries, and the bi-
Hamiltonian formulation of two physically important exact-
ly solvable evolution equations: the Kadomtsev-
Petviashvili' (KP) and Benjamin-Ono*? (BO) equations.
The KP equation is a prototype integrable equationin 2 + 1
(i.e., in two-spatial and in one-temporal dimensions), while
the BO equation is a prototype singular integrodifferential
equation in 1 4 1. The results presented here fit in the gen-
eral theory developed in Refs. 4 and 5; however, the follow-
ing conceptual aspects are novel.

(i) Equations in tfwo spatial dimensions (x and y) pos-
sess fwo recursion operators and fwo sets of compatible
Hamiltonian operators. The set associated with the y direc-
tion was considered in Refs. 4-6. Here we investigate the
recursion operator and the pair of Jocal Hamiltonian opera-
tors associated with the x direction.

(ii) Integrodifferential equations in 1 + 1 share many
common features with equations in 2 + 1.7 This is because
integrodifferential equations are also formulated in terms of
two space operators, for example d, and H (the Hilbert
transform) in the case of the BO equation. It is shown here
that the algebraic formulation of integrodifferential equa-
tions is analogous to that of equations in 2 + 1.

The existence of a double representation, corresponding
to two recursion operators and two sets of bi-Hamiltonian
operators, is also a property of integrodifferential equations
in 1 4 1; this will be shown in a separate paper® for two
explicit examples: the intermediate long wave®'® and the BO
equations.

Hierarchies of infinitely many time-independent and
time-dependent symmetries and conserved quantities of the
KP equation have been obtained in Refs. 11 and 12. A recur-
sion operator and a bi-Hamiltonian formulation of the KP
were found in Refs. 4-6. This was achieved by introducing
the following extended representation of the KP equation:

® Permanent Address: Universita Degli Studi-Roma, Istituto di Fisica
“Guglielmo Marconi,” Piazzale delle Scienze, 5, 1-00185 Roma, Italy.
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qi, =Ldy2 S(y, ~y)Ky qy=qxp,b), (1.1

where R denotes integration along the real axis, § is the
Dirac distribution, and K, is some function of ¢, and
q; = q(x,,,t). The introduction of the above form is natu-
rally motivated considering KP as a reduction of a nonlocal
(3 + 1)-dimensional system (in the variables x, y,, y,, and
1).>13 The above extension is necessary in order to bypass the
Zakharov-Konopelchenko result on the nonexistence of re-
cursion and bi-Hamiltonian operators in the usual (1 + 1)-
dimensional formalism.™

Hierarchies of infinitely many time-independent and
time-dependent symmetries and conserved quantities of the
BO equation have been obtained in Refs. 12 and 15, via the
mastersymmetry approach introduced by Fuchssteiner and
one of the authors (A.S.F.). This approach was subsequent-
Iy applied to the KP equation. It was shown in Ref. 5 that the
mastersymmetry approach is contained in the general theory
developed in Refs. 4 and 5.

A. Basic notions
We consider an evolution equation in its abstract form,

on a normed space M of functions of R; X is a suitable C =
vector field on M. We assume that the space of smooth vec-
tor fields on M is some space S of C = functions on the real
line or on the plane vanishing rapidly at infinity. By K, [v]
-we denote the Fréchet derivative of X in the direction v, i.e.,

(1.3

K [v]= -C%K(q + €v)

=0
Let 5'* be the dual of S with respect to the following bilinear
form:

(y,a)=:f dx yo or (y,a)#f dx dy yo, (1.4)
R R

yeS *, o€S. Let I: S— R be a functional, then its gradient is
defined by

I[v] = (grad Lv) . (L5)
It is well known that the function y is a gradient of a func-
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tional I iff y, = /", where the adjoint of an operator L is
defined by (L *y,0) = (y,Lo).

Definition 1.1: (i) A function geS'is a symmetry of (1.2)
iff the flow ¢, = o commutes with the flow (1.2). This im-
plies

do

—+40,[K] —K/[o] =0.

at

(ii) A functional I is conserved by the flow (1.2) iff d7/
dt = 0. Hence

f;-‘;'+ (7.K) =0, y=gradl,

and yeS * is called a conserved gradient of (1.2). Differentiat-
ing the above equation in the arbitrary direction v it follows
that y satisfies
dy + +
—aT-f-?’f[K] +Kf [¥]1=0, Yr=%Yr .

(iii) Equation (1.2) is a Hamiltonian system iff it can be
written in the form

q, =6f, (1.8)

where fis a gradient function, i.e., f; = f;", and © is a Ham-
iltonian operator where

(1.6)

(1.7)

(1) © is skew symmetric, @+ = — 6,
(2) O satisfies a Jacobi identity , (1.9a)
(a,©'[6b 1c) + cyclic permutation =0. (1.9b)

A Hamiltonian operator © is associated with the Pois-
son bracket

{I,H} = (grad I, © grad H) . (1.9¢)

(iv) An operator ® is called a recursion operator or a
strong symmetry of (1.2) iff it maps symmetries of (1.2) to
symmetries of (1.2). Requiring that o and ¢ are symme-
tries of (1.2), it follows that an operator ® satisfying the
operator equation

92 L @, [K]+[®.K]=0

1.10
e (1.10)

is a recursion operator of (1.2).

(v) An operator P is called hereditary or Nijenhuis iff it
generates an Abelian algebra. Assume that the flow ¢, = ¢
commutes with the flows ¢, = v, g, = ®v, and that the flow
q, = v commutes with the flow ¢, = ®ag, where o, v are arbi-
trary functions. Requiring that the flows g, = ®o, ¢, = dv
also commute it follows that

P [Polv — PP [Pv]o is symmetric w.r.t. o0 (1.11)

(we have assumed for simplicity that &/t = 0).

Exactly solvable evolution equationsin 1 + 1 admit infi-
nitely many symmetries. These symmetries are usually gen-
erated by a hereditary recursion operator ®. An alternative
approach is to use the notion of a mastersymmetry. A func-
tion 7 is a master symmetry of Eq. (1.2) iff the map

[7 1 L
maps symmetries of (1.2). Here 7 is called a gradient master-

symmetry (with respect to the invertible Hamiltonian opera-
tor ©) iff @~ '7 is a gradient function.

where [7,0], =7/[0] —o/[7],
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Integrable Hamiltonian systemsin 1 + 1 havean excep-
tionally rich algebraic structure: They are bi-Hamiltonian
systems. The existence of two Hamiltonian operators ©?,
i=1,2, implies the existence of a recursion operator
®=0@(0") !, which generates infinitely many symme-
tries, while @ * generates infinitely many gradients of con-
served quantities. For example, the two Hamiltonian opera-
tors associated with the Korteweg—-de Vries (KdV)
equation are given by

0" =D, 6% =D34+2Dq+ 29D, D=4, .
The KdV can be written as

qt = qXXX + 6qqx = 6(1)7/(1) = 6(2)7(2) ¥
where

2
7‘2’=q=gradfdxi,
R 2

—q;
244
Furthermore, ®=0(6) " is a recursion operator for
the KdV, i.e., & generates symmetries and ®* generates

gradients of conserved quantities. The KdV is the second
member, # = 1, of the following Lax hierarchies:

q. = ®"g,, (1.12)

(throughout this paper n,m,r denote non-negative integers),
where g, is a starting symmetry.

Exactly solvable equations in 2 + 1, written in the form
(1.1), also admit a bi-Hamiltonian formulation.*® For the
KP, the two Hamiltonian operators are given by

YV =g +3¢° = gradf dx
R

n = non-negative integer

6 =D, 63=D>+Dq} +qsD+q3D g,
(1.13a)

where

D=4,, q5=q:+q+a(D,FD,),

D,;=4d,, i=12, (1.130)

and ¢q; = q(x,p,,t), i = 1,2. Indeed
G, = Gixex + 6014, +32°D gy,

=Ky =f dy, 6,0 (3713 =f dy, 6,0 373,
R R
(1.14)

where 8,, =8(y, —»,) and ¥{2, i = 1,2, are suitable ex-
tended gradients, i.e.,

IP[v,] = (Vi) .

In the above the subscript d denotes a suitable directional
derivative and ( , ) denotes a suitable bilinear form.* Fur-
thermore, the recursion operator ¢,,=6 (3’(8 J’) ~! gener-
ates extended symmetries o,,, while the adjoint ¢%, of ¢,,
with respect to ( , ) generates extended conserved gradients
¥12- Then oy,, ¥,, are symmetries and conserved gradients of
the KP, i.e., they satisfy Eqs. (1.6) and (1.7), respectively,
where o, 7, K are replaced by ¢4, 7,1, K1, and K is defined
in (1.14).
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In analogy with Eq. (1.12), KP is the second member,
n =1 (B, = }), of the following hierarchy:

9, =ﬁnJ;d.V2 5y “,V2)¢'1'2ﬁ12 -1, (1.15)

where fllz 1= (Dg +4q;;D7'q%) - 1is astarting ex-
tended symmetry. Actually the operator ¢,, admits two
starting symmetry operators M, and N,=q; . They give
rise to the following two hierarchies of time-independent
symmetries;

(¢ M, - )y (PN - 1)y, (1.16)
Time-dependent symmetries of order r of the KP are pro-
duced by linear combinations of

WMy 1+ BN 0+, (LIT)

and are closely related to gradient mastersymmetries. The
above hierarchies of time-independent and time-dependent
symmetries give rise to time-independent and time-depen-
dent conserved quantities.*® Finally, there exists a simple
relationship between ¢,, and a nongradient mastersymmetry
Tyt

Ty=¢1 6 —y2), Chyy=Ty, +DTH D",
(1.18)

where C is a constant. The above equations are the two-
dimensional analogs of the following formulas, valid for the
KdVv:

T=¢-1, Cp=T,+DTrD"". (1.19)

It is well known that the KP equation is associated with
the linear problem

W, +@xpt) +ad,Jw=0. (1.20)

The recursion operator ¢,, is algorithmically derived from
Eq. (1.20).%¢

B. New results

(i) The KP equation: In Refs. 4-6 the algebraic proper-
ties of KP were investigated by expanding in terms of
8(y, —»,). Now we expand in terms of §(x; — x,) (Ref.
16) and write KP in the form

ql, =f dx2 6(XX ""xz)Klz, g, = q(xl’y,t) , (1‘21)
R

where K, is some function of ¢q,, ¢, = q(x,,,t). Let sub-
scripts 12 denote dependence on x,, x,, y; then for arbitrary
functions f},, g,, we define the following bilinear form:

Frog) = [ dvidxrdy fgia. (1.22)

Let the arbitrary operator K 12 depend on the operators ¢ 5,
g, Where

qliZ;QI:tqZ‘*'D% iDg, Dizaxis
q; =‘I(x;,)’,t), i= 1,2;

(1.23)

then the directional derivative of K 12 in the direction o, is
denoted by K, [0},] and is defined by
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N _ 9K - _
Ky, o] fiu= —8:12'(91‘!2' + €075 .91; +€0; Yoz, s
(1.24a)
where
o5 i dez(alsfaz + 03, /13) - (1.24b)

The two Hamiltonian operators associated with the KP
equation (1.21) are given by

Oy’=D,+D, O =ad, +4q;, (1.25)
where g% are defined in (1.23). The operators (Y, i = 1,2,
are skew symmetric, and satisfy the Jacobi identity

(a,2,01 [b;,]¢1;) + cyclic permutation =0, (1.26)

where ©,,, and ( , ) are defined by (1.22)-(1.24).

It should be stressed that, in contrast to the Hamiltonian
pair (1.13), both of the above Hamiltonian operators are
local. The KP is a bi-Hamiltonian system,

91, = Qixgex, + 6%?1," + 3a’D 1 I?x,y

= Kll - f dxz 6]26§?7§?, i = 1,2 > (1.27)
R
where {2 are appropriate extended gradients.
KP is the fourth member, n = 3, of the following Lax
hierarchy:

q, =Bﬂf dx, 5(x, “‘xz)q)’;zl?(l)z 1, (1.28)
R
where
©,+0P (O, Kh=ad,+45.  (129)

The recursion operation ®,, admits only one starting sym-

A
metry operator K/gz , which generates the time-independent

symmetries (®7,K 9, - 1),,. Values of m zero or even corre-
spond to (1.16a), while m odd corresponds to (1.16b). Thus
in the new formulation the two different hierarchies ob-
tained in Ref. 4 are unified. Similarly $%, generates extended
conserved gradients y{3”, which give rise to conserved gradi-
ents y{7.

A nongradient mastersymmetry is given by
. 35 (x 1™ X2)

ox; ’

The recursion operator ®,, can also be algorithmically

obtained from the linear equation (1.20).

(ii) The BO equation: The BO equation

2
(I)IZ

q. =249, + Hq,., q=4q(x1), (1.30a)

where H denotes the Hilbert transform (throughout this pa-
per principal value integrals are assumed if needed)

CHE ) (xy =z f dEE —x) "8, (1.30b)
R

can be written in the form

ql, zf dxz 5(X1 '—'x2)K12 > ql =q(x,,t) s (1.31)
R

where K, is some function of ¢;, g, = ¢(x,,2). Let subscript
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12 denote dependence on x;,, x,; then for arbitrary functions
12, €12 we define the following bilinear form:

(fi812) $L2 dx, dx, f,81 -

Let the arbitrary operator K, depend on the operators ¢},
g7, Where

95 =q1 + ¢ +i(D\F D), D;=0,,,
g:=q(x.1), i=12;
then the directional derivative of K 12 in the arbitrary direc-
tion o0, is denoted by K, [0,,] and is defined by (1.24).
Two compatible Hamiltonian operators associated with
the BO equation are given by
01 = (¢if — g Hi2)qiz »
where the operator H, is an extended H operator,

(1.32)

(1.33)

6} =g, (1.34a)

(lef)(xl,x2)¢17—'f dé[&— (x;+x)]17!
R

XF(5x, — x3) , (1.34b)

and f(x,,x,) = F(x, + x;,x, — x,). The BO equation is a bi-
Hamiltonian system with respect to the above Hamiltonian
operators.

The BO equation is a member of the following Lax hier-
archy:

¢, =B, f dx, 6(x, — %) Phqp; " 1,
R

(1.35)
Q=g —ignH,, .
Indeed, (1.35) with n = 1 and n = 2 yields
g9, = 2"3041,]» 9, = 4iBl(2q1qlxl +qulx,x,) . (1.36)

The operator ®,, = ©{3’(0}}’) ~! generates the time-inde-
pendent symmetries of the BO equation (®75¢5; * 1)4;.
Similarly, &%, generates extended conserved gradients y{5".

The above recursion operator ®,, can be derived algo-
rithmically from the associated linear problem of the BO
equation.

This paper is organized as follows. In Sec. II we derive
the second representation of the KP class and we investigate
the algebraic properties of the associated recursion operator
and bi-Hamiltonian operators. In Sec. III we derive the ex-
tended representation of the BO class and we investigate the
algebraic properties of the associated recursion and bi-Ham-
iltonian operators. In addition we discuss the connection
with the mastersymmetries theory of the BO equation and
with the complex Burgers hierarchy.

il. THE KP EQUATION
A. Derivation of the second representation

Proposition 2.1: The linear equation
—aw, =qw, §=q(xyt)+9%, (2.1)

is associated with the Lax hierarchy
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%=ﬁjdnmm-nmm2%4
R

=B,,f dx, 5(x; —x,) (D, + D) ¥3,rP - 1, 2.2)
R

where 3, are constants, D, #8,1,, i= 1,2, and the opera-
tors ®,,, ¥,,, K9, are defined by

<I>,2¢(a ay + g ) (D, +D2)_l s
(Dl +D2)\[’12 = ¢12(D1 +D2) »

(2.3a)

95 =41+ ¢, K(l)2=aay + 45 - (2.3b)

Remark 2.1: (i) §, = §?, where * denotes the adjoint
with respect to the bilinear form (1.22).

(ii) ¥, = O%,.

(iii) Equation (2.2) with n =0,1,2,3 and 8, = 4,
B, =+ B; = 4 implies

q,=0, ¢, = Q> D, =04,

9, =9 + 69141,| +3a’D 141,,

Thus both the x-translation and the y-translation hierarchies
of the KP are generated by the same extended starting sym-
metry K, - 1=¢,—¢,.

To derive the above Lax hierarchy we look for compati-
ble flows

2.4)

X1%1%1

2.5)

Compatibility of (2.1), (2.5) implies the operator equation
g, =—(aV,+[¢g+33V]). (2.6)
Assuming the integral representation

w, = Vw, V polynomial in d,.

V) (x,p) = f dxy v(x,x0,0) f(X2,9), V12 F=0(X1,X5,0)
R
2.7)
and noting that

(g +D?)V1f1 =J dxz{(ql +D%)vl2}f2 ’
R

Vilg:+D3)fi = J‘ dx,{(g, + D )vp}fs,
R

Vyf=J;dx2 UlZy.fz ’

we obtain the distribution equation
41,512 = - (avl2y +4qv) . (2.8)
Thus
ql,‘slz = — (D, + D)¥ 0y,
V,=(D,+D,) (ad, +q53).

The operator (D, + D,)WV,, satisfies the following commu-
tator operator equation:

(2.9)

[(Dy+ Dy)Y 15,h1,] =2k 1, (D, + D) ,
d (2.10)

2= _h12 .
dx,

hlz = h(xl —_ x:),

Using the above equation and assuming the expansion
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Ui = 2 85,019, 84, = —6,,, (2.11)
j=0 x

Eq. (2.9) yields

9,612 = Z 8{, (D, + D) ¥ 1P
/<o
n+1

+23 6D+ Dyvii~ D

j=1

Thus
(D, + Dy)viy =0, %,512 =8,(D, + D)V, vy,
— Y = vii~ V.
Therefore — 1)L .
v{? = 1, the above equations imply

41,512 =0,2(Dy + D) w1
=6,9L,P,(D,+ D,) - 1,

0y _

vy = Hence assuming

where
(D, +D2)\l’12 = <I)12(D1 +D,).

B. Isospectrality yields a hereditary operator

To make this paper self-contained we first introduce an
appropriate directional derivative. Recall the integral repre-
sentation [Eq. (2.7)],

(Vf)(xlay) = f dx3 v(xl’x3»y)f(x3ay) .
R

Also, allowing f to depend on x, we obtain Ff,
= frdX, U;3f5,. In particular,

Hfo=(@+ D)= deaqnfn'

Equation (2.12) is a map between an operator and its ker-
nel and induces the following directional derivative:

614[0'12]f12 = J;dx3 O13f32-

Equation (2.12) and the bilinear form (1.22) imply that
the adjoint of §,, §* = g, + D3 has the representation

(2.12)

(2.13)

tfh:=(g+ D3)fi, = J‘;dx3 932/13 - (2.14)
Hence
é‘l’d[alzlle:f dx; o3, fis - (2.15)
R

Equations (2.12)—(2.15) and g5 =¢, + ¢¥ imply (1.24).
Proposition 2.2: (i) Consider the isospectral equation

gv+av, =Av, (2.16a)
and its adjoint, with respect to the bilinear form (1.4),

gt —av}t =Av*. (2.16b)
Then

(grad ), =vw,", (2.17)

where (grad 1), denotes the gradient of A with respect to
the bilinear form (1.22).
(ii) Equations (2.16) imply

608 J. Math. Phys., Vol. 29, No. 3, March 1988

(ad, + g5 )vv; =0. (2.18)

To derive the above results, take the directional deriv-
ative of (2.16a) in the arbitrary direction f,,, multiply this
equation by v;" and integrate over dx dy to obtain

Aql fi2] = J;z dx, dy v1+61.1[.f12]v1 .

Using (2.13) the above becomes

Aql fi2] =J‘ dx,dx,dyvi"v, fi, .
RJ
But

Ayl fol =f dox, dx, dy(grad )3, fis
]R3

hence (2.17) follows. Equation (2.18) is a trivial conse-
quence of (2.16).

Equation (2.18) suggests that ®, is a hereditary (Ni-
jenhuis) operator (see Proposition 4.3 of Ref. 4). Actual-
ly it can be easily verified that

q>12,, (@1 f121812 — P2 (p12d [ fi21812

is symmetrié w.r.t. fi2, 812 (2.19)

i.e.,, ®,, is indeed hereditary (see Appendix A).

C. Symmetries and conserved gradients
1. Starting symmetries

We recall that the starting symmetry operators play
an important role in the theory developed in Refs. 4 and 5.
An operator @, algorithmically implies starting symme-
try operators: Logk for operators S,, such that
S,H,, =0,but ®,,5,,H,,#0. Then a starting symmetry
operator K9, is given by K%, H,, = ®,,5,H,,.
Proposition 2.3: Let

K%=ad, +q5, Hyp=H(x,—x,), (2.20)

where H is an arbitrary function of the arguments indicat-
ed. Then the following statements obtain.

(i) K9, - H,, is a starting symmetry associated with
the operator ®,, [defined in (2.3)].

(ii) K 9, satisfies a simple commutator operator equa-
tion with 4, = A(x, — x,),

[I?(l)zyhlz] =2 aahu

(iii) @, is a strong symmetry for k\"l’z - Hy, e,
&L (@K% Hyp)
=Py [KLHp] + [P (KN HR) ] =0 (2.22)

(iv) The Lie algebra of the starting symmetry operator
satisfies

[KLHPRGHD, =KL [HPHP],, (2.23)

where

(2.21)

(Dy+ Dy) .

[K2.KP]a=KD K] - K3 [K], (2.24a)
[HDHD),+ [ o (HPHD - HPHY).

R (2.24b)
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To derive (1) let 3’,2 = D, + D,; then H,, is defined by
(D, + D,)H,, =0, thus H,,=H(x,—Xx,y). Also
K% H, = (ad, + q;; )Hy,. Part (ii) is a straightforward
calculation and part (iii) follows from the definition of a
starting symmetry and the fact that ®,, is hereditary (see
Lemma 4.2 of Ref. 4). Part (iv) is a tedious calculation
[see Appendix A for a direct verification of Eq. (2.22) and
(2.23)].

2. Symmetries

We recall that o, is a time-independent extended
symmetry of Eq. (2.2) iff

[6,,95K%, - 1,0,,]4=0. (2.25)
Proposition 2.4:
(l) 6124) K?Z 1 - z b",¢72— IK(I)Z 12 »

b, constants . (2.26)
(i) [dy, ‘szK?z -1 ‘DEK?z ' H12]d

= 2 b"l¢n—1+m [612,H12]I-
I=0
(2.27)

(iii) ofF” =<I>;"2K -1 are time-independent ex-
tended symmetries of (2.2) .

(iv) ot are symmetries of (2.2) .

(v) o5’ =0 are auto-Bicklund transformations of
(2.2), where ¢, g, are interpreted to be two different solu-
tions of (2.2).

Part (i) of the above follows from

[¢12:h12] =2h 125 [K12:h12] =2h 12 (D, + D,).
(2.28)
To derive (ii) note that

[512‘1)721((1)2 -1, q);;K(l)2 'le]d

- z bnl[(b;'Z_lK(l)Z&{Z’(p (I)ZHI2]d

b, @3t m[K?ﬂS{z ’K(l)2Hl2]d

|IM= EM: I

b <I>"_’+"'K 2 [8%2:Hi2 11 »

~,

where we have used (for the third equallty) the fact that ®
is hereditary and a strong symmetry for K® 12 * Hy,, and
the fourth equality follows from Eq. (2.23). Part (iii) fol-
lows from (ii) by taking H,, = 1. Part (iv) follows from
(iii) and (2.8) (see Theorem 4.1 of Ref. 4). For part (v)
see Theorem 4.2 of Ref. 4.

Remark 2.1: (1) Using Eq. (2.27) with suitable func-
tions H,,, it should be possible to show that time-depen-
dent symmetnes of (2.2) are generated by linear combina-
tions of P K % H,,. See Ref. 5 for the corresponding
results assoc1ated with the first representation.

(ii) Ananalysis about conserved gradients should fol-
low closely the methods developed in Refs. 4 and 5. For
example, it can be shown that ¥}, - H,, are extended gra-
dients for all H,, = H(x, — x,,y).
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3. A nongradient mastersymmetry

Proposition  2.5: (i) T,=9%,6),, 6),=dd(x,
— x,)/dx, is a nongradient mastersymmetry of the KP
class, since

[®F K‘,’.‘,_HIZ,T12 Ja=(n+ 1)} 'K?an . (2.29)
(ii) T, generates the recursion operator ®,, via

20, =Ty, + (D + D) TH, (D +D,)~ 1. (2.30)

(iii) Let

PP =@, Y= +D) 'R . (23D
Then

;’g)sz = grad,, I, (2.32a)

I,=1/(n +2)(y"‘+”H12,6{2) . (2.32b)

The proof of (i)-(iii) is a consequence of equations
8}, =0, ®,, [6,] =1 and of Eq. (4.9), (4.6), and
(4.7) of Ref. 5, respectively.

{Il. THE BO EQUATION

The linear problem associated with the BO equation
(1.30) is the following differential Riemann—Hilbert
(RH) boundary value problem:

P(x) = (g(x) +id )P, (3.1)

where ¢ ¥ and ¢~ are the boundary values on the line
Im x = 0 of functions holomorphic in the upper and lower
half-plane, respectively,'” and the spectral parameter has
been rescaled away.

Equation (3.1) plays a crucial role in the derivation of
the recursion and bi-Hamiltonian operators of the BO
class.

A. Derivation of the recursion and bi-Hamiltonian
operators

Proposition 3. 1: The linear problem (3.1) is associated
with the hierarchy

4 =B, f dx, 5(x, — x,) ¥R, - 1
R

=48, f dx, 6(x, —x) q; V%, * 1, 3.2)
R
where B, are constants and the operators ®,,, ¥,,, and
K%, are defined by
Q29 —ignHyy 9oV =Pudn, Kh*4n,
(3.3a)
Hoforr™ [ dele— Gt x) )7 Fem, — 5,
R
Ji2=f(x1,%5) = F(x, + X%, — X,) , (3.3b)
qu?f $41i42+i(01$D2), q1=4(x.~,t) s
(3.3¢)

D,=3d,, i=12.

Remark 3.1: (i) W¥,, = ®%, where * denotes the ad-
joint with respect to the bilinear form (1.32).

(ii) The first few equations of the BO hierarchy are
then
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q.=0, n=0, (3.4a)

g,=q,, n=1, By=(2)"" (waveequation),
(3.4b)

g, =299, + Hq,,, n=2, B,= (4)~"' (BO equation) ,
(3.4¢)

9, =(— g +q + 3(qHg, + Hqq,)),,
n=3, B,=(8))"" (higher-order BO equation),
(3.4d)

and are obtained from (3.2) using Egs. (3.16b)-(3.16f).
To derive the representation (3.2) we first seek

compatibility between the differential RH problem (3.1)

and the evolution equations
PEE) = Yyt

where ¥ (*) are differential operators of the form

(3.5),

Ve = 3y (x)d) (3.6)
j=0

and the coefficients ¥/ *’(x) and ¥} ~’(x) are holomor-
phic in the upper and lower half x plane, respectively.

The compatibility condition between (3.1) and (3.5)
yields the operator equation

g, =V (g+id)—(g+id )V, (3.7)

which can be converted into a scalar distribution equation
by formally introducing the integral representation

(V(i)ﬁ(x)_fdxz 2:t)f(x2) vizi)_v(i)(xl’x2)~
(3.8)
For instance, the operator ¥'{~’(q, +i d,, ) gives rise to

the scalar kernel (g, — i d, )v{;’, since

g +id, )f(xl)—dez V{5 (g2 + 1 3, )f(xy)

= J- dx,((g, — i 9,, i) flxy) .
R
(3.9)

Equation (3.7) then corresponds to the following distri-
bution scalar equation:

6(xy—x2) ¢y, = — (@ +1 3,0 + (g, — i 9, )vi;
= - %(912(v(+)_012 ")
+4q;5; (v +U§2_)))- (3.10)

Equations (3.6), (3.8), and (3.10) imply for v{;*’ the
following expansions in derivatives of §,,:

vif) = E SiviEY. (3.11)
Combining (3.11), (3.8), and the analyticity properties of
V{*)(x), we obtain that v{;*’> and v{;"’ are holomorphic
in the upper and lower x, + x, plane, respectively. Then,
in particular,

v — v = —iH (v — i) (3.12)
[see Eq. (3.19)], and Eq. (3.10) becomes
012q1, = — $Puabin b=vi —oi 0. (3.13)
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Remark 3.2: The following operator commutator equa-
tions hold:

[92.h12] = [Hizh,]1 =0
(a5:812] = [Pr2hn] = 2ihy,, hi=

oh,, (3.14)

dx,
and hereafter h,, indicates an arbitrary function of
X, — x,. Substituting the expansion #,, = ="_, 8/, {} into
Eq. (3.13) and using Egs. (3.14) one obtams

P =0, 34" =(i/)®,0P, 1<j<n—1,
81291, = (i/2)6,,®, B2 . (3.15)
The iteration (3.15) 1mphes that 5 = (i/2)" !

’

X P 192~ 1; to determine 52~ " we notice that #{?
= v{;F " — 0§, 7" = 0 implies v"" =p{£ " = ¢, = const,

and then
Bis " = (i/2) [q15 (vi; " —
+q5 (" + v§2_)n)]cn =ic,qp " 1.
(3.2) is then

vi; ™)

Equation
B.=i(i/2)",.

obtained defining

B. Properties of the extended Hilbert transform

In this subsection we list several interesting and useful
properties of the extended Hilbert transform.

Proposition 3.2: The extended Hilbert transform H,,
enjoys the following properties.

(1) [H12’h12]=09
(2) Hya(x;) =H;a(x;), j=12,

(3.16a)
(3.16b)

Hf(x;,x)=7"" J; dy(y — x;) 7 'flx,p), i#).

(3.16¢)

(3) f dx, 8,H, fr,=H, f;,, (3.16d)
R

(4) 9, H12f12=H12 ax,flz, =12, (3.16¢)

(5) H}, = —-1. (3.16f)
Moreover,

(6) Hy, fZhyy= (Hypf12) Thyy, (3.17a)

(7) Hy( g Hiafio + (Hiag10) " f12)
= —8nfi2+ (H12812) "Hy, fi2,  (3.170)
(8) HY, = —Hy,. (3.17¢)

Here H, induces the following analytic properties:
N If

= + U FiH)f,
= (2mi) ! J‘ dy(y— (x;+x,+i0) )
R

XF(y,xl—xz) s (3.18)
then
(i) f$;"? and f{; are holomorphic for Im(x, + x,) >0

and Im(x, + x,) <0, respectively.

(ll) f(+) f(—) = —lle(f(+) (319)

f(—-)
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Proof: Equations (3.16f) and (3.17b) are interesting
generalizations of well-known identities H?= — 1,
H(gHf + fHg) = — g f+ (Hg) (Hf ), and can be proven
using Fourier space. Equations (3.16a)—(3.16e), (3.17a),
(3.17¢),and (3.18), (3.19) are direct consequences of the
definition of H,, (see Appendix B for details).

C. Algebraic properties of the BO class

In this section we show that the main algebraic proper-
ties of the BO class can be entirely described using the theory
developed in Ref. 4; we refer to that paper for details and
proofs.

1. Representation of the class

It was shown in Sec. IIT A that the BO class admits the
following representation:

@, =B, f dx,6,,95,K 9, - 1=, f dx, 6K D<K,
R R
(3.20)

where 1?‘1’2 = qy; and P,; is defined in (3.3a).

The recursion operator ®,, and the “starting” opera-
tor K¢, enjoy simple commutator relations with 4,,
=h(x; —x;),

. dh -~
[¢12’h12] =2ta—12’ [K?zyhu] =Os (321)

which imply that §,,K {3’ can be written in the following
alternative form:

n A ) _
suk (= 3 (—2/(TJorr Ry, L8m=x)
=0

*;

(3.22)

2. The d derivative

As in 2 + 1 dimensions, the derivation of the extended
algebraic structures of the BO class is based on integral rep-
resentations of operators depending on ¢, d,, and H. This
mapping between operators and their corresponding kernels
induces a mapping between derivatives and leads to the in-
troduction of a new directional derivative, the so-called d
derivative.* Here we briefly remark that the basic operators
g appearing in the BO formalism are the same as for the
KP case, replacing x; by y; and i by the parameter o [ see Eqgs.
(1.13b) and (1.33) ]. Then their d derivative is simply given
by

95 (821 285 /125 (3.23)

g8iifi=+ L dx;(8g15 f2 £ /13 832) - (3.24)

~
Since ®,, and K9, are expressed in terms of g5, their d
derivatives are well defined,

4)124[812] =g — g Hp K?zd[gu] =812 - (3.25)

As for the (2 4+ 1)-dimensional case, the connection be-
tween the d derivative and the usual Fréchet derivative is
given by the following projective formula:
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K, 61281 = K, [g] ¢K12q‘ (gn]+ K12,,2 (8221,
(3.26)
where K 12,, denotes the Fréchet derivative of K, with re-
specttog;, i.e.,
K12qi [gii]$aeK12(qi + egii’qj)|e=0’ Lj=12, i#j.
(3.27)

3. The starting symmetry K%, - hya, its Lie algebra, and
its characterization through the recursion operator

The starting symmetry K {2 = g, — g, of the BO class

is writtenasg;; - 1. Asin2 + 1 dimensions a crucial as-
pect of this theory is that the operator K¢, = g;;, acting
on suitable functions 4,, = A(x, — x,), solutions of the
RH problem /2 {;*’ — h{;7> =0 [( + ) and ( — ) here in-
dicate analyticity in the upper and lower x, + x, half-
planes, then h,, = £ {;"’ = h{;’], form a Lie algebra,
given by

(921292 h2]a = — a5 [Rihi]) s (3.28)
where the Lie brackets [ , 1,, [ , 1; are defined by

V2812 1a=/12,1812]1 — 812, 1 f12] s (3.29a)

[hlz,iz.z],¢f dxy(hyshay — hishs,) . (3.29b)
R

A
Asin2 + 1 dimensions, the starting symmetry K 9, - A, can
be characterized through the recursion operator ®,, via the
equations

Qu(hi," ) —h{;7 ) =qh(hi"’ —hi70) + g5 (B
+h(7)=2K%h,,  (3.302)

h§2+)=h§2_)=h12» (3.30b)

obtained using Eqgs. (3.32) and (3.19).

4. Symmetries, strong and hereditary symmetries

. The recursion operator ®,, and the starting operator
K9, = gq; are the ingredients of the evolution equations

q1, =f 6,K 13 .
R

They enjoy the following properties.
Proposition 3.3: (i) The recursion operator ®,, is
hereditary, namely,

D, (@ f12]181, — q’lzd)lzd [ /121812
is symmetric w.r.t. f}, and g,, ;

(3.31)

(3.32)
(ii) ®,, is a strong symmetry for K 9, 4,,, namely,

L (@K %)
_‘_:"(DIZd[k(l)Zhlz] + [q’lzy(k?zhlz)d] =0. (3.33)

Proof: Equations (3.32) and (3.33) are verified in
Appendix A, although this check is not strictly necessary,
for two reasons.

(1) ®,, comes from the isospectral problem (3.1),
and an extension of the theorem presented in Ref. 18
should guarantee its hereditariness (see also Ref. 4, §4.E).
It is also interesting to remark that a direct proof of the
hereditariness of ®,, makes use of Eq. (3.17b).

A. S. Fokas and P. M. Santini 611



(2) The hereditariness of ®,, and the characteriza-
tion (3.30) implies that Proposition 3.3 (ii) holds (see
Lemma 4.2 of Ref. 4 and Appendix A for a direct check).

The operator ®,, generates infinitely many commut-
ing symmetries of the BO class; precisely, since $,, is a
hereditary operator and strong symmetry for the starting
symmetry Ko T2 Ay, that satisfies Eq. (3.28), then Theorem
4.3 of Ref. 4 implies that o{;” =®,¢; -1 are extended
symmetries of every evolution equation of the BO class,
namely,

Uié'}’ [K™] = (8K, [0&")] (3.34)

for every non-negative integer n and m, where, using
(3.22),

n . n w1

(3K P)ax Y (— 21)'(3)( K085 -
1=0

The first three operators (6,,K {7’), of the BO class are

explicitly reported below:

(3.35)

(6,.K12)4 =0, (3.36a)
(012K ) g =208, +d,,), (3.36b)
(6K )4
=4i(H5(d,, +9,, ¥+ (4, +3,. ) (g + )
+ i((Hyq,)x, — (Hyq,)x; )
— (g, — q)H (8, +3,)) (3.36¢)
(see Appendix A).

The usefulness of the extended symmetries o{3" fol-
lows from the fact that they give rise to symmetries and
Backlund transformations; precisely according to
Theorem 4.2 of Ref. 4:

If 0{7” is an extended symmetry of Eq. (3.31), then
(i) o{” = 0{7”[,, _ », is a symmetry of Eq. (3.31), name-
ly,

o [KiP] =K [ai] (3.37)
and (n) the equation
o{7’ = 0" (q1,4,) =0 (3.38)

is a Biacklund transformation for (3.31) where, of course,
¢, and g, are now viewed as two different solutions of
(3.31).

&. (Bi-) Hamiltonian formallsm and constants of
motion in involution

Proposition 3.4: (i) If we define
0 =q;, 0% =9,,00, (3.39)

then ©,, =06}’ 4+ kO’ is a Hamiltonian operator for all
constants «, namely,

(a) O = —O,,, (3.40a)
(b) ©,, satisfy the Jacobi identity w.r.t. the bracket
{ab12era} = (31201,,[Ob12]cr,) . (3.40b)

(ii) The adjoint %, of the recursion operator, given
by

DY =q5 —iHyqy; , (3.41)

612 J. Math. Phys., Vol. 29, No. 3, March 1988

satisfies the following “well-coupling” condition:

¢129§;) - 6“}

(iii) 742 - hyp = q’lz
namely,

(PP h) g = (FiPh) % (3.43)

Proof: Equations (3.40)-(3.42) are a direct conse-
quence of the definitions (3.39), of Eqgs. (3.17b) and
(3.17c), and of the property ¢5 " = +¢i.

Remark 3.3: Using Eq. (3.42) the BO class can be
written in the following form:

¢, =B fdxz S12qi (PH)" - 1

(3.42)

- hy, is an extended gradient,

=5, f dx, g5 8,,(0%)" - 1

:‘-—"iax‘ fdxz 612( @ 1 - :ﬁ ax! y(u) .

(3.44)

The first Hamiltonian operator ©{) =g;; commutes
with §,, and reduces to i d, . Then 3, is the (projected
version of the) first Hamiltonian operator of the BO class;
this result was already known.?®

The existence of a compatible pair of Hamiltonian op-
erators is connected to the existence of infinitely many
constants of motion in involution. Theorems 4.1-4.5 of
Ref. 4 can finally be summarized in the following proposi-
tion.

Proposition 3.5: Consider the compatible pair of Ham-
iltonian operators 0 =q5;, 0P =(94 —igz H) 9,
and define ®,,=0{? (68{}’) 7 !; then the following is true.

(i) ¢y, isa heredntary operator

(i) o’ =®{Pgq; - 1 and {7’ = (P% )™ - 1 are ex-
tended symmetries and extended gradients of conserved
quantities, respectively, for Eqgs. (3.2), namely,

;n) [K {")] = ((S 2K (n))d [01;"}} (3453)
Y (K1 + (6K P)3[7i5] =0, (3.45b)
((PH)7h)s = ((PH)I7hL)E, A =h(x,—X;).

(3.45¢)

(iii) Equations (3.2) are bi-Hamiltonian systems,
since they can be written in the following two “extended”
Hamiltonian forms

9, =8, f dx, 6,,03°717 =B, f dx, 6,075 " .
R R
(3.46)

(iv) off and ¢{]" are symmetries and gradients of
conserved quantities for Eq. (3.2), namely,

am [K (m =K§’{} [a§’{"] , (3.47a)
(m)[K(n) +K§;‘;[o'§;")] =0 (3.47b)
’}’Yf}’ - 7’%?’,} , (3.47¢)

where * denotes the operation of adjoint w.r.t. the bilin-

ear form ( f,g) = frdx J2.
(v) The corresponding conserved quantities /,,, relat-
ed to ¥{7” and ¥{ via equations
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7is) = grady, 1., 1, [ fi,]1=(grady, 1., fi,), (3.48a)
i =grad I, I, [f1=(grad I, f), (3.48b)

are constants of motion of Eqgs. (3.2).
(vi) These constants of motion are in involution with
respect to the Poisson brackets

{1,,1,}=(6,,7{3,0,75"), O,=06f) and/or 6{7,

(3.49)
namely,
{1,,1,}=0. (3.50)

(vii) The equations K {{” = K " (q,,4,) =0 are
Bicklund transformations (BT) for the BO class (3.2),
interpreting ¢, and g, as to different solutions of (3.2).

Remark 3.4: (i) The first extended symmetries of the
BO class are given by

0 =4q7 1=¢,—q,, (3.51a)
ol =®iYg; - 1
=g, +49,)+Hq —Hyq,
+ (g1 +2:)(q, — 4,)
—i(g,—q,)(H,q, — H,q,) , (3.51b)

then their projections are the first symmetries of the BO
class

oY =0, ofy =2q,_, (3.52)
and equations
0P =0, o=0, (3.53)

are the first two BT’s of the class. We remark that the BT’s
generated by 9, are polynomial in ¢q,, g,, unlike the pre-
viously known examples."’

D. Connection with the mastersymmetries theory

The mastersymmetry approach was introduced by
Fuchssteiner and one of the authors (A.S.F.) !’ asan alter-
native way of generating symmetries of the BO equation.
This approach was subsequently applied to (2 + 1)-di-
mensional systems like KP,'! 1 + 1systems like KdV,!>8
and finite-dimensional systems like the Calogero—Moser
problem.'®

In this section we briefly show that the existence of a
hereditary operator ®,, allows a simple and elegant char-
acterization of the BO mastersymmetries (analogous and
more detailed results for KP were reported in Ref. 5).

Proposition 3.6: (i) If

K{P=®hq; - 1, (3.54a)

T =0Ngn (i +x)7, (3.54b)
then

[60K (P75 g = 4K 3771 (3.55)

(1) {7V =7{7""|,, - ., are mastersymmetries of de-
gree 1 of the BO class, since

[K{P, 7D ], =4inK 3771, (3.56)

Proof: The derivation of Eq. (3.55), presented in Ap-
pendix C, is based on the following important properties:
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(1) Py [g2 i +2x2) ] + [Prarlgiz (X + X3) )a ]

=iq; [Hpy(x,+x,)7 ], (3.57a)
1
(2) [Hip(x,+x) 1 fia= ;—f dy F(y,x, — x,) ,
R
(3.57b)
Sz =f(x,%) FF(x, + X% — %3) (3.57¢)
(3) ig; [Hip(x; —x) " 1(85,K ) =0, Vsl>0.
(3.57d)
These follow from the definitions (3.3) and from equation
s—1
Jim (2 (—1)s-‘a§j’-la§‘2K§;>) =0
Xy| = \f=0 X, = X,
(3.57¢)

(see Appendix C). Equation (3.56) follows from (3.55)
using Theorem 4.1 of Ref. 4.

Remark 3.4: As for the KP case,” time-dependent
symmetries of the BO hierarchy should be generated via
mastersymmetries 7{5” of degree > 1. In this case, an
equation analogous to (3.55) should follow from a suit-
able generalization of Eq. (3.57a) obtained replacing

(x, 4+ x3) by (x; +x,) 7, r> 1.

E. Connection with the complex Burgers hierarchy

Itis well known that if g (x,#) is analytic in the upper x
plane, then the BO equation (1.30) reduces to the (com-
plex) Burgers equation

9, =299, +ig., (3.58)
since
Hf ) = 4 jf (), (3.59)

where f¢*’(x) and f*~’(x) are holomorphic in the up-
per and lower half x plane, respectively. The same result
obviously holds for the whole hierarchy.

Proposition 3.7: If g(x,t) is holomorphic in the upper
x plane, then the BO hierarchy (3.2) reduces to the fol-
lowing complex Burgers hierarchy (investigated in Ref.
20):

4 =b,(id, +3.g9:7 """ 'q,,

n>1, (3.60a)

b, =2"B,, a;%f dx. (3.60b)

Proof: The proof is straightforward and relies on the

fact that each gradient y{3’ is a holomorphic function in

the upper x, and x, planes; hence Eq. (3.59) implies that
Oy = (g5 —iH;q53)715
= (g5 + 9270 =2(q, +i 3., )iy
Then

91, =B, J;dxz 812453 (P)" 1
=2, d,, f dx; 81, (OF)" - 1
®
=¢2"+!ﬂ, 3,;, (g, “}'iax. )" -1
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=bn 3x.(41 +iax. )n—lq
=bn ax. (ql +iax, )n—-l ax—;lql
=bn (iax. + ax,ql a

x—ll)n—lql

*1
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APPENDIX A

In this appendix we use the notion of directional de-
rivative and extended bilinear form introduced in (1.24)
and (1.22), (1.32), respectively, to prove some of the re-
sults presented in this paper. In order to give a self-con-
tained presentation, we first present some results con-
tained in Appendix C of Ref. 4.

The directional derivative of the basic operators ¢
(1.13b), (1.23), (1.33),is

qu2:d[.f12]g12=flj2:gl2’ (A1)
where the integral operators f';5, defined by
f38% J;dxs(fls 832 £ 813 f32) » (A2)

enjoy the following algebraic properties:

[ (A3a)

2
(a5b3 —bgaf)c,=(anby) cp= —

cpanby,,
(A3b)

(atby; Fohane,,= (afby)*e,+ +efafby,,
(A3c)
a"= +ajf. (A3d)

Moreover the integral representation
95 2= J. dx;(qy3 fi2 £ £13932) (A4)
R

implies that g5 satisfy Eqs. (A3) as well. Equations (A3)
are conveniently used to prove the following properties of
the recursion and Hamiltonian operators of the KP and
BO equations.

For the KP class, the following is true.

(1)@= (ad, +97;)(D,+D,)~" isastrong sym-
metry of K %H,=(a d, + qi3 )H,,. Indeed

@y, [0l =05 D+ D)7,
(KL H ) 4lopl=05H,,,

and
L (@K% H )
= (2?2H12)~(D1 + D2)~%2
— (P2 f12)) Hp+ @, f2H
=((ad, +4913)Hy,) 812
—((@d, +913)8:) " Hy+ (@ d, +912)8: Hyy,
having introduced g,,=(D,+ D,)”'f;, and used

H12(D1 +D2)_l = (D1 + Dz)—
obtain goqLH,, — H 34,8, —
zero, for (A3b) .

(2) ®,, is a hereditary operator. Indeed

'H,,. Using (A3a) we
qﬁgﬁHua which is

Dy, (P12 f121812 — P12 Piz, [ f121812 — (sym. w.rt. flr0081,)

=((ad, +q2)(D,+D,)"f1,) (D, + D,) " 'g1, —
=((D;+D,) g, ) (a 3, + 93 )(D+ D,)
—(ad, +4) D+ Dy)

using integration by parts,
(D\+ D) ' f5(Dy+Dy) g3
=((D,+D,)"f1,) (D + D) 'g, — (D + D) !
X ({((Dy+ Dy) " f12) 82— 812 (D1 + D) ™ Uf32)
and Eq. (A3b).
(3) [k?zﬂs;’,K%Hm]d
— (K VHO)Y"HY — (I??ZH‘”) H®
= —H{ (@d, +453)
H3 (ad, +4q5; YH (Y
= CHL H®,
for (A3a)~ and (A3b)_.
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(@ 8, +qg53)(Dy+ D)~ f3(Dy+ D) g, — (sym. --+)
Y2 — ((D; + D)
—l(fl_Z (D1+D1)_1312“

_lflz)_(a ay +q; ) (D, +D2)—lglz
g (D + D))" Yfy,)=0

For the BO class the following is true.
(4) ®,, is a strong symmetry of gk,
hy,, = h(x, — x,). Indeed, using (3.43a), we have

L(@nqihy) =@ h) fia—i(gihn) " Hy, fia
+ (g% —iqzHp)f G hi
— (g3 fi2— igi Hyy f12) "hyy

Using Egs. (A3a) and property (3.17a) [see Appen-
dix B (5)] we obtain

(feqnhe+qbfoha+ hGabf )
+i((Hyy f12) " g b — g (Hy, f12) 7hy,
—h9nHn fia),
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and the two expressions in parentheses are zero using
(A3c) and (A3b) ~, respectively.

(5) ®,, is a hereditary operator. Using (3.24a) we
have that

¢12d[¢12.f12 1812 — q)iz‘plzd[flz]glz
— (sym. w.r.t. fi,<8,)
= (9512 — g Hyp f12) 815
— (g5 fio— iqia Hyp f12) " Hyz 812
—q5(f5812— f 2 H\2 812)
+igp Hip( 13812 — if 2 Hyz &12)
— (sym. w.r.t. fi,<>g,) .
Using (A3c) and (A3b) we obtain
g (»le(gl_zlefu + (Hy; 812)"fi2)

+8i2fi2— (Hyy 812) " Hyp fr12) s
which is zero for Eq. (3.17b).
(6) g5 = + 43 -
These are direct consequences of the definitions (1.32)
J

(02) *fia=(0% £ (= 1)"9%) frza
(512K12 al fi2l = (612913

and (1.33). Their immediate implications are Egs.
(3.17¢), (3.40a), and (3.41).

(7) ©{Y = q; and ©{» are Hamiltonian operators.
They are skew symmetric, since

O  =((q1s — gz Hi2) g0 )* = g12 (915" —
= —qp (g —iH;,q1;)
= — O} (being ¢591; =4129%) -
They satisfy the Jacobi identity (3.40b), for instance
(alzyegéi[e(l)blz]cxz)
= (alzsqlz,,[qﬁ by ]e12) + cycl. perm. s
= (a,2,( g3 b12) ~¢12) + cycl. perm. s.
Using (A3a) and (A3d) we obtain
(12— b+ bsgnc—anbcn),

which is zero for any a,,, b,,, €15, for Eq. (A3b).

(8) The derivation of Egs. (3.36) is the same as for
the corresponding ones of the KP hierarchy (see Appen-
dix C of Ref. 4) and makes extensive use of the equations

iHY,4957)

(AS5)

‘DylFl =928 fi2]l =f 6= —85f1,=0,

(612K §2))d[.f'12] = (q)12q1;612)d [‘f12] - 2i(ql;5}2 )d[.fl2]

= d)IZd [flzjqﬁ‘slz + q>12q1;d[f12]612 -
— i3 H )98+ P2 f126,—
12912612 — P28 /12 + 2i(8Y,)

=(fs
=f9n0n— i H
smce
f139261= 93/ 36— 61 g1 =2(q;;
fﬁHqu&]z =f12612H2(q, — @) = [13612(H,q,
2) Sf2=(d,, + 9. )iz2»

—ql;)fn:O’
—H,g,) =0

2i%3,[f1215112
2if 3 61,
—f‘12 = 21( ax, + ax,2 ).f12 ’

(612K§§))d[.f12] = (94,9138 a[ fi2] — 4i(@1,41261,)a [ fi2] — 4(91360:)a fi2]
—q)lz,,[flz]‘plquz 2+ PPy, i121926,, + q)lquzd[fu]fslz

— 4@y, [ f121912 612 — 412913, [ £12161,
H )P40+ Pl fi3
—4i®,, f3 61,
=4i(H3(d,, +0,,)" + (0, +3,)(q1 + @) +i(H q, — Hyq, ) —i(g,

= (fl-g _lfﬁ
—4(fy —if R Hy) 561

since, for instance,

[@1956,=f5(6,K g) + 2i5 Kig)) —flz(K( +Kﬂ)) _2’[(3 (0) 13))x,_x,
t4:, ) — 2’(91,(I

=f12(2’(q1,‘l

—495,[ 2160,

—if 5 H ) g5 8+ @hLf 56

—4f ;6%
—q,)H,5( ax, + ax2 ))s

(ax, (K 9 32))x3=x, ]
=+ 12, ))=

SiH (8K +2i6,K ) =f5(8,H, K + 261, H,K D)
=fr(HK$P — H\K (D) —2[(0,, (fisHpu K ) )i = x, + 0, (f2H 1 K )=, ]

= 2i((H,q,

3406 =qinf36L, — 8" qnfia=a5; (4, —3dy,) —
S Hpq9568, =561, (Hig,— Hyg,) = — (s, (f13(H3gs
= —‘quzxz + H,
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- —quz,z) - (qul,‘l

- quz,‘z))flz =0;

ax - ax2 )QE)flz = - (ql,,l + q2_,,2 )ﬁZ >
— H,q,) ))x,=x2 - (ax,fi.!Z(qul — H,q,) )x,=x.
A. 8. Fokas and P. M. Santini 615



APPENDIX B

In this appendix we prove some of the properties of
the extended Hilbert transform presented in Proposition
3.2.

(n f dx,8,,H; g2=H 811
R

since

f dx, 512”-1 f dyly — (x, +x3) 17'G(yx, — x3)
R R
=7! f dy(y — 2x,) T'G(y,0)
R

— f dy(y — x,)~'G(2,0) = Hyg,
R

g(xlyxz) #G(«xl =+ X5X, —-—xz) .

(2) Hp,a(x;) = Ha(x;), j=1.2,
since
Ha(x,)
=f”f@b—@d%»rbel+ﬂ:ﬁﬂ
R 2 2
=7! f dy(y — x,) " la(y) = Hya(x,) .
R
APPENDIX C

In order to prove that Eq. (3.55) holds, we must first
derive Eqs. (3.57).
(a) Derivation of Egs. (3.57):

L(Ppq1; (X1 + X)) fiz
= (g2 1+ %) ) frz — ilgiz (ki + %) ) Hyy frz
+ (g5 —ign Hip)f 13 (%, + %)
— (g5 fro— g Hyp f12) 7 (%, + %3) .
Then, using Egs. (A3a), (A3c), and (A3b), we obtain
L(P12q1; (X1 + X)) fiz
=g ((Hpp f12) 7 (X + %) — Hy, f3 (% + %))
=g (Hp(x, +x)7 — (x; + %) "Hy, ) fras

which is Eq. (3.57a)
Equation (3.57b) is a straightforward generalization
of equation

(Hxlf= L f dx' fix) .
7 JR

In order to prove Eq. (3.57d), we first prove that

(Hip(xy +x2) 7 — (%, + %) "Hy, J(8,/12) = ¢, (Cla)
¢, = 1 dx,dx, 8,,(9, +9,)
T JRr?

51

Xy (=
I1=0

=ifa2(in_wfm“yﬁ4 ,
T Jr =

Xy = Xy
(Cl1b)

US_iai,_!_l 8izfxz
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(H (0 4+ Xx3) 7 — (%) + x50 “H,)60./12
=H,, J; dxs[ Oy + x3)85, /32 — 613/13 (x5 + x,) ]

- J; dxs[ (%1 + x3)H3,6% /3

— (H38:/13) (x5 + x3) ]

=H,,((— I)S(S(as—l 2) %, = x,
+ (%1 +x2)(35 f32) 5, — ;)
—s(d3; lf13)x,=x, — (x +x2) (05 f13)x, = x,)
= (= 1)(s(H3, 35, lf‘az)xj:x2
+ (X1 + %) (H3, 35 f32)x, =5, ) +5(Hys a;:l 1
+ (% + X)) (H 395 fia)e,—x, »

3)x3 =X

where we have used Eq. (3.16e); using now (3.16d) we ob-
tain

[HIZ’(‘xl +x2)](( - I)S(ai; 32)x3=x2 - (aiJIB)x3=x| )y

and Eq. (3.57b) finally leads to Eq. (C1).

Equation (3.574d) directly follows from Eq. (C1) when
Jfi2 = K {9, since Eq. (3.57¢) holds.

(b) Derivation of Eq. (3.55):

[512K P ,?’§§" “]d

SN e m o
= 2(—23)1(2)[ D7 Ian‘sz’@xzq:z (xl+x2)]d

Z ( )(‘D’l’zﬂ“m—’[%z 512’%2 (x; +x2)]d

n-1

+i®% 3 Qg [Hyy (%, + x,) 7]

r=1
X Py ‘1125 )s

having used the fact that @, is a strong symmetry of ¢; 4,5,
Eq. (3.57a) and Eq. (2.8) of Ref. 5. Equation (3.28) and
equation [8),,(x; +x,)]; =28,,,6,, =1ifI=1and 0if
1 #1, then yield

; (n4+m-—1}
4inkK 35

n n—lr—1
+i 355 (—a () et
=0 /=1 /=0

X [H () + x2) 7] (‘S‘;SHKS-! j)) = 43”K§§+m~ D,
for Eq. (3.57d) .
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It is shown that for any local Lie group G of transformations in R X R" there exist differential
systems of the form x" = f(z,x,...,x'™ ~ 1), which are symmetrical under G. The order m of
these systems is related to r, the number of essential parameters of G.

I. INTRODUCTION

In a recent paper' it was shown that for normal systems
of differential equations of type

X" = f(1,x,%,... " " xeR", (1)

the maximal number of its pointlike symmetry vectors is (1)
infinite, when m = 1; (ii) not greater than n® 4 4n + 3,
when m = 2; (iii) not greater than 2n° + nm + 2, when
m> 2. Since the number 21?4+ nm + 2 increases without
limit with m, the question arises of whether or not it is possi-
ble to find a system of type (1) symmetrical under a given
group G, for a sufficiently high value of m. We prove that the
reply to this question is affirmative. Our result is local, in the
sense that the function fof (1), whose existence we prove,
will be, in general, only locally defined.

Note that since a first-order (m = 1) system always
possesses an infinite number of pointlike symmetry vectors,
one could naively expect to find for any G a first-order sys-
tem possessing G among its symrmetries. That this is not gen-
erally possible is seen if G is, for instance, a group acting
transitively on the (£,x,X) space. For an example see Part (1)
of Sec. L

Note also that the construction given here does not
guarantee that G is the maximal group of pointlike symme-
tries Gy, of (1), but only that GCG,,.

Il. MAIN RESULT

Assume that S, (£,x), i =1,...,7, is a basis of generators
of G. Calling S¢ the e-order extension of S; we have’

(5511 = 3 eSSt

e=0,12,...,

where ¢, are the structure constants of G associated with
the basis {S; (£,x)}. On the other hand, the necessary and
sufficient condition in order that G be a symmetry group of
equations (1) is?

ij=1.r, (2)

Slgm(x(m _ f) — 0,

x"=f
Conditions (3) indicate that the manifold M™ of
(¢,x,...,x'"™) space defined by Eq. (1) is invariant under the
action of the vector fields 8{™,...,8{". We are going to prove
that given G, one can find a sufficiently high m such that, for
a certain f, Egs. (1) do possess G as a group of symmetries.

i=1,.,r (3)
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The idea of the proof is to eliminate the possible transitivity
of the action of G¢ on D° = {(¢,x,...,x* )} for low values of ¢
by making e bigger and bigger. This is made possible, essen-
tially, due to property (2), implying that at any point of D*
the vector fields S!° generate an involutive distribution & ¢
(Ref. 3) of dimension not greater than r. To avoid singular-
ity points where the dimension of the distribution Z¢
changes value, we restrict conveniently the domain D° in
order that in this restricted domain D¢, dim(Z°) keeps a
constant and maximum value d,. Of course
dim @°~' =d, — 1 in the projection of D¢ along the x‘¢
axis. See Ref. 4 for details.

Therefore let S{%,...,S5° be a local basis of Z°. Note that
it might be necessary to renumber the generators of G for the
basis of Z° to appear in this way. Conditions (3) for the
symmetry of (1) under G now take the form

Sxm =D =0, i=1l..d (4)
x\M=f
Writing Eq. (1) in the implicit form
E(tx,...,x") =0, (5
where E is a vector of m components, Egs. (4) take the form
S"(E)goo =0, i=1,.4d,. 6)

A sufficient condition necessary for Egs. (6) to be satisfied is
that the m components of the function E of (6) be local first
integrals of 8{™, that is, if E satisfies

S™E) =0, i=1,.d,. N

But according to the Frobenius theorem?® the number of lo-
cally independent first integrals 7 of an involutive distribu-
tion like 2™ is d;, =dim(D™) —d,, =1 +n(l +m)
—d,, . Now, since d,, <rit follows that 4, >n for sufficiently
large m. Assuming d,>n, in order to satisfy (7) it is suffi-
cient to choose # first integrals 7 of S such that they satisfy
the additional requirement

al.
rank( ! ): n k=1,.,n (8)
axim

Condition (8) guarantees, via the implicit function theorem,
that the system of differential equations

I1,=C,
: )]
=C

n
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can be locally written in the normal form (1). The symbols
C,,...,C, in Egs. (9) are real numbers, and they appear since
Egs. (7) are clearly equivalent to

S{"(E—-C) = (10)
for any CeR" . Let us see that condition (8) can be satisfied if
m is chosen such that

dim(Z™) =dim(Z™" ). (11

In fact, if (8) were not satisfied by an appropriate choice of
1,,....I, between the d, first integrals of Z ™, we would have

a =0, i=1.2,.4d, (12)
kgl * ax( !
where a, are functions on D™.
But (12) implies that the vector field Z defined by
z=% a2 (13)

x=1 8x§;’"

has I,,...,.1,; , as first integrals. Therefore ZeZ ™ and we can
write

d,,
z=Y

¢ S{", (14)
i=1
for certain functions ¢; defined on D™.
Projecting (14) on the vectors
4.9 d =
peevy ’ 0= C,S,gM_ l. 15
3’ ox; 8x§‘ ax{m—1 .-;1 1

But (15) and (11) are contradictory since from the fact that
S{™,....8" are a basis of ™ it immediately follows (note
that ST~ ' does not depend on x) that §{" ~',...,S{" !
generate 2™~ !, Hence by (16),dim 9™~ ' <d,, and (12)
is contradicted. Therefore (11) implies (8).

It remains only to prove that (11) can always be satis-
fied by choosing m conveniently. But this follows from the
fact® that

dim(Z")<dim(Z"+"). (16)

Indeed, since the dimension is a positive integer, nondecreas-
ing by (16), and bounded by r (the number of parameters of
the group) it is obvious that for a certain m (12) holds.
Furthermore, m satisfies

m<r —dim(Z2°) +1=r, (17)

since the worst situation that can occur concerning (11) is
that

dim(Z°) =dim(Z*~ ") + 1,

in which case (17) would hold with the equal sign.

Note that if we require m to be greater than (or equal to)
a given k (k = 1,2,...) then the above considerations lead to
the inequality

s<m, (18)

m<r—dim(Z*~ Y+ k=r, (19)

the equality sign being valid only when the sequence of di-
mensions dim(Z* '), dim(Z* ),... is strictly increasing by
1 at each step and condition (11) is fulfilled when
dim(Z") =dim(Z" Y =r.
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Note also that calling 7(G) the minimum integer such
that for k> 7(G), dim (2 * ) maintains a constant value, that
is, dim(2*) = dim(Z*') for every k,k '>r(G), by (11) we
can say that for every m > r(G) there are systems of differen-
tial equations of order m invariant under G.

Note finally that [see Eq. (11)] the construction given
here actually assures the existence of n-parameter families of
systems of type (1) invariant, for any value of the param-
eters, under G. Let us now see, with two examples, that con-
dition (11) is not necessary for the existence of individual
systems of type (1) invariant under G.

I.EXAMPLES SHOWING THAT CONDITION (11} ISNOT
NECESSARY

(1) Letustake as G the Poincaré groupin R X R 2 (two
spatial dimensions). We shall see that (11) is not satisfied
either for m = 1 or for m = 2. Nevertheless, as has been
shown elsewhere’ ¥ = O is a second-order differential system
(in fact the only one) invariant under the Poincaré group in
R X R*. In fact the six generators of the group are

d d J Jd
PTG Tt T g T T g
g, . d\ .
S o omE e ! — = 1,2. 20
4+ ( o ax) : (20)
Since dim(#°) =3 the group acts transitively on D°
= (1,Xx},X,).

The corresponding generators of the first extension of G
are given by

d J
S(l___. a ==
gt e Ox;
ad aJ
Si'=8,+% —— 21
+ ¥ 13x2 xzé‘x‘ @b
c?
S =8, + (& *l)g-{-xx Frs

One can immediately check that dim(Z'') = 5. Indeed, the
singular points of &' are only those satisfying 1 — x?
— %2 =0. Therefore D, = {(t,x,x5%,%,|1 —x3 — X2
#0}. Here G ! acts transitively in each of the two unconnect-
ed components of D, and also in the set 1 — x? — x2 =0.
Accordingly, it is impossible to find a single first-order sys-
tem of type (1) symmetric under G.
The second-order extension of G is defined by

3 J
S(zz____; S(2i=——’
at 14 axi
s£2=si‘+( xz—a—+x. 9 )
o%, 9%, (22)
S =8¢ + (35:15&1 _3_ + (2x,%, + X,%,) i):
ax, 9%,
S = ((szxl +x,x2) + 3%,%, 9 )
xl g% Xy

We can see that dim Z2=6. Since dim Z°=6
>dim(Z") = § condition (11) is not satisfied. But from
this fact one cannot conclude, in general, that there are not
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systems of type (1), for m = 2, symmetrical under G. In fact
the system x = 0 is a system invariant under G.

Note that since dim &2 = 6 and the group has six pa-
rameters it is clear that for k>2 we will have dim( 2% ) = 6.
Therefore (12) is satisfied for every m > 2 and by the results
of Sec. II we can say that there are two-parameter families of
m-order (m > 2) differential systems symmetrical under G.

(2) Let us take now as G the conformal groupin R X R.
(Note that the space is now only one dimensional. )

The six generators of this group can be taken as

d d d ad
Y 2T ax 37 8t+x Bx
a a ad
S,=t— i Sg= (2 2tx —, 23
4 Em +xat ( +x) + xa (23)

F)
so=20c L 4 124y 2,
s o ) —

and therefore the third-order extension of them will be given
by

S(3 a Sé]___i’
at’ ax
s¢=s,-x9 29
ox ax
J
S4 =S4+(1_x)——2‘x——
ax ax
_4--.-—3..2 —_’
+ (—4xX x)ax,
SP =8, + (2x — zxx)——
9% (24)
+ (2% — 25 — 251 — 6xx) 2
ox

+ { — 6x(2x% + xX) —4>'c'(t+2xx)}-%,
X

S =8¢+ 2t(1 — x%) —o;
ax

+{2(1 = %) — 28(x + 3000} 2

ax

+{ — 6%(2x + t¥%) —45'c'(x+2t3'c)}—§7.
X

From (24) it follows immediately that

dim 2°=2;, dmZ'=3; dim Z*>=4; dim Z?3=>5.
(25)
Wesee in (25) that condition (11) is not fulfilled for m = 1,
m = 2, and m = 3. This implies, as we shall prove in Sec. IV,
that there are no one-parameter families of differential equa-
tions of first-, second-, or third-order invariant under this
group. Nevertheless, as we show now, there is one (and only
one) third-order differential equation invariant under G.
Indeed, invariance under S, and S, implies that the
third-order equation will have the form

¥=f(xX%). (26)

Invariance under S, implies
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X a_ =2f, 27)
dx

that is,

f=a(x)3?, (28)
where a(x) is an arbitrary function.

Invariance under S, implies

(1-32) % _64a— —axa -3, (29)

dx

and therefore,

a(x) = (3x — b)/(x* - 1). (30)

Finally invariance under S, implies & = 0. The resulting
third-order differential equation is automatically invariant
under Sq.
Therefore we have obtained the differential equation
o 3xx?
X= , 31
-1 Gb

which is the only one invariant under the conformal group in
R XR.

Note that since &' does not act transitively on the
whole (z,x,X) space it is possible to have also first-order dif-
ferential equations invariant under G. This is precisely what
happens with the two differential equations

x=1,

x=—1, (32)

which are the only ones (of first order) invariant under G.

Observe that the set {(#,x,%)|1 — x* = 0} defines the
singular points of &, that is, the points where &' has (in
this case) dimension 2.

Although 22 also has singular points, where its dimen-
sion does not attain the maximum value, it is easy to check by
direct computation that there do not exist second-order
equations invariant under the conformal group in R XR.
(The generators S3,82,S3,S{?imply ¥ = 0, but this equation
is incompatible with the two generators S§* and S&.)

IV. n-PARAMETER FAMILIES OF EQUATIONS
INVARIANT UNDER G

The above examples show that condition (11) is, in gen-
eral, not necessary for the existence of isolated systems of
order m invariant under G. We prove here that (11) is neces-
sary and sufficient for the existence of n-parameter families
of equations, each of them being invariant under G.

In fact, the necessary and sufficient conditions in order
that the n-parameter family defined by

E(2,%,%,..,.x'") =G, det( )960 (33)
be invariant under G are
SI"E)jg—c =0, i=1,.,d,. (34)

Since Eqgs. (34) hold as identities in CeR” we must have

S"(E) =0 (35)
Let us see that (35) and
dim(Z2™ ') <dim(Z™) (36)

are contradictory.
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In fact, as explained in Sec. II, if ${",...,S§ is a basis of
2™ then 8{"~',...,8{" ' is a basis of £ ~'. Therefore if
(36) holds we must have

dm

Z c;(ta,.,am HSm-1 =0, 37)
i=1
where not all of the c; are equal to zero.
Therefore
(37) 4m B(E) (35)
(m (m (38)
12} i S (E) 121 jzlip a (m ’

contradicting the hypothesis of det(d E/ dx‘™ ) #0 imposed
in (33). Note that this hypothesis concerning the determi-
nant is essential in order to be able to apply the implicit
function theorem to the variables x{™,...,x\" and put Egs.
(33) in the normal form (1). To conclude, we give an exam-
ple of a one-parameter family of second-order differential
equations invariant under the Poincaré group in R X R.
In this case, the generators of G can be taken as

J a d J
Si=—, S;=—, S3=x_—-+1—. 39
' o 27 ox 3 x3t+ ox (39)
The first and second extensions are given by
d a 2, O
Sl=—,; S!=—,; S{!=8 1—x%) —,
V=g Si=g SEStU-Mg
(40)
and
J d Loy O
SE==; S§2=—,; S8=8§8{ — 3x¥) —.
> ax b STESE A (=30 o
(41)
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One can immediately see that
dim 2°=2, dim%'=3. (42)

Since the group has three parameters it is clear that
dim &* = 3 for any k> 1. Therefore there are one-param-
eter families of differential equations of order m (for any
m>2) invariant under this group. Taking for simplicity
m = 2, the symmetry of the equation

X=f(txx) (43)
under S, and S, implies
Foo, Lo, (44)
at x
that is, f (¢,x,x) = g(x). The symmetry under the boosts .5,
implies
—3xg=i1?—(1—x2) (45)
dx
which leads, after integration, to the one-parameter family
X=c(l —x*)>3"2 (46)
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Integrable forms of the one-dimensional flow equation for unsaturated

heterogeneous porous media
P. Broadbridge®
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The equation for the horizontal transport of a liquid in an unsaturated scale-heterogeneous
porous medium is 38 /3t = A(x)3 /Ix[C(0)36 /dx] — A '(x)E(8)38 /dx — A " (x)§(C + E)db.
A systematic search for Lie-Backlund symmetries leads to the requirement that

C =a(b — )2 as in the homogeneous (4 = 1) case. More generally, (4,E) may be

((1 + mx)*, (1/a — 3)C) or (exp(mx), — 3C /2). In these cases the transport equation may be
linearized and solved exactly. Examples of more complicated heterogeneous extensions are
presented for the integrable nonlinear diffusion equations and for Burgers’ equation.

I. INTRODUCTION

The general form of the nonlinear equation for the one-
dimensional horizontal transport of liquid in an unsaturated
heterogeneous porous medium is

a0

ot
where t and x are time and space coordinates, 6 is the volu-
metric liquid content, and F and G are differentiable func-
tions of two variables. From the general results on Pfaff’s
problem,' there exists a (nonunique) potential function
W(8,x) and an integrating factor K(€,x) such that

a¥ 2‘1_’]
38’ ax1

In the context of porous media, ¥ is the (negative) potential
energy per unit weight>> of liquid due to capillarity and oth-
er interactions between the liquid and the solid medium, and
K is the hydraulic conductivity or permeability of the medi-
um for a specific liquid. Thus Eq. (1) is the equation of
continuity 38 /dt + dv/dx = 0, with the flux v satisfying a
generalization of Darcy’s law:

a¥(0(x,t),x)
Ix )

In heterogeneous media, K and ¥ depend explicitly on both
the moisture content & and the position x.

The complicated nonlinear equation [Eq. (1)] is usual-
ly simplified by imposing reasonable restrictions on the func-
tions F and G. One commonly used simplification is the as-
sumption that soils at any two different locations have
geometrically similar internal structure.*’ From scaling
analysis*® it then follows that

K(6x) =K. (@) [A(x)]% (3a)
V(0x) =W, (8)/A(x), (3b)

where K, (@) and W, (8) are the conductivity and potential
functions at the surface x = 0, and A(x) is the geometrical
scaling factor with A(0) = 1. Here, we are concerned mainly

=—‘7—[F(0,x)iq(—"”—)+6(e,x)], ()
ox ox

[F,G]= —K[

v= —K(0,x) (2)

») Present address: Department of Mathematics, La Trobe University, Bun-
doora, Victoria, Australia 3083.
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with scale-heterogeneous media,* with A(x) twice differen-
tiable. The flow equation [Eq. (1)] then reduces to

ao a [ 60] a6

— =A(x) — |C(0) —=]| — A" (x)E(8) —

E (x) o (&) o (x)E(O) F™

—i”(x)[f (C) +E(6))dt9], (4a)
where
dv
C) =K, —,
)] T: (4b)
dk,
EB) =V, —, 4
()] 70 (4c)
and
J(C+E)d¢9=K.‘I‘.. (4d)

Philip* found that in the particular case K, « ¥,”? and
log( — ¥, ) « 6, Eq. (4) could be transformed to a nonlinear
diffusion equation

P 9 [ apP

—=—|D—], 5

ar  ox ax )
with D an exponential function of P and P a logarithmic
function of W. In the physically relevant case of constant
potential boundary condition and uniform potential initial
condition,

t=0, x>0, ¥=Y,
and

t>0, x=0, Y=Y, (6b)
nonlinear diffusion equations may be transformed to a single
ordinary differential equation (ODE) in which the indepen-
dent variable is the Boltzmann similarity variable
@ = xt ~'/2. Although in this case the ODE must be integrat-
ed numerically, we still obtain interesting exact relation-
ships* such as the flux at x = 0 being proportional to ¢ ~'/2,
independent of A.

Here we determine the class of model porous media
(X.,¥. ,A) for which Eq. (4) is integrable and for which
exact solutions may be found. In Sec. II we assume that the

(6a)
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flow equation [Eq. (4)] possesses a Lie-Backlund symme-
try group. This leads to the restriction, as in the case of ho-
mogeneous media,’ that

C=a(b—8)"? withaandb fixed. )]

However, more generally, A may be either any power
(1 4+ mx)*© or any exponential exp(/mx) with m and a fixed.
In all such cases, E(&) must be a scalar multiple of C(8).

In Sec. III we transform each of the integrable flow
equations of Sec. II to the exactly solvable nonlinear
Fokker-Planck equation

B _0|, | _gad
ar dy dy dy

with p a function of ¥, 7 a multiple of ¢, £ constant, and y a
function of x. The efficacy of Philip’s approach depends on
the transformed equation [Eq. (5)] being a conservation
equation with the dependent variable Pbeing a function of ¥
alone. The same applies to the dependent variable p of Eq.
(8). Given the initial and boundary conditions (6), Eq. (8)
may be solved by the quasianalytic method of Philip,® which
in this case requires no more than the solution of a sequence
of linear ordinary differential equations.

In Sec. IV we consider more general types of heteroge-
neity and present some examples of exactly solvable hetero-
geneous deformations of Fujita’s nonliner diffusion equation
and of Burgers’ nonlinear convection—diffusion equation.

, (8)

li. DETERMINATION OF THE CLASS OF ADMISSIBLE
SCALE-HETEROGENEOUS MEDIA

The nonlinear diffusion term in (4) is commonly simpli-
fied by the Kirchhoff transformation

U= f C(0)d8 + const. 9)
Then, Eq. (4) becomes

du

—=A C—— —A E——

o (x) (x) o

—A”(x)Cf(l+%)du.

In this section C and E are treated as functions of u;
C = C(6(u))and E = E (6(u)), unless other arguments are
shown explicitly.

We now assume that Eq. (10) possesses a one parameter
Lie-Bécklund symmetry group,

(10)

5§ u—ul® = p(stx,uplty,e. s lh)y...),

where u; = [ /9x) u(x,t), and such that £  is the identity
map and £ ¢ = £ ¢+ % Furthermore, we assume that
in infinitesimal form,

u. = u + SL(t,x,up,l1,Uts) + O(5%). (11)

The landmark work of Anderson and Ibragimov® recog-
nized that some generality is lost in restricting the generating
function L to depend only on derivatives #; up to some finite
order j = n. However, for finite 7, a direct method exists for
determining the full algebra of symmetry generators. Fur-
thermore, in the analysis of Eq. (1) it seems reasonable to
consider n = 3, since for homogeneous media an extension
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to n >4 does not yield any new nonlinear diffusion equa-
tions’ or nonlinear diffusion—convection equations.'®

Since (11) is presumed to be an infinitesimal symmetry,
for every solution u(x,t) of (10),

Du, —A(x)C(u. Y (D )?u. + A’ (x)E(u.)D, u,

+ A" (x)C(u. )J(1+ E(u. ;)du. =0(s), (12)

where D, and D, are, respectively, the total ¢ derivative and
total x derivative operating on functions f(¢,x,ug,u,...,4;5...)
on an infinite-dimensional manifold:

Dxf=£[‘+ 3 fuIH, D, f= 3f+i

ax =y, o Ju; S
Since u is presumed tobe a solutlon to (10), u,, is taken to be

J V
(——-) [i(x)Cuz——i’(x)Eu,
ax

-2 "(x)Cf (1 +—Ié—) du}.

The u, terms in (12) are immediately of order 5%, and
there remains a polynomial equation in u, whose coefficients
depend on ¢, x, and u;; j < 4. This and subsequent polynomi-
als have been manipulated using the algebraic software
package REDUCE."!

Setting 2 terms in (12) to zero [ plus O(s”) ], we obtain

JL

ous
Progressively balancing u,u;, u,u,, and u,u, terms, we ob-
tain

0= diL _ diL
Ou; du, Au,du,
and
—20%L dC L _
" Ou, du du -¢9_u; 7
implying

L=u3g(tyx)c3/2+H(trx9u9u1’u2)) (13)
for some functions g and H. Setting the remaining u, terms to
zero, we deduce that g = 1 32 P(¢) for some function P. We
now substitute (13) in (12) and consider (12) as a polyno-
mial equation in u;. Progressively balancing #3 and wu,u,
terms, we obtain d 2H /du? = 0 and

J°H _3dC

Cl/ZPA 3/2
Ju, 0u, 2 du
Therefore,
H= uz(: ZC CY2Pp 3%y, +J(t,x,u)) + Q(t.x,u,u,),

for some functions J and Q. Now the balance of u;u} terms in
(12) leads to the requirement
2(d>C /du*) _ dC/du
dC /du C
implying C = o(u + v)?, with o and v constant. By invert-
ing (9), this is equivalent to
=a/(b— 0)?

(a,b constant). (14)
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Naturally this form of diffusivity is demanded in the special
case of homogeneous (4 = 1) nonlinear diffusion, as dem-
onstrated by Bluman and Kumei.” Previously, exact solu-

tions to the equation
AN B )
at (b—6)* ox

had been developed by Fujita,'> Knight and Philip,"® and
Rosen.'* Now, it is known'® that Lie-Bicklund symmetries
exist also for a scale-heterogeneous porous medium equation
[Eq. (4)] with A = 1 4 mx, and it remains to determine the
full class of admissible scale functions A(x).

In the following analysis, we assume that C = v, since
o = 1 after a suitable rescaling of the 7 coordinateand v =0
after a suitable choice of the constant of integration in (9).
Setting #;u, terms in (12) to zero, we obtain

aoJ

1/2 dE uc____
Ju

u

—3PAA VR EE o3z 2-(-1—J 0,

implying

A3 2Py f 14 —-du+N(x,t)u

for some function N. Then, by balancing the remaining u,
terms in (12), we obtain
SPYELLL YD YENSS (dp)
dx dt

—epaizE

—3PA"A %% — ——P(i 2Au
2 u

+3panA E L epa "AZJ——-du
u U u

—6P/1”12JEdu——3P(/1 )%f—l-i’-’id

A balance of u-independent terms in the above leads to the
requirement that

N = No(D)A(x),

for some function N,. A balance of u-dependent terms im-
plies

_ _21(dP\ 4 ..2(’“'t ..1_)
Ew) = (dt) * t3)

irpP (A1")? (A')?
(15)
Since E is a function of u alone, it follows that
A"A/(A)Y =a, (constant). (16)
Therefore A is restricted to the form
A(x) = (1 + mx)*
[m constant and a = (1 —a,;)” '], (17a)
or
A(x) =exp{mx) (in the case a, = 1). (17b)

Further restrictions are not warranted since an appropriate
form of Eq. (1) may be integrated whenever A satisfies (17a)
or (17b).
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{1l. SOLUTION OF ADMISSIBLE SCALE-
HETEROGENEOUS FLOW EQUATIONS

A. The case of the exponential scale factor

First we consider the special case (A,C,E)
= (e™,a(b— 0)~2, —3/2a(b— 8)~?) corresponding to
a, = 1. From the definitions (4b) and (4¢), it then follows
that

dink. 3
din[V.| 2
so that K, « |, |3/ Now (4b), (14), and (18) imply

El

— || 72 d W, | (b—8) 2 db. (18)
Accordingly, we assume

K.(@)=0b-0)"" (19)
and

¥, (8) = —1i(a/0)(b—6)% for some constant 0.

(20)

Relation (20) could represent a real soil only over a limited
range of 6. Following (19) and (20), the flow equation [Eq.
(10) ] becomes

39 d -2 69]
mx_ b — 9
o [a( )
3 _, 86
el mxa(bh — 0 2 ¥
+ 2 me™a( ) dx
+—:;-amze””‘(b—0)“. (21)
Now, let
p= —[(20)"?*/a]|¥|"? (22a)
=a—1/2e——(l/2)m1(0_ b)- (22b)
Then (21) transforms to
éflw [ *2..3-] mp"2~a£—. (23)
dt ax Jx ox

Equation (23) is known to possess an infinite hierarchy of
Lie-Bickund symmetries.'® In fact, it may be transformed
to the linear diffusion equation, as shown here in the Appen-
dix. Some exact solutions of Eq. (23) have already been ap-
plied to the flushing of ol reservoirs,'®'®!” to the transport
of a solute subject to adsorption,’® and to rainfall infiltration
in unsaturated soil.’” However, these solutions, when trans-
formed back to a concentration field 6(x,t) via (22b), donot
satisfy boundary and initial conditions which are particular-
ly relevant to heterogenous porous media. Nevertheless, the
relevant initial and boundary conditions [Eq. (6)] are ex-
pressed easily in terms of p:

t=0, x>0, p=p;,= —[(20)"*/al|¥,|'? (24a)
and
t>0, x=0, p=p0=—[(20)”2/0]]\[’0}”2. (24b)

Nonlinear Fokker—Planck equations such as (23), subject to
(24), have previously been used to model unsaturated flow
in homogenous media. In the latter application, the convec-
tive term would be due to gravity? rather than heteroge-
neity. Following the quasianalytic method of Philip,® we
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first reexpress Eq. (23) in the form
a (° p—z

1
- dp = +—m(p~t—p"H. (25)
200 P =gz T2 P
Then, we seek a small-7 solution in the form
x(pt) = ¥ @ (Pt (26)

j=1
The boundary condition (24b) transforms to @;(pg) =0 for
all j and the initial condition (24a) is then automatically
satisfied. After substituting (26) in (25), the balance of
t ~ Y2 terms implies

0 -2
f @i dp = 2 .
Pi ¢ ; (P )
In the absence of the nonlinear convective term in (23), the
series (26) would terminate atj = 1 and the solution of (23)
and (24) would be equivalent to the solution of the nonlinear
diffusion problem,

@n

9 _9 [D(p) i”—], with D=p~2, (28)
ax ox

and subject to (24). This is the nonlinear diffusion problem
that (21) and (22) reduce to in the case of a homogenous
medium (m = 0). Unlike the case of general diffusivity,®
when D(p) = p~?, this problem may be solved exactly in
parametric form by transforming (28) to asingle linear ordi-
nary differential equation.'>'> The subsequent balance of
t*2terms (k = 0,1,2,...) in (25) leads to a sequence of inho-
mogeneous ordinary intergrodifferential equations,® the first
two of which are

—1

o
@ dp=p [@i(p)] pi(p) —im(p p Y

Pi
and

0
f psdp=3p @i (P)] 03 (p)

Pi
— 307 i@ P[ei@ ]2

Integrating each side of the conservation equation [Eq.
(23)] from x =0 to x = <, we obtain

a J”

— (p—pldx=w,—w,_, (29)
adt Jo PP ?

where w, and w_ are, respectively, the values of
ymp~' — p~(dp/dx) at x =0 and at x = oo. From (24a),
w, = — lmp; . Now,

%

1 1
W= ——m, -
o ) Po Po %

x=0

1 —1/2g O¥
= ——m, —a K —
2 Po ox

[by (19) and (22)]

x=0

where v, is the physical flux at x = 0. We may carry out the
integration in (29) by parts and assume (26) to obtain
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Uo=%St_'/2 +%al/2m[p°—-1_pi—1] + i Ajt(llz)j_l,
ji=2
(30)
with

A .I 1/2 #o

=5 f #;(p)dp.
Pi

The sorptivity S is the same as that for the homogeneous

(m = 0) soil*!

'Po
S= a”zf @, dp.

Pi
However, unlike the model [Egs. (5) and (6)] of Philip,*
this model predicts that v, is not proportional to t ~*/2, since
the order ¢ /?/~ ! corrections are nontrivial and propor-
tional to the (j — 1)th power of the strength m of the hetero-
geneity.

The radius of convergence of the power series in (30)
has not yet been established. However, by analogy with the
gravitational time scale #,,,, of gravity-assisted infiltration,>
for heterogeneity-affected flow, practical convergence is ex-
pected until z is of the order of the heterogeneity time scale:

e =82 'm™ = pg 2 (32)

The convective term in (23) is of the form — (dH/
dp) (dp/dz), where H(p) = { mp~". In the case of a porous
medium whose texture becomes finer with increasing depth,
m <0andd?H /dp® > 0in the domain p; <p < p, <0. It then
follows from a general result of Philip? that, at large ¢,
p{(x,t) approaches a traveling wave solution p = g(x — Ut),
with speed

U=1imps ' —pi ")/ (po—p:) =ym/(pop;). (33)

In the particular case of Eq. (23), the function g is known
exactly.'®'® Although a traveling potential wave develops in
this model, there will not be a large-t asymptotic traveling
concentration wave, since in heterogeneous media 8 is not a
function of ¥ alone.

(31

B. The case of the power law scale factor

We now consider the class of models in which
A= (1+mx)® and C =a(b — 6) 2 We assume that dP/
dt =0, so that (15) reduces to E= (a~' —3)C. Corre-
sponding to (18), we now have

K. «|¥,|2—372, (34)
Now, (34), (4b), and (14) imply

— W, |V d W, | (b—0)2db.
We assume

K. =0b-0)"= (35)
and

Y, =[a/o(l —ay)](b—0)="), (36)
with o constant and

a,=(2—3a)/(2 —a). (37)

Equation (36), like Eq. (20), could represent a real soil only
over a limited range of 6. In applications to soil physics, we
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require a > 2 or a <0, since the physics demands that ¥,
must be negative and that dXK, /d6 must be positive as ¥,
approaches zero.> One exception is provided by the case
a = 1, in which the absence of the final term in (4) ultimate-
ly allows more freedom in the function K, (8) than that indi-
cated in (35).%°
The flow equation [Eq. (10) ] now takes the form

a0 ]

X

—‘ﬁ=(l+ mx)® — J [a(b—é’)‘2
ot dx

4+ ama(b—0)"*(1 + mx)*—! [}— 9
2 3x

+a(a— 1Dm?a(b—0) l—i] (14 mx)*—2
2 a

(38)
We define a new dependent variable,
172 - /e
p= _a—l/2 [_0_' 20.'2] |\I/|1/2—1/a (393)
aa—
=a "0 -b)(1 + mx)' ~*% (39b)

Equation (38) becomes

Z=-a +mx)1+a,238_[(1 +mxyt—ap=2 %
X

at dx
+am(1 +mx)p_2££—. (40)
dx
Now let

y=m"'In(1 + mx). (41)

Equation (40) then reduces to

dp —20p _» 0p

o _ e 42
at ay 3 ty 2 gy (42)

All of the previously mentloned techniques for solving Eq.
(23) also apply to Eq. (42). The initial and boundary condi-
tions [Eq. (6)] transform to

t=0, y>0,
p=p;= _a—llz
X[(o./a)(za/(a_2))]1/2—1/al\yill/2—l/a
and
>0, y=0,
P =pPo= —a7'?

X [(a'/a)(2a/(a _ 2))]1/2— l/al\l,0|1/2— l/zz.

A small-£ solution y(p,t) may be constructed asin (26). For
a porous medium whose texture becomes finer with increas-
ing depth, am( = (dA /dx)_,) <0, and there will develop
an asymptotic large-t traveling potential wave
Y = G(y — Up), with U= am/p, p;. From (41), this im-
plies that at large ¢ and for fixed 9, x(6,¢) increases exponen-
tially in time. The above analysis, which ignores the effect of
gravity, can apply to vertical infiltration® only up to times of
the order of ¢,,,, = S?[K. (8,) — K. (8,)] 2, where 6, and
8, are initial and final volumetric moisture contents. The
large-t heterogeneity-driven traveling wave or exponentially
accelerated profiles could begin to develop without being
significantly modified by gravity only if the heterogeneity
time scale were significantly less than the gravitational time
scale.
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IV.MORE COMPLICATED FORMS OF HETEROGENEITY

Equation (1) is much more general than Eq. (4a), since
it admits heterogeneity that is more complicated than the
scale heterogeneity represented by Egs. (3a) and (3b). One
approach to constructing integrable examples of a more gen-
eral type is to find smooth deformations of known integrable
homogeneous models. This possibility has by no means been
fully explored, but some examples are given in this section.

A. Heterogeneous extensions of Fujita’s equation

The integrable scale-heterogeneous models introduced
in Sec. II may be viewed as smooth deformations of the inte-
grable nonlinear diffusion equation [Eq. (28)] previously
studied by Fujita'' and others.'>'*?* This same equation
also has integrable heterogeneous relatives of a more exotic
nature. For example, when

F=a[b— (mx+1)"0]) *(mx + 1)
and

G=aym|b— (mx+ 1)"0 ] %(mx + 16,
Eq. (1) transforms to (A3) by taking

w=[(mx+1)6—bl(mx+1)7 !
and

y=0="'m [(mx+1)'"7-1].

For y <0 and mx > 0, none of the above functions have sin-
gularities provided b is greater than the water content 8, at
saturation.

B. Heterogeneous Burgers’ equation
One integrable heterogeneous deformation of Burgers’
equation is

ﬁi__[( 2+ 1)°D. —%o——k(mz+l) 0 9)]
Iz

ot
(43)

with D,, m, and k fixed. For m =0, (43) is the usual
Burgers equation, which has already been applied to field
soils with distributed macropores.?* After defining

Z=z+1,
m
k 1 ) 2
= —}(0—-86,), Tr=tm"D,,
w 2D.(Z+m ( ), T=1tm
Eq. (43) transforms to
2
MW _ 7200 _ 47,90 (44)
or 9Z* A
Now through the transformation
we —Lz 1o (45)
2 udZ
(44) becomes
[u—a-_fi [ 2‘9”] 0. (46)
0z 9z 9zZ*

The transformation (45) is a modification of that used by
Forsyth,! Hopf,?® and Cole?® to solve the homogeneous
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Burgers equation. From Eq. (46), it is sufficient that u satis-
fies the linear equation
du z2 d%u _
ar 9Z*
Equation (47) is amenable to solution by standard integral
transform techniques.

Similar heterogeneous extensions of higher order equa-
tions of the Burgers hierarchy®” have not yet been systemati-
cally investigated. However, from no-go theorems for homo-
geneous media,?® an extension to higher spatial dimensions
seem improbable.

0. (47)
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APPENDIX: REDUCTION OF THE FOKAS-YORTSOS~
ROSEN EQUATION TO THE LINEAR DIFFUSION
EQUATION

The convective term may be removed from Eq. (23) by
the transformation (x,p) - (y,w):

w=pe~ "2, (A1)

y=(2/m)(e™*—1), (A2)
so that

dw 0 w

E= _(9; [D(w) —5y_ ’ (A3)
with

D(w) =w™2 (A4)

The general nonlinear diffusion equation [Eq. (A3)] may
be simplified by applying the Kirchhoff transforma-

tion’3,l3,29
W=fD(w)dw, (A5)
so that
aw I*w
—=D(W) . (A6)
ot ( ay?
In the case of D(w) being given by (A4), we take
= — l/w, (A7)
so that
2
W _ w29 W (A8)
at dy
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Equation (A8) may be transformed to the linear diffusion
equation

a0 _3*Q

R a?’ (49
using the correspondence of Vein, >

W=-‘;%, y=0. (A10)

Given any solution Eq. (A9), we may successively apply the
inverses of transformations (A10), (A7), (A2), and (A1)
to obtain a parametric solution y — (y,p) to Eq. (23).
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In this paper the results of a search for complex bilinear equations with two-soliton solutions
are presented. The following basic types are discussed: (a) the nonlinear Schrédinger equation
B(D,,.)G-F=0,4(D,,D,)F-F= GG*, and (b) the Benjamin—-Ono equation
P(D,,..)F-F* =0. It is found that the existence of two-soliton solutions is not automatic, but
introduces conditions that are like the usual three- and four-soliton conditions. The search was
limited by the degree of 4 = 2, and by degree of P<4. The main results are the following: (1)
(iaD} + DD, +iD, + b)G-F=0, DiF-F=GG* (2) (D2 +aD’+iD, +b)G'F =0,
D,D,F-F=GG*; (3) (iaD? + D% +iD,)F-F* =0, and

(4) (DD, + i(aD, + bD,))F-F* =0,

I. INTRODUCTION

This is the fourth in a series of papers devoted to search-
ing for bilinear equations having three-soliton solutions
(3SS’s). We have previously discussed single bilinear equa-
tions' P(D,,D,,...)F-F = 0, and pairs of equations,”* main-
ly of type B(D,,D,)G-F=0, A(D,,D,)(F-F+ G-G) =0,
where 4 is quadratic and B either odd” or even.’

In this paper we will consider complex bilinear equa-
tions. The parameters in the previously mentioned systems
could also be complex, but their complexity did not play any
special role, since complex conjugates never entered. For the
present systems complex conjugation is used explicitly.
Since the complex parameter has two real degrees of free-
dom it turns out that we obtain analogs of the three- and
four-soliton conditions (3SC, 4SC) already when we try to
construct a 2S8.

We will now go through the types of equations that we
will discuss in this paper.

A. Nonlinear Schrodinger equation

The most famous complex integrable system is of course
the nonlinear Schrodinger equation (NLS)

P + Ve + Iy =0. (1)
With the dependent variable transformation y =G /F, F
real, (1) is satisfied if *

(D2 +iD,)G-F=0, (2a)
D2F-F=GG*, (2b)

where D, and D, are the usual Hirota derivatives. This is an
example of the class of bilinear equations

B(D,,D,,..)G-F=0, (3a)

AWD,,D,,. )FF=C(D,,D,,.)G-G*, (3b)
with the properties

[B(X,T,.)]*=B(—X* —T*..), €))

A(0,0,...) =0. &)

Furthermore, A can be assumed to be even with real coeffi-
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cients and the polynomial C should also satisfy (4). The
overall coefficients of 4, B, and C are unimportant.
The 18S for (3) is given by

F=14Ke"t"”, G=¢é" (6)
where
n=px+ Qt+ - + n, n

_ Clp—p*Q—0*..)
24(p +p*.Q + Q*,..)
and the dispersion relation between the (complex) param-
eters p,(},... is given by
B(p,Q,..) =0. 9)
Note that a formally quadratic term appears in F already for
the 1SS [cf. (11) and (20) in Ref. 3].
The NLS equation has been generalized in various di-
rections. The result presented in Ref. 4 included a cubic
term, the equations can be scaled to

, (8)

iy, 4+ B [Vxx + DI] + 5 [Pane +30I%:1=0, (1)
(iyD} +BD% +iD,)G-F=0, (2a")
together with (2b). Here 8 and ¥ are real constants. The
two-dimensional nonlinear Schrodinger equation (2DNLS)

(or Benney—Roskes or Davey-Stewartson equation) is giv-
en by

iu, — B, +vu,, +8\ul*u — 2uv =0,

B, + v, — B8(|u[?) . = 0. 10
After the change of dependent variables,
u=G/F, v=2B(nF),,, Freal, (11
(10) goes over to™¢
(iD, —BD?% +yD})G-F =0,
(12)

(BD? + yD2)F-F= —5GG*,
which has N-soliton solutions of the same type as NLS. Re-
dekopp’s equations

iu, +uy, =uv, v, + (Ju|>), =0, (13)
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which are also related to Langmuir waves, yield with (11)
(8= — 1) asingular limit of (12),’

(iD, + D*)G-F=0, D,D,F-F=GG*. (14)

Tajiri® has considered the “coupled Higgs field” equation,
which is as in (10) and (12) except that iu, is replaced by
—cuin (10) and iD, by — cin (12). This system also has
N-soliton solutions (NSS). Higher-dimensional generaliza-
tions of the above equations have NSS only if extraneous
conditions are imposed on the parameters.>'®

As an equation with a bilinear form of the above type
that does not have NSS’s we have the Zakharov equations

iEt +Exx =nE, nt: _nxx = (lEIZ)xx; (15)
which, after a transformation similar to (11), yield*!

(iD, —D?® —b)G-F=0, (D?+D2)F-F=GG*.
(16)

However, this equation does not have 2SS of the standard
type,'? and other tests indicate also that it is probably not
integrable.'® (The other two systems discussed in Ref. 11 are
also not integrable. )

When the bilinear equations (2), (12), and (16) are
derived there is a possibility of an additional “decoupling
constant,” so that one can as well take

[B(D,,D,,...) +d ]G'F =0, (17a)
[A(D,,D,,...) +d |F-F=GG*, (17b)
as the bilinear form. The (real) constant d is related to the
boundary condition of the soliton and if it is nonzero then the

1SS is different from (6): one obtains the so called “enve-
lope-hole soliton”>'* by

F=1+4¢", G=ge%l +e"+?P), (18)
where 7 is as in (7), but with real parameters, and
O=kx+wt+ -, d=g>= — B(ik,iw,..), (19)

where also the constants g, k, and w are real. For D we obtain
from (17a),

eiD=B( —p+ik,—Q+iw,..)+b
B(p + ik, + iw,...) +d
and from (17b)
cosD=14+A(p,1},...)/d. 21

When D is eliminated from these we obtain a rather compli-
cated dispersion relation for the parameters p,(},... . This so-
lution shows that it is possible to have real parameters even
when the imaginary unit appears in various places in the
equations. The envelope-hole solitons are not discussed
further in this paper.

, (20)

B. Hirota-Satsuma equation

In all of the systems above we assumed
[B(X,T,..)]*=B(—X*, — T*,.). Thisis trivially trueif
Bis real and either even or odd (the overall i factor does not
matter). The real version of the NLS-type (3) was not stud-
ied in Refs. 2 and 3, because we previously assumed that Cin
(3b) has the property C(0,0,...) = 0. Now C=1, so we will
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include this new type in our analysis. A well-known equation
of this type is the Hirota-Satsuma equation

U, + Uy, + 3vu, =0,
v, —a(v,, + 6vv,) =2buu,.
The substitution (11) with 8 = 1 yields now"’
(D, +D3)F-G=0, D,(D,—aD3)FF=»5bG?
(23)

which has N-soliton solutions for @ = §. The 1SS is given by
(6)-(8) withp*=p, Q*=Q,....

(22)

C. Benjamin-Ono equation

One can also have complex bilinear equations with one
dependent variable,

P(D.,D,, . )F-F*=(, (24)

where P satisfies (4). Such an equation is obtained, e.g., for

the Benjamin—Ono (BO) equation
u, +2uu, + Hu,, =0, (25)

where H is the Hilbert transform. One now defines a new

dependent variable by'®!°

u=1id, log(F*/F) (26)
and then using the property

H[id, log(F*/F)] = —d, log(F*F) (27)
one obtains

(DX +iD,)F-F*=0. (28)

For the BO equation one uses rational solutions, indeed
the polynomial character of F is needed to derive (27). In
this paper we will discuss only standard exponential solu-
tions, for which case the analog of (28) is obtained from the
Joseph equation

u, + 2uu, + Gu,, =0, (29)
where the integral transform G is defined by

Glu(xpt)] = -:1!— ka [coth % 7k(x' — x)

—sgn(x’ —x)]u(x,t)a’x’. (30)

One now has for exponential F,"®

G [id, log(F*/F)] = — 3, log(F*F) + ku,  (31)
and thus, assuming (26), one obtains?°

(D2 + iD, + ikD,)F-F* =0. (32)

This contains the Benjamin—Ono equation in the limit £ -0,
while the KdV equation is obtained (in scaled variables) as
k- 0.

If the system is assumed to be fully complex then the 1SS

for (24) can be written as
F=1+¢", (33)

with # as in (7), and the parameters satisfy the dispersion
relation

P(p,Q,..)=0. (34)
However, it is also possible to assume that the param-
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eters are real, the ansatz is then'®? (a slightly different
choice was used in Ref. 17)

f=1+¢e%", ¢ real, (35)

The complex phase e is determined when (35) is substitut-
ed into (24):

= _P(—p,—Q,.)/P(p,Q,..). (36)

This 1SS seems peculiar due to the fact that the parameters
are not constrained by a dispersion relation. However, (36)
becomes a dispersion relation if we insist that
&(k,,...) =dk for some constant d. This requirement is
natural, because then we can write (24) as!'®

P(D,,D,,.)F,-F_=0, whereF, =F(x+id),
24"

nasin (7) (real),

or!®

P(D,,D,,...exp[idD, |F-F =0, (24")

where Fis as in (33) with real parameters. In (24" ) itis only
the real ( = even) part of the operator that counts. We will
not discuss the real solutions further but consider only the
fully complex case.

In this paper we will report the results of a search for
bilinear equations of types (3) and (24) having a 2SS. In the
next section we will derive the conditions for the existence of
a complex 2SS and mixed 1 + 1SS for the NLS equation of
type (3). The conditions are given in the general case, while
our search is limited to the special case where C=1and 4 is
quadratic. The real case of Hirota—Satsuma is also discussed
for C=1 and 4 quadratic. In Sec. IIl we derive the condi-
tions for the existence of 2S8’s in equations of the Benjamin-
Ono type. For this system our search extends up to degree 4.

Il. THE NONLINEAR SCHRODINGER TYPE
A. Conditions for complex 2S8S’s

We start now our discussion of equations of type (3)
with (4) and (5). The standard 1SS was given in (6)—(9).
[If B and the constants are assumed to be real and
C(0,0,...) = Othen we obtain the 1SS discussed in Ref. 3.] In
addition to the 1SS (6) the system (3) has also the more
trivial 1SS,

F=14¢" G=0, (37)

where now A4 gives the dispersion relation, rather than B as in
(9). Obviously such 1SS’s can be combined to NSS’s while
keeping G = 0, and thus we find as our first condition that
the polynomial 4 must satisfy the 3SC and 4SC applicable to
a bilinear equation of type AF-F = 0.}

For NSS’s composed of 1SS’s of type (6) we may as-
sume that they follow the general pattern proposed by Hir-

ota*:

(0) @~ . 2N
F= Y% eXp[ > U N+ Y ufni], (38a)
u=0,1 i<y i=1
(§8)] (2N) . 2N
G= 3  exp| > ¢, Nup; + Zu,-n.], (38b)
#=0,1 i<j i=1
(-1 (2N) . 2N
G*= Z CXP[ Z ¢(l’.]):ui/u'j + Z :u'ini] ’
#2=0,1 i<j i=1

(38¢c)
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where
n,=px+Qt+--+m, fori=1,.,N, (39a)
n,=n¥*_ 5, fori=N+1,.,2N, (39b)
B(p;,Q,,..) =0 (40)

and the p summations 3 go over all vectors
B = (lhy..ltsn), Wwhere u; =0 or 1, and

N N
Z Hi = 2 Hirn Ta

i=1 i=1

Equation (40) defines an affine manifold where the param-
eters p;, {);,... { = p;) belong; we use the notation ¥} for it,
thus (40) means p,eV . The functions ¢ (i, j) depend on the
parameters p;,p;,1;,(;,... . For i<N, ¢(i,i + N) is deter-
mined already by the 1SS (6), for other indices ¢ is deter-
mined when the 2SS [(38) with N = 2] is substituted into
(3). Let us define the degree of a term by the number of #’s in
the exponent, then after the substitution we find that (3a)
has terms of odd degree, while (3b) has even degree terms.
From degree 2 (or 6) terms we find

(41)

e? It N = C(p, — p¥,..)/[24(p, + pF.-) ], (42)
and from some of the degree 4 terms
D =24(p, — p;,...)/C(p; + p;e)s (43)

both for all i <j<N. Also e?V+ MW+ M — [o#UD) %
The degree 3 and 5 terms yield a condition, which can be
compactly written as

It 3 o
> B ( Y a,.p,.,...) Il (o050 — 0,0,p;,..) =0,
o= +1 i= i<j
(44)
for all p,eV;. Here we have defined p; = — p¥ so that pa-

rameters satisfy dispersion relation (40) for all indices. The
polynomial P is defined by

P(+ 1)y =A4(C),P(—1;:--) =C(--).
(45)
The summation is over all those o,€{ — 1,1} such that
30, =1
The condition obtained from the remaining part of the
degree 4 terms can be written as

0,2) 4 4
z P(H g 2 Uipi,---)[30'102‘7304 —1]
o= ¢1 i i=1
4
X[] Plo:o;p; — 0:0;p;,-) =0, VpeVy, (46)
i<j
wherep; = — p¥,p, = — p¥,and the P’sareasin (45). The

summation is now over all those ¢’s for which £,0;, = Oor 2.

The conditions (44) and (46) are close analogs to the
3SC and 4SC given in Ref. 3 (especially if we could assume
that Cis even). The big difference is that these conditions are
obtained already when we try to construct a 2SS. The fact
that 288’s are not automatic with complex degrees of free-
dom is understandable, for two complex sets of parameters
have four real degrees of freedom.

It is useful at this point also to consider various special
cases of the above conditions. For example, if C=1, which is
assumed in our search, (44) simplifies to
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A(p, — p--)B(py + P2 — p3s-.)

+ A(p; = Py, )B(—p, + Py + pssent)

+A4(ps — py,... ) B(py — p2 + P3,.) =0,

V p.eVs. (44-1)

If the system was real (which implies p; = — p;, ps
= — p,) thenfrom both conditions (44) and (46) we could
extract a factor C(0,...). Thus if C(0,...) =0 then 2SS’s
would be automatic, in agreement with Ref. 3. In the follow-

ing we will consider the real case only if C=1, then the con-
ditions are (p,,p,€¥5)

APy — P2 )B(py + 2p,,...)

+ Ay + py ) B(py — 2py,...) =0, (44-r1)
AQ2p, — 2p2.. )A(Py + Pay...)?

+A(2p, + 2py.. )A(p; — Pay...)?

—2[4(2p,,...) + A(2p,,..)]

XA(py + Dy )A(P — Pos...) = 0. (46-r1)

The 288 used above was composed of two 1SS’s of type
(6). But since the system has also 1SS’s of type (37) one may
ask whether one can combine these different 1SS’s as well to
construct a 2SS. In fact it can be argued that for a fully
integrable system one should be able to combine any kind of
solitons to make a multisoliton solution.”! The natural an-
satz for the 2SS is in this case

F=1 +e¢(1,1)en.+n’1' +e™ 4 VL *Len.+n’f+nA’
G=e" +Len,+",4, (47)

where the parameters in n, satisfy the dispersion relation
A(p,y,Q,,...) = 0. When (47) is substituted into (3a) we
find from the degree 2 and 4 terms

L= —B(p,—psr-)/BO1+par)s (48)

while the degree 2 and 4 terms in (3b) yield (42) again. The
degree 3 terms in (3b) yield a condition, which can be writ-
ten as

3

P( — 005 Y a,.pi,...)P(a,az;p, — O,0,D7--)

o= +1 i=1

XB(p, — 0,03D3,...)B(p; — 0503p5,...) =0, (49)
where now p, = — p¥, p; = p,, that is, p,,p.€¥5, p:eV,,
and in the summation o, = 1. This is again a typical 3SC and
could be written like (44) except that now the polynomials
are not determined by the signs of the ¢’s alone.

Let us again look at some special cases. For C=1 (49)
simplifies to

Z [4(p, — p> + 0p3,...) B(p; — 0p3,...)

o= +1

+ APy — Py )B(py + 0P3,...) ]

XB(p, + ops,...) =0, (49-1)
where p;,p,€V5s, pseV,. If the system is real (i.e,
p, = — p,) then C may be assumed to be real and we find
that each term in (49) would have a factor C(0,...) or

C(p,,...). If the system is real and C=1 then (49-1) be-
comes (p,€¥Vy, ps€V,)
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Y [4(2p, + ops,...) B(p, — 0ps,...)

o= 41

+ A4 (2p,,...)B(p, + 0ps,...)]
XB( —p, +0ps,...) =0. (49-r1)

In Ref. 3 we assumed that the system is real and C(0,...) = 0,
then what remains from (49) is

A2pg,...)B(pg — D4s---)
XB(pg +P4s-)C(pyy.) =0, (49-10)

for all pgeVy, p,€V,. Obviously this is satisfied if C=4. In
Ref. 3 we obtained some results which passed the standard
3SC and for which C #4. However, we did not check
whether they also had mixed 28S’s. It turns out that none of
the results in Ref. 3 with C 54 pass (49-10).

B. Complex results

Our search follows the pattern of previous papers, and
we will not discuss the methods in detail here. We assume
that C=1, and (as in our previous papers) that 4 is a qua-
dratic function of X and T Then 4 can be rotated and scaled
so that 4 = X2, or XT. In this case the “four-soliton condi-
tion” (46) is identically satisfied. The search proceeds as
usual from leading monomial to leading homogeneous poly-
nomial to the final result.

1. A = X?Z The first problem is to determine the leading
monomials in B. We have the freedom of redefining the T
variable; we use this to define the highest-order factor (dif-
fering from X) of the leading homogeneous polynomial as 7.
The monomials that satisfy (44-1) and (49-1) are discussed
in Appendix A. The results are as follows.

1.1. B=X", vB=XX M,K>0. Equation (49-1)
poses no restrictions, but for (44-1) one needs
K<[(M + 1)/3] + 1 ({a] stands for the integer part of a),
except that when M = 3 it is sufficient to have K = 3.

1.2. B=XMT", B =XXT*%, M,N,K,L>0. For this
we find that M =K =L = 1, N=2n + 1 is necessary. The
only possibly nonlinear case can arise from B = v/ B = XT.

1.3. B=T% vB=T* N,L>0. In this case (49-1)
requires L = 1, N = 2n + 1, which also passes (44-1).
Next we consider the extension of the above results to
homogeneous polynomials. Such a possibility exists only for
case 1.2, but the generalizations do not pass the test. After
this we tested systematically the nonhomogeneous general-
izations fitting to the above; our results are the following.
(i) The most general nonlinear result is

B=iaX*+XT+iY+b A=X? C=1. (50)

As special cases it contains the original NLS (2) and Hiro-
ta’s generalization (2a’).
(ii) Linear dispersion manifolds
1.A. Up to degree 4 any polynomial in X (subject to 1.1
above) passes both (44-1) and (49-1) but at higher degrees
we get additional conditions. At degree 5 polynomials with
up to two different factors are acceptable; there are also two
other possibilities, /(X + ia)>(X?+ ibX +¢) and (X
+ ia) (X ? + ibX + ¢)?, for which we find thata = b =0is
necessary. At degree 6 also polynomials with up to two fac-
tors are acceptable, the other cases pass the tests in the fol-
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lowing special cases: (X +ia)*(X?+ibX +c) when
2(2a —b)(b* 4+ 4¢) =0, (X +4iaX?+ibX +c)? when
a?+3=0, and (X +ia)*(X+ib)*(X+ic) when
4a® — 2ab — 6ac + 3b* — 4bc + 5¢* = 0. Similar results are
expected at higher degrees.

1.B.B= (X +ia)(T+ib)>"*!, A=X?,

1.C.B=i(T+ia)>*!, 4=X? C=1.

For some of the above cases we find that the parameters
p and ) will be pure imaginary. In such cases p and p* are
related, but in our formulations this was not assumed. Thus
the conditions that were used before are in fact too strong,
and other such more or less trivial cases may be acceptable.

2. 4=XT. In this case we have the freedom of reflecting
X< T, but no rotational freedom. In Appendix A the follow-
ing results are obtained for the leading monomial.

21. B=X¥ +B=XX, M,K>0. Condition (44-1)
implies K<[ (M + 1)/3] + 1, but (49-1) is more stringent,
demanding that M = 2 or K = 1. Thus the only interesting
caseisB=1vB=X"2

22.B=XMT¥ vB=XXTL, M,N,K,L>0.For these
(44-1) is never satisfied, while (49-1) requires (M =2 or
K =1)and (N =2orL = 1). Since both conditions should
be satisfied we find that no monomial of this type is accepta-
ble.

C=1.

As for the homogeneous extensions we find that
B=X" 1B =Xextendsto (X + aT)*, infactto Y™, and
B=1vB=X?t0X?+ aT? The results are as follows.

(iii) The only nonlinear result in this case is

B=X?*4+aT?*+iY+b, A=XT, C=1 (51)

For a =1, =0 this can be rotated and scaled to the

2DNLS (12), while fora = 0, b = 0 we obtain (14), and for

Y -0 we obtain the coupled Higgs field equation of Tajiri.
(iv) The results with linear dispersion manifold are
2A.B=(X+ia)’™, A=XT, C=1.
2B.B=i(Y+ia)*"+!, A=XT, C=1.

C. Real results

We will next discuss the real results with C=1, i.e.,
results of the Hirota—Satsuma type. We take again4 = X ?or
A = XT, which is simpler than in (23). The conditions are
given in (44-r1) and (49-rl). Since p, = — p, when com-
pared to Sec. II B, we find the conditions somewhat easier.
For monomials the results are derived in Appendix B.

1.A=X?

1.1. B=X", vB=X¥* M,K>0. Equation (44-rl1)
implies K<[M /4] + [ (M + 1)/4] + 2, expect that there is
a special case: for M = 13, K = 9 is sufficient.

1.2.B=X"T", VB =XXT*, M,N,K,L > 0. Equation
(44-rl)ispassedif M =2m+ 1, N=2n+ 1, K=L=1.

1.3.B=T"vB=T% N,L>0.Now from (49-r1) we
obtain L =2, N=2n + 1.

As can be seen the restrictions are less strict than the
ones in Sec. B 1. Again the possible homogeneous general-
ization of 1.2, B = (X 4 aT)*T", does not pass (44-r1) ex-
cept whena = 0.

(i) The nonlinear results are

B=XT+b A=X? C=]1, (52)
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and

B=X’4+T, A=X? C=1, (53)
which turn out to be just the real and imaginary parts of
(50).

(ii) The linear manifold results are as follows.

L.A. Polynomials that depend only on X: Up to degree 7

the acceptable results fall into the sequence B = (X 2 4 a)™
and B= (X2 +a)MXx 2+,

1LB.B=X+1T"+1 4=_X2 C=1.
1L.C.B=T*"*+", 4=X? C=1.
2.A=XT

21.B=X™vB=X* MK>0.From (49-r1) we ob-
tainM =2o0rK=1.
22. B=XMT" B=XXT%, M\NK,L>0. Now
from (44-rl) weget M =2m, N=2n,K=L = 1.
Of'these 2.1 is as before but 2.2 was not acceptable in the
complex case. Statement 2.2 does not have homogeneous
generalizations, but 2.1 generalizes to X2+ aT? and to
(X 4 aT)™, which generalizes still further to Y ™.
(iii) The nonlinear result,
B=X*+aT*+b, A=XT, C=1,
is again just the real part of (51).
(iv) The linear manifold results are
2A.B=X" A4=XT, C=1;
2B.B=Y**! A4=XT, C=1;
2C.B=X*"T*™ A4=XT, C=1;
of which only the last one is a generalization over the com-
plex case.

(54)

ll. THE BENJAMIN-ONO TYPE
A. Conditions for a complex two-soliton solution

We will now derive the conditions for the Benjamin—
Ono-type equation (24) to have a complex 2SS generalizing
(33). The general N-soliton ansatz is of the form

(0,1 eno v
F= 3" ew| S s+ 3w (59
wn=0,1 i<j i=1

which is a combination of (38a) and (38b), with the conven-
tions (39). The dispersion relation is given by the polynomi-
al P (34).

When the 2SS (55) with N = 2 is substituted into (33)
we obtain

P = —LP(p, — p;,.. ) /P (P, + pjyn), TSN <],
(56a)

4D = 2P, (p; — P}/ PP, + Do)y b <N,
(56b)

where P, is the even part of P. In addition to this we get the
following conditions:

Q)

3
Z cr,.p,-,...)H P(o,0;;p;

i=1 i<j

2|

o=+

— 0;0;Pjs...) =0,

(57
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(0,2) 4 4
D P(H o > 0,-p,-,...) [30,0,0504 — 1]
o= +1 i i=1

(4)

X H P(o,0;:p;

i<J

where p;= —p¥, ps= —p¥ Vpel,,
=P, (---),and P(— 1;--*) = P(-*+).

Note the close analogy of (57) and (58) with (44) and
(46): the form is the same, only the meaning of the various
polynomials differ from that used in Sec. II A. From the
identical form it follows that if (24) has 2SS’s then there
exists a corresponding NLS-type equation PG-F =0, P,F-F
+ PG-G* =0 which also has a 2SS [for the relative
signs, compare, e.g., (42) and (56)]. This is also easy to see
directly: substitute f = F + G, f* = F+ G *into Pf-f* =0
to [PF-F4 PG-G*] + PG-G + (PG F)* = 0. Due to the
type of the ansatz we find that the three groups of terms in
the equation must vanish separately, which is equivalent to
the pair of equations mentioned earlier.

We also recall the fact that the conditions [(57) and
(58)] are obtained for the existence of a 2SS, because no
algebraic relation is assumed between the parameters and
their complex conjugates. This also means that these condi-
tions do not vanish automatically if P is assumed to be even
(and therefore real), it is also necessary to assume that the
parameters are real and therefore p; = — p;, p, = — p..

— 0,0;p;,...) =0, (58)

PO+ 1)

B. Results

The even part of P appears in the denominator of e?¢+”
and therefore we will only consider cases where P, does not
vanish identically. We searched for polynomials P of degree
up to 4 that satisfied (57); we did not check (58).

If the degree of P is less than 4 we must have a nonvan-
ishing quadratic term. The rotational degrees of freedom are
fixed partially by rotating this term to X > or X7. When the
degree of P is 4 we fix the rotational degrees by the leading
term (classified as in Ref. 1). The acceptable leading mono-
mialswereP=1vP=X*P=X3T,vP=XT;P=XT?,
v P=XT. The only possible homogeneous extension
P=X2T(X +aT), v P=XT(X + aT) did not pass (57).
We then tested systematically the possibility of additional
terms, cubic and linear if deg(P) <4, and cubic, quadratic,
and linear terms if deg(P) = 4. The results are as follows.

(i) The genuinely nonlinear results are

P=iaX?®+X?%4iT, (59)

which generalizes the Benjamin—Ono equation (28) and
(32) by the cubic term, and

P=XT +i(aX + bT), (60)

which has X T symmetry. The suggested generalization
XT + iY did not pass the test.
(ii) As usual we obtained several results with linear dis-
persion manifold.
A. The one-dimensional results are P=X*+ aX?
+ X P=X*X>+iaX+b); P= (X +DN*X?+ iaX);
and P=X*+iX>4aX?+ibX, if 4a*—20ab+a
+24b6%—-3b=0.
B. Up to degree 4 the other results fit into
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P=iX>+Y(T 4 i)™, which seems to be allowed also for
higher degree.

IV. CONCLUSIONS

In this paper we have discussed certain types of complex
bilinear equations. It turned out that the construction of
complex two-soliton solutions presented conditions analo-
gous to the usual three- and four-soliton conditions. This is
understandable because a two-soliton solution has four sets
of real parameters.

Qur search revealed generalizations of the bilinear for-
mulations of the known integrable systems of this type. For
example, the original nonlinear Schrédinger equation (2)
seems to have two (2 + 1)-dimensional generalizations: the
well-known (12) or (51) and the apparently new (50). For
the Benjamin—Ono type we have the generalization (59) and
the new case (60).

We do not know if these new models are completely
integrable, but they are the only equations within the class
studied that do at least pass the first condition of having two-
soliton solutions. It would be interesting to apply other tests
of integrability on these systems.

Note added in proof: The Benjamin—Ono-type equation
(60) has also been found by Matsuno [see Ref. 22, Eq.
(2.3) 1. Ito has found? that (50) has 3SS for some arbitrar-
ily chosen parameter values. This equation also passes the
Painlevé test.?* '
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APPENDIX A: CONDITIONS FOR THE LEADING TERMS,
NLS EQUATION

In this Appendix we will derive the conditions arising
from (44-1) and (49-1). We will only discuss the more strin-
gent of the conditions, for 1.1, 1.2, and 2.2 it is (44-1) while
for 1.3 and 2.1itis (49-1). Since the rewrite rules do not here
connect different monomials it means that all monomials
must separately vanish. Conditions are derived by a judi-
cious choice of monomials.

1.1. Condition (44-1) reads

(21 — P2)%(py + P2 — p3)™ + (cyclic terms) =0, (A1)

when pf — 0. Our method is to isolate that monomial p7'p? p%,
where m, n, and k are the smallest (for example, if M = 3u it
is obtained by m = k =p + 1, n = u, and cyclic permuta-
tions) and if its coefficient does not vanish identically we can
read off the maximum K from the maximum exponent.
The terms where p; appears with power & are given by

P;‘[[(Pl =P+ )M F (=¥
+ @+ (= DY ) (g, —p)M ) (1]‘:)

M
=20, — (=DM ) (o, — p )M K l(k _ 1)
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The terms combine differently depending whether M — k is
even or odd. Suppose M — k is odd. Then the center term is

2m+ 1\ (M +1
p’l"p;”“pé‘(m,: )( : )2(—1)"‘+l

X{[14+ (= D"+ —k}/[Cm+ DM+ 1)].
(A3)
For most k ’s this does not vanish identically, so arewrite rule
must be imposed.

(a) If M = 3u we take k = & + 1, m = y then the term
in curly brackets in (A3) is z — 1, thus for > 1 we get the
rewrite rule K<y + 1.

(b) If M=3u+2 we take again k=p + 1, but
m=yu+ 1, thus K<u + 2.

(c) For M =3u + 1 the M — k odd terms yield K<u

+ 2, but this condition can be improved by the M — k even
terms to K<y + 1.

These results combine to K<[(M + 1)/3] 4+ 1 for M> 3.
For M3 it is sufficient to take K = M.

1.2. Now (44-1) reads
(» —P2)2(P1 +p,—p)M(Q, + Q, — Q)Y

+ (cyclic terms) =0, (A4)

K

when p¥QF - 0. From (A4) we choose those terms that have
maximum power of {); and no p,. They are given by

[, — P20 +p)M(— DV +p3(—p 4+ p)™

+p1(p1 — )™ 103 (A5)
These terms do not vanish by the rewrite rule pXQF - 0; thus
it should vanish identically. This is possible only if N is odd

and M = 1 (and therefore K = 1), as can be easily seen. To
continue in that case let us take the terms with QY —'Q,,

[Py — P2)2(Py + P2 — P3) + (P2 — P3)*(—py + P2 +P3)

— (p3 — ) (py — P2+ p3) INQYT'Q,, (A6)
and from these the terms linear in p,,
2p,p3(p, — P)NQY ™ 'Q,. (A7)

These can vanish only by the rewrite rule, but then L = 1.
1.3. Condition (49-1) is

> [@1—p2+0p3)*(Q —0Qy)"

o= +1
+ (1 — p2)2(Q, + o)V (Q, +0Q,)V =0, (A8)

for OF -0, 0% -0, and p; —0. Let us take the terms with no
P; and expand them with decreasing order in {2;. We obtain

z (P _pz)z{stv[( —-DV+1]

o= 41
+NQoQY '[(=D¥ '+ 11+ -}
X{) + NQoQ) —' + ---}. (A9)

The leading term vanishes only if N is odd, in which case the
next to leading term is

4N*(p, — p,)’Q¥ —20,Q,. (A10)
This can vanish only by a rewrite rule and thuswe get L = 1.
2.1. Condition (49-1) is
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z [(o1 — P2+ 0p3) (@) — @, + 0Q3) (p, — op3)™
o= +1
+ (P —P2) (0 — Q) (P, + ap3)M 1 (0, + 0p3)™ =0,
(All)

for pf¥ -0, pX -0, p;Q, 0. Now we take the terms with the
maximum number of p, and no ;. The terms with
(op;)*™ * ! vanish in the o summation, the next terms are

P%M(Ql — Qz){(Pl —‘Pz)[( — 1)M+ 1]
+M(—1)M""'p, + Mp,}.

These terms vanishonly if M =2 or K = 1.
2.2. In this case condition (44-1) is more strict, it reads

(P —22)(Q — Q) (P, +py — ps)¥
X(Qy + Q, — Q)Y + (cyclic terms) = 0, (A13)
K

when pFQF - 0. Take terms with maximal power of £, and
no p,. They are given by

Q[ =pa(—pi+ 2D — 01y — P)M],
and do not vanish by the rewrite rule in question.

(A12)

(A14)

APPENDIX B: CONDITIONS FOR THE LEADING
MONOMIAL, HIROTA-SATSUMA EQUATION

In this Appendix we derive conditions for monomials
for real systems with C = 1. In each case we discuss only the
stronger one of the conditions (44-r1) and (49-r1).

1.1. Equation (44-r1) reads

(21 — P2 (Pr + 200 + (py +£2) Py — 2p)M =0,

(B1)
when p¥ - 0. The coefficient of p¥ + 2~ "pZ" vanishes when m
is odd and for even m it is
( Im? — 12mM — 21m + 4M* + 12M + 8 (B2)
m M-m+1)(M—m+2) )

We choose now the optimal m for given M and check
whether (B2) vanishes or not.

(a) When M = 4n, take m = 2n to obtain K<2n + 2,
because expression (B2) does not vanish for integer n.

(b) For M = 4n + 1 the optimal m is m = 2n + 2. The
expression in the curly brackets is 2(2#2 — 51 — 3), which
has n=3 as the only integer root. This means that
K<2n + 2 for all the other cases except for n =3, i.e., for
M = 13 it is sufficient that X<9, which is also necessary for
the term with m = 6.

(c) If M =4n + 2, take m = 2n 4 2 to obtain K<2n

+ 2.

(d) When M = 4n + 3, take m =2n + 2 to obtain
K<2n + 3. Theresultscombineto K< [M /4] + [(M + 1)/
4] + 2, except for the special case M = 13, K = 9.

1.2. Equation (44-r1) reads

0] —Pz)z(Pl +2p,) (¢, + 242)N
+ (7 +P2)2(P1 - 2p,) (g, — 2‘]2)N= 0, (B3)

when p¥gF —0. The terms p3 +#(2q,)" vanish only if N is
odd and similarly for exchanged indices we find M must be
odd. Expanding to the next term we obtain

4P%+M(242)Np2(M— 1), (B4)
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which implies that K = 1. Similarly we can get the result
L=1.
1.3. Now (49-r1) is the strongest condition, it reads

> [2py+0p)* (2, — 005)*"]

o= +1

+8p3 (0} — Q)Y =0, (BS)
for O£ —0, p,—0. The leading terms in p, and 2 vanish only
if N'is odd. The next to leading terms contain 037 so we obtain
N=2n+1,L=2.

2.1. We use again (49-r1), it is now

> [ (20, + 0p3) (2Q, + 03) (p, — 0p3)*M ]

o= +1

+ 89,2, (p] —p3)™ =0, (B6)
with P,Q, -0, pX—0. The p3**+ ! terms vanish by o summa-
tion or by the rewrite rule in index 3. The coefficient of p3 is

42, + 023)p, (2 — M), (B7)

thus we get the conditions M =2 or K = 1.
2.2. Now we use (44-r1) that reads

(P, —P2) (2 — Q) (p; + 2)M(Q, +2Q,)"

+ (py +p) (2 + Q) (P, — 2P2)M(91 - Zﬂz)N’
(B8)

for pXQL 0. The terms p¥ +'QY * ! and p3 *'QY * ! vanish
only if N and M, respectively, are even. A next to leading
term is
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MM 10N, (1 — 2N),
which implies L = 1, similarly K = 1.

(B9)
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This is the first of a series of papers preparing the mathematical framework for a past light-
cone formulation for the quantum mechanics of particles of arbitrary mass and spin. The aim
of past light-cone quantum theory is to define quantum states solely in terms of data accessible
to an observer, i.e., information from within his current past light cone. In order to set up such
a theory one needs to define on the past light cone complete orthonormal sets of functions that
belong to the appropriate unitary irreducible representation of the Poincaré group. Such
functions are interpreted as energy-momentum eigenfunctions. The present paper treats the
discrete spin, zero mass case for all values of the helicity s = 0,1,3,... .

1. NOTATION AND CONVENTIONS

Alphabet  conventions: Greek lowercase
=0,1,2,3, with summation over repeated indices.

Metric tensor: g;, = diag (1, — 1, —1,—1).

Conjugation operations: A superscript *, T, T applied to
a quantity denotes, respectively, the complex conjugate,
transpose, Hermitian conjugate.

Number fields: R and C are, respectively, the real
numbers and the complex numbers.

Dirac delta functions: 5(x) is the ordinary delta func-
tion of a real variable x, §(x) = 6(x1)6(152)6(x3) that of
a three-vector X = (x,,X,,X;), and J8(kk') = &(cos 8,

— c0s 6. )8(@i — @i ) the surface delta function for two
unit vectors k = (sin 8, cos @, ,sin 8, sing, ,cos 8, ) and
k' = (sin 6 cos @,sin @ sin @ ,cos 6;).

Generators of the Poincaré group: p* and j** are the mo-
mentum and the angular momentum operators, respective-
IYy J — (]-23,j31’j 12)’ K = 0017j02yj03)'

Mass zero, helicity s representation of the Poincare
group’: The carrier space is the Hilbert space of square inte-
grable functions ¥(k) of a future pointing null vector
k* = k(1,sin 6, cos @,,sin 6, sin @, ,cos 6, ) defined by the
scalar product

3
d’k .

) =f -

The Poincaré generators are represented by

letters

D"y =#k?, D) = _ kx4 T,
5 dk ()

D(K) = —iﬁk;;—-ﬁskxT,
where

k = k/k,

T = [tan(36, )cos 8;,tan (36, )sin 6,,1], (2)
and

s=04,13,....

*) Permanent address.
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Mass m, spin-j representation of the Poincaré group*: For
J=04,1,3,..., the carrier space is the Hilbert space of func-
tions ¢, (k), where s takes the 2j + 1 values j,j — 1,..., —j
and k* is a future pointing vector on the upper mass shell
k° = ¢, = (k* + m2c*/#*)"/2. The scalar product is

W) =3 [ L praopo,

7%
and the generator representations are

D" =#%k*, DIJ) = — iﬁkx-ﬁ— + #S/,
dk (3
;
D(K) = _jﬁgki_M.
dk & +mc/h

Here S/ is the (2j + 1) X (2j + 1) Hermitian matrix repre-
sentation of the SU(2) generators.

Pauli spin matrices * and &*:

e ()

7= o) <= 1) @
5 = P(o*)*o.

D20 representation of the SO(1,3) generators:
DYy =ihe, DYP(K) = (i#/2)e.

1. INTRODUCTION
A. Motivation

In special relativity an observer may be modeled by the
following idealized picture. His path through space-time is
represented by a timelike trajectory x* = Z*(r), where the
Z*(7) are the four functions of a parameter 7. The latter is
most conveniently taken to be the proper interval
5 (g4, dz* dz#)'/* measured along the trajectory from some
arbitrary initial event. Thus g,,v*v* =1, 1°>1, where
v* = dz*(r)/dr is the observer’s four-velocity vector. An
ideal clock carried by the observer will then record the prop-
er time 7/c that has elapsed since the initial event. Each value
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of 7 corresponds to a “here-now” z*(7), at which the observ-
er has knowledge only of events within his current past light
cone, i.e., the region

xX°<2(7) — |x —z2(D)|. (5)

Thus any events that the observer learns about at his current
proper time 7/c lie on the past light cone

x°=2%(r) — |x —z(D)]. (6)

Introducing a past pointing null vector y*, (2) may be writ-
ten in parametric form

F=A)+y, Y= -y (N

with the vector y taking all values in R The three-surface
that the observer regards as “the present time 7/¢” is actual-
ly the past light cone (7), not the hyperplane x° = 2°(7).
With increasing 7 the events of space-time unfold as a succes-
sion of past light cones, and not as a sequence of spacelike
hyperplanes x° = const.

Motivated by the above picture, a previous paper? devel-
oped a version of quantum mechanics, first suggested by
Dirac,? in which an observer’s quantum state refers to the
past light cone of his current here now. This is in contrast to
the conventional idea of a quantum state “‘at a given time.”
In this new approach a system containing one charged boson
of rest mass m and spin zero is represented by an SO(1,3)
scalar wave function ¢(y,r). Physically acceptable wave
functions are required to be elements of the Hilbert space
#,, defined by the Lorentz invariant scalar product

d 3
(buths), =f 2 gty (8)

If during the interval 7, to 7 the observer receives no data
arising from measurements on the system, then the evolution
is assumed to be unitary,

Y(y,7) = exp { — (/B [2(7) — 2(70) 1 P }4(y.70),
)]
where the generator of translations P, is an Hermitian four-
vector operator defined on a dense subspace of #°,, and
satisfies PAP, = m>c?. The eigenfunctions of P* are of the
form

Y (y)=Qm 7% f " do ae® ) (— ke,
. (10)
Y- V) = [ (D]

where g(o) is an arbitrary real function, and k * any vector
lying on the upper  mass shell k°
=g, = [K* + (mc/#)?]"/%. These functions satisfy com-
pleteness and orthogonality,

d’y '
'pltq (y)'pk’q’ (y) = Ek6(k -k )5qq"
y (1)

d’k , ,
Y — Y DY, () =y5(y —vy'),
q &

with the charge index ¢ assuming the two values + 1. One
may interpret #,, (y) as an eigenfunction with momentum
eigenvalue #ik * and charge eigenvalue ¢q. The momentum
operator p* and charge operator Q in 5, are then given by

637 J. Math. Phys., Vol. 29, No. 3, March 1988

d3k
Er

P =3 [ LE v, Ak G,

Q¢y=}qu"

3
K e g,
&k
The translation generator P in (9) is identified either with
p* or with Q p*, depending on which of two alternative hy-
potheses is made concerning the Hilbert space of physical
states.’

(12)

B. Statement of the problem

The aim of this series of papers is to derive complete
orthonormal sets that generalize the spin-zero results (10),
(11) to other values of spin. To define the problem math-
ematically we need to recall some results from group repre-
sentation theory as applied to the Poincaré group.

The functions ¢, (y) of (10) belong to the mass m,
spin-zero unitary representation of the Poincaré group. Re-
call the following definition introduced by Wigner.* Suppose
that for each element R of a group & there exists a represen-
tation by an operator P, on some Hilbert space 7. If there is
a set of elements ¥, such that

Prip, = ; YpDp,(R),

where {D(R)} is a representation of &, then we say that the
set ¥, belongs to {D(R)}. If the index 4 takes values in a
continuum then the summation in (13) is replaced by inte-
gration.

The set ¢, furnishes an example of (13), & being the
Poincaré group and 7 being 7, . In this case the represen-
tation {P, } is defined by the infinitesimal generators p* of
(12) and the angular momentum operators /** given by

(13)

J=(jB7 = — iy X,
P % (14)
KE(jO',joz,j°3)=ifiy-———.

dy

The carrier space for the representation {D(R)} is the Hil-
bert space ', consisting of functions ¢(k) subject to the
scalar product

d%k
(@1:92) =f

£

(15)

¢ le.

As representative operators for momentum and angular mo-
mentum in #°, we have

DY) =#k?, DI) = ~—iﬁk><—a—-,
ak
P (16)
D(K) = — ifigg,—.
(K) Ik
The set ¢, then satisfies
) a
P, =k g, I, = zﬁkx?}—l; Vg
P (17)
K'pkq = iﬁgk -6—1-(_ ‘l'kq9

which corresponds to (13). Note the sign change in the de-
rivative terms between (16) and (17), arising from the fact
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that (13) involves right multiplication by the operator
D(R). Since (17) holds for each value of the charge index g,
D(R) is actually the direct sum of two copies of the mass m
spin-zero representation. [See (3).]

To summarize, what we have in the spin-zero case is a
representation in 7%, of Hermitian operators ypt, < sub-
ject to the commutation relations

r'1=0, [ =lg%y —gly], (18)

[pp'1=0, [/p*] =itilg?p — gl (19)

L5 7] = iflg™™ + g% — g4+ — g** 1, (20)
and the constraints

=0, ppt=m’c% (21)

with — »°, p® having only positive eigenvalues. In this repre-
sentation y* is diagonal and p* is defined by specifying the
complete orthonormal set of eigenfunctions ¢, using the
ansatz (12). These eigenfunctions belong to the mass m and
spin-zero representation of the Poincaré group.

What we seek in this series of papers are representations
of the system (18)—(21) that correspond to nonzero values
of spin or helicity. Once again the operator y* is required to
be diagonal, so that the carrier space 77 should be %, or the
direct sum of a finite number of copies of #,. To define the
momentum operator p* we then need a set of states |ksg) that
are complete and orthonormal in 7 and belong to one of the
unitary representations of the Poincaré group. To label these
states one would expect the need for a momentum variable k,
some spin or helicity index s, and possibly additional labels g.

In the mass zero, helicity s case [see (1)] we require

Jksg) = (iﬁkx% + ﬁsT)|ksq),
(22)
Klksg) = (iﬁk 5‘% - ﬁsﬁXT)ksq),

where s=0,+4, + 1, +3,..., k= k| =£k°, and kand T
are given by (2). The vector k* is thus future pointing and
null, corresponding to zero mass.

In the case of nonzero mass m and spin j, (22) is re-
placed by

Iksq) = it x 2 ksg) + 3 ks g} S,

dk s 23)

J kX S/, (
Klksq) = ifie, K ksq) ; ks'q) ey
where k * now lies on the mass shell k° = ¢, = (k* + m*¢%/
#)'/2. The spin j takes the values 0, , 1, 3,... , with s ranging
from —j to +4j at integral steps, and S’ is the
(2j + 1) X (2j + 1) matrix representation of the SU(2) gen-
erators. [See (3).]

If the Hilbert space relevant to (22) or (23) is the direct
sum of N copies of 7%, for some integer N, then the states
|ksg) may be represented by a set of N functions of a past
pointing null vector y*. However it is not clear a priori what
values of N will allow a solution of (22) or (23). Nor is it
clear whether the form (14) for the angular momentum op-
erators J and K remains appropriate. It will turn out to be
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necessary to modify (14) by the addition of helicitylike
terms.

From now on in this paper, only mass-zero representa-
tions will be considered. The case of nonzero mass will be
discussed in subsequent papers of the series.

Hl. MASS ZERO WITH HELICITY s
A. The spinor Hilbert spaces 7, and 77,

Rather than work with the Hilbert spaces #°, and 5%,
it is simpler to introduce spinor Hilbert spaces similar to
those used by Dirac® in another context.

Any further pointing null vector k*=k(1,sin 8,
€OS @y, sin G, sin @, cos 8, ) may be written in terms of a
contravariant D /2 gpinor £,

k* = £’ (24)
with
EN4ig? cos 16, .
£= [§3 +i§“] =k € sin 16, e ™ (29

For a given k * the phase angle 7, may be chosen arbitrarily
in (0, 27). We now introduce a Hilbert space 57 ¢ the set of
allsquareintegrablefunctions@ (£ ',£ 2,& 3£ *) of therealand
imaginary parts of the components of £, defined by the scalar
product

@) = [ o 1o e’ ds?ag? a*,

1 d’k
=?f¢f¢2 dny.

26
X (26)

The angular momentum tensor operator /* that arises from
the D /2" transformation law for £ under SL(2,C) transfor-
mations is given by

a 1 , d
('23,'31,"2)=J — —iﬂ{X——“‘}"hT(_l ),
JesJesé £ dk 2 M/ (27
d 1, .9
j01 792 503y — K = — ifik—— ——fi(kXT)| — )»
Ugnienie) =Ke= —ikar—3 (X)( “ome

with T as in (2}. We have the commutators
[3:.6]1 = —ifiot, [Ke€]= — (i/2)fie.  (28)

In the subspace of functions of the form @(k)exp(iny,)
with integral n, the angular momentum operator is equiva-
lent to (1) with helicity s = in.

Similarly, we can represent any past pointing null vector
y* = y( — 1,sin 8 cos @,sin 8 sin g,cos 0) in terms of a co-
variant D*/?° spinor v,

V= —voMh
[See (4).] Writing

v=[v, — iv,v; — iv,] = y'/%[ " cos }O,sin 46 €™,
(29)

we then introduce a Hilbert space 57, the set of all square
integrable functions ¥/(v,,v,,v5,v,) with scalar product
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(o), = f G4, dv, dv, dv, dvy

3
=1 [vre, L an. (30)
The analogs of (27) and (28) are (replacing k*by — y*and
7 by — 1),
J, = —iﬁyx—a—+-l—ﬁW(—-z—a—)
K, =iﬁy—+—ﬁ9xw(—i—),
dy 2 an
with
9 =y/y, = [cot(} §)cos @,cot(} O)sin @, — 1],
(32)
and
[3,v] =i#ve, [K,v] = (i/2)#ve. (33)

B. Orthonormal states for mass zero and helicity s

Consider now the complete orthonormal set of func-
tions

Y (v) = (2/m)exp[2'2(vE + £V ],
= (2/m)exp[i2®? (Vg ' + v 2 + 18> + vE D],
(34)
which span 57°,. We have
4
[rv.maw= T s -5,
A=1 (35)

4
f¢;(v)¢§(v’)d‘§= IT 8(va —vi).
A=1

We can obtain complete and orthonormal functions of y that
belong to a definite helicity by writing (34) in terms of the
variables y,n,k,7, and then projecting out the appropriate
helicity components. From the definitions (25) and (29)
one obtains

e—'i(ﬂ"ﬂk)vg

= (ky)'/?(e"® cos 4@ cos § 6, + €% sin }6'sin 16, ),

eI =145, (36)
where

(= —kyt=ky+ky. (37)
Thus we may write

vE= (/D) 2 exp[in(yk) +i(n —m)],  (38)
with p( &,f() the real function of 8,¢,6, ,¢;. given by

R0 — (2/(1 4 key))'/2

X (€ cos 16 cos 46, + ¥~ sin | O sin 16,).
(39)

Substituting (38) into (34) yields

0 (6) = 2 exp {216 % cos [ (3. + 1 — e ]}

0

) ukn(y)exp[in(n—nk +%1r)], (40)

]
SHES

with
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then (¥) = (1/27)J, (26 V?) e300, (41)

If (40) is inserted into (35) the dependence on the angles
1,m, drops out and we arrive at the relations

3
ju:n (y)uk’n (Y) ‘4_y—=k6(k_k'),
J (42)
fukn(y)urn

That (41) defines a function belonging to helicity s = in
may be seen as follows. A combined SL(2,C) transformation
of the spinors § and v leaves ¥, (v) of (34) invariant, and
hence

dk ,
. =yo(y —y').

U+ (v) = (43)
Applying (27) and (31) to (40) then yields
. d 1
— Ay X — + — ﬁnW)u »(¥)
( Ay .
= (#cx 2o+ T o (3,
(44)

L, O -
(zﬁy—g + 3- ﬁnyXW)uk,, (y)

ey O 1, »
(lﬁk k2 ﬁnkxT)uk,, (y).
Thus the functions u,, (y) defined by (39) and (41) satisfy
all the requirements, viz. completeness, orthogonality, and
definite helicity. Note that the carrier space for the represen-
tations of the (nonclosed) algebra (18)—(21) is #°,, but the
operators J and K of (22) now include helicity terms 1#inW
and gﬁnyxw [see (44)]. The algebra (18) (21) includes
two Poincaré subalgebras { *, /*} and { p*, /*}, and for the
representation associated with ,,(y) both y-J/# and
(p°) ~ 'p-d /% have the eigenvalue s = }n.

An explicit form can be given for the momentum opera-
tor p* that has eigenfunctions u,, (y) and eigenvalues fik *.
Consider the Hermitian operator 7* on %°, defined by

™= — (#/2)d}d*4a,, (45)

where d, is the contravariant D /?° differential operator

5‘9_ + ,-bi’_
o= (46)
2|8 .2
v, av,
Applying 7* to the functions ¥, (v) of (34) yields
P (v) = ik ", (). (47)
Note that the operator
S=a, —}(vd,)*
i
=-——, (48)
2 ay

commutes with 7%, so that the expansion (40) represents a
decomposition of ¥, (v) according to the eigenvalues s = in
of S. Thus

(r* — #kMuy, (y)e™ =0, (S —in)u,, (y)e™ =0.

(49)

G. H. Derrick 639



In terms of the coordinates y,n the operator 7* takes the
form

=10y + Ty S + 7, S (50)
with
2 2
o =A 37 e ()}
#i i ad
- =_[____ _2iW _] 51
M =7 y sin?(10) a‘p i X(?y (51
#
Ty, = ———— [1,0,0, — 1].
* 2y sin®(16) [ ]
Whence from (49)
P, (y) = fik*uy, (), (52)
where
Pt =1l +inml, +in’m, (53)

is a Hermitian operator in #°, . It is a vector operator satisfy-
ing (19), wth j* given by the operators on the left-hand side
of (44).

C. Complete orthonormal sets obtained by unitary
transformations

We can now derive other complete orthonormal sets by
making unitary transformations of the u,,(y) given by
(41). Writing the Bessel function as an integral® (41) be-
comes

einu(:?,ﬁ)

477
X Jt: dcr(% n

We now show that if the phase factor I'(in —io)/
I'(4n + io) in (54) is replaced by a arbitrary phase factor
explig(o)], g(o) real, then one again obtains a complete
orthonormal set satisfying (42) and (44). This is most readi-
ly seen by noticing that

Uyn (Y) =

._ia) Ldn—io) pio—s
I'(4n + io)
(54)

einu(f',ﬁ)
ukn (y) - 4772
XJ da(—;—n — ia)e‘“‘”g‘ fo—1 (55)
is related to u,, (y) by the unitary transformation
, — ,i&(D) (zn + iD) (56)
ukn(y) € F(ln—lD) kn(y)1
where
a
D= — i(y-— + 1)
dy
= —(i/2) [vd, + (v3d,)* +2]. (57)

Note that D is a Hermitian operator (in both #°, and 7, )
that commutes with /*“and S [see (31) and (48) J and satis-
fies the eigenvalue equation

(D—-o0)" '=0.
Particular examples of (55) follow:

(58)
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(1) explig(a)] =7~'*T(} —io)
X [cosh(imo) — isinh(Jmo)],
_ einnio
(2ﬂ3)1/2
Xd;d; (é— 172 — (1/2)n sin§ )
(2) explig(o)] =7~ T (} —io)

X [cosh(4mo) + isinh(47o)],

ullm (y) — §(1/2)n

(59)

, B einy(i’,f() (1/2)n
uk,,(Y)—Wg
x}?g— (§2 ncos £, (60)
(3) g(o) =0,
_einu(i',l;) A/2)n+1 d
, _ n+1 % sE—1).
uy, (y) Py 9 dé ¢-D

(61)

D. Further complete orthonormal sets

A class of complete orthonormal sets of quite a different
type may be derived from unitary transformation of

X (y) = 1%p8(y + 17k), (62)
where [ is an arbitrary constant of dimensions length.

We have the relations

d? ,
J Y vt xe (v) = k8(k — k),

d’;k (63)
f X X (VX)) =p8(y -y,
Jd 1

—i X———ﬁnw)
( ifty dy 2 Y (y)

~(x Z+ L) )

- EPEE Ry R

(64)

, J 1 A
(lﬁ}’gy— _771”YXW) X (Y)

d 1, »
= | iftk — — — #ink T) .
(1 ET > nkXT ) yx (y)

Note that (64) holds in a trivial way for any value of n,
and that the helicity term on the left-hand side has the oppo-
site sign to that in (44). A whole class of orthonormal func-
tions yy. (y) may now be defined by a procedure analogous to
that of (56). Let g(o) be an arbitrary real function of a real
variable g, and D the Hermitian operator on 77, defined by
(57). Now define

i (y) =Py (y)

6(&:’&) “ (y )w-1 ig(o)
L Tl Y (PN (0 1O
ko ) \wz) ¢

The delta function in (65) is the surface delta function for a
unit sphere. Particular examples of (65) follow:

(1) explig(o)] =7""’T(4 —io
X [cosh(} wo) — isinh(imo) ],

(65)
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1o (y) = 8(y, — k) (2/mpk 3122 sin(y/kl?),

(66)
(2) explig(o)] =T+ io)
X [cosh(4mro) + isinh(imo) ],
¥i (v) = 8(y, — k) (21%/my’k) /2 sin(kI?/y). ]
(67)

IV. SUMMARY AND CONCLUDING REMARKS

The functions %, (¥), ug, (¥)s xx (¥), ¥« (¥) given by
(54), (55), (62), and (65), respectively, are complete and
orthonormal sets of functions of y. Any of these alternative
sets can be used as a basis in 77, the Hilbert space defined by
(8). An important property of these sets is that they belong
to the unitary irreducible representation of the Poincaré
group with rest mass zero and helicity 1n. [See (44), (64).]
This suggests the possibility of formulating a past light-cone
quantum mechanics of lightlike quanta. Thus a theory of
neutrinos and antineutrinos might be based on u, , 4, (¥),
and a theory of photons on u, , 5, (¥), just as a theory for
spinless bosons of nonzero mass can be based on the #,, (y)
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of (10). Such theories will be explored in later papers of this
series.
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The large mass asymptotics of the quantum evolution problem for a system of charged
particles that mutually interact through scalar fields and couple to an arbitrary time-varying
external electromagnetic field is rigorously described. If K (x,z; y,s;m) denotes the coordinate
space propagator (time evolution kernel) of this system, the singular perturbation behavior of
K as mass m — « is expressed in terms of a gauge invariant asymptotic expansion. In terms of
the external fields and interparticle interactions, this expansion provides a nonperturbative
approximation for the propagator K that is valid for all particle coordinates x, y and for finite
time displacements ¢ — s. For the class of analytic scalar and vector fields that are defined as
Fourier transforms of time-dependent measures, the existence of this asymptotic series for K in
powers of (m) ~! is established for both real and complex masses. Explicit bounds for the error
term are obtained and a manifestly gauge invariant transport recurrence relation is derived that

uniquely determines all the coefficient functions of the asymptotic series. The small time
asymptotic expansion of X is shown to be embedded within the large mass expansion.

I. INTRODUCTION

The time-dependent Hamiltonian of an N-body quan-
tum system of spinless nonrelativistic particles, each having
mass m and charge ¢, that mutually interact through scalar
fields and couple via the Lorentz force to an external electro-
magnetic field is given by

H(x, p,t,m) = (2m) " '[p — qa(x,1)]*

+ gd(x,t) + V(x,2). (L.1)

Here (x,t) is the space-time point in the (d + 1)-dimension-
al Euclidean space that specifies the generic position of the
particles of the system at time . If the individual particles
move in three dimensions then d = 3N. It is assumed that the
time ¢ takes values in the interval [0,7]. The symbol p repre-
sents the momentum operator — i#V conjugate to x. The
vector and scalar potentials that are responsible for the inter-
action with the external electromagnetic field are denoted by
a:R? X [0,T ] »R?and ¢: R?X [0,T ] - R, respectively. The
mutual interaction of all N particles, and their interaction
with other possible forces, is described by potential ¥.
Consider the propagator (evolution kernel) K for the
system (1.1). If (p,s)eR*X[0,T] is an arbitrary initial
space-time point, then the propagator is a distribution-val-
ued solution of the time-dependent Schrédinger equation

i g; K(x,t; ys;m) = H(x, — ifiV,t,m)K(x,t; y,5;m),
(1.2)
that satisfies the delta-function initial condition

(1.3)

The large mass limit is one mechanism through which
quantum systems exhibit classical-like behavior. In this pa-

K(x,5;y,5m) = 6(x — p).
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per we obtain a detailed description of the analytic behavior
of the propagator K for both real and complex masses. In the
case of forward time evolution, the mass parameter m is re-
stricted to take values in the upper-half complex plane. The
open (closed) upper-half plane is denoted by C_ (C, ) and

G, represents the closed upper-half plane with the origin

deleted, C, = C, \{0}. The mass behavior in C_ is then
utilized to find simple nonperturbative approximations for
K. There is no loss of generality in the assumption of a com-
mon mass m for all N particles since a coordinate scale
change transforms a Hamiltonian with different particle
masses into one with the form (1.1). Similarly the effect of
different charge coupling constants for each particle can be
absorbed into the definitions of @ and ¢.

Stated in general terms, the large mass expansion we
find takes the following form. The kernel X is shown to ad-
mit the factorization

K(x,t; p,55m) = Ko(t — s;x — y;m)F(x,t; y,s;m™ 1),
(1.4)

where K|, is the well-known free evolution kernel (i.e., the
propagator for the Hamiltonian witha = Qand ¢ = V' =0),

K (t — s;x —y;m) = [m/2mifi(t — 5)]1972

Xexplim(x — y)*/(2%(t — 5))]
(1.5)
and F turns out to be a smooth bounded function, for each
allowed (x,; y,5) as |{m| - o in C__. This implies that K and
K, have exactly the same essential singularity at |m| = c.In
addition, the function F has the large meC_ asymptotic ex-
pansion

F~{exp[(i#) "' T (x,t; p,s) 1 H1 + m™'T(x,; y,5)

meC,,
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+mT 2T, (x,t; 9,8) + -} (1.6)
The phase factor J is
1
J(x,5 y,5) =f de{(t—s)[qd + V 1(w(£))
0
— (x —y)-qalw(&))}. (1.7)

In this expression w is the linear path in R*X [0,T ] connect-
ing the initial space-time point (y,s) to the final point (x,?),

w(§) =w(Ex,t; p,s) =y + &(x ~p),s + 5(21 —5)),
£el0,1]. (1.8)

Clearly, J is real valued and independent of both m and 4.
The functions 7; turn out to be gauge invariant and are
uniquely determined as solutions of a transport recurrence
relation that is associated with the linear path w. The gauge
dependence in the propagator is carried entirely by the mass-
independent phase factor J. The appearance of g, ¢, and Vin
the exponential factor J illustrates the nonperturbative na-
ture of the approximation (1.4)-(1.7).

Expansion (1.6) was recently derived’ in a heuristic
fashion by implementing a large mass expansion of the high-
er-order Wentzel-Kramers-Brillonin (WKB) approxima-
tion for the propagator K. The objective of this paper is to
obtain the large mass asymptotics described in Egs. (1.4)—
(1.7), rigorously, for a sufficiently smooth class of potentials
a,¢,and V.

The method of solution, devised for this problem, is to
employ a constructive representation of the propagator K.
For the class of potentials that can be represented as the
Fourier transforms of complex-valued time-dependent mea-
sures, a convergent infinite series expression” for K is known.
Section II reviews the status of the operator-valued and ker-
nel-valued solutions of the quantum evolution problem for
Hamiltonian (1.1). Those features of the constructive repre-
sentation of K needed in this investigation are outlined. In
Sec. III the factorization property (1.4) is verified. The
boundedness of F in the neighborhood of |m| = «ois estab-
lished. We prove that m ' is the appropriate small expan-
sion parameter of F. Furthermore, if the asymptotic expan-
sion (1.6) is carried out to an arbitrary order M, we obtain
bounds for the remainder term that describes the total error.
In Sec. IV the phase factor J is derived by summing all the
mass-independent parts of the constructive representation of
K. Finally a manifestly gauge invariant recurrence relation is
obtained for the coefficient functions 7}, from which 7', and
T, are computed. Section V summarizes our conclusions and
gives the physical interpretation of representation (1.4)—
(1.8) that is applicable if the external fields are solutions of
Maxwell’s equations.

Il. THE COMPLEX MASS PROPAGATOR: DEFINITIONS
AND KNOWN RESULTS

In this section the constructive description of the propa-
gator is recounted. Precise definitions of the operator-valued
and kernel-valued solutions of the evolution problem are
presented. In particular, this section defines the numerous
quantities that enter the constructive formulas for K. A class
of Fourier image potentials is discussed. For these potentials
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one can prove that the kernel-valued Dyson series™* gives,
via the complex mass extension method,” an explicit series
representation of the propagator. Finally, the behavior of the
propagator with respect to the U(1) gauge group is dis-
cussed.

The Hilbert space of square integrable functions on R? is
indicated by & = L *(R®). The identity operator on ¥ will
be I, and our notation for the inner product (defined to be
antilinear in the left argument) is (-,-). In the following
analysis certain restrictions are placed on the vector and sca-
lar potentials that ensure that the operator H(x, — i#iV,t,m)
has a unique closed extension, H(¢,m). Furthermore, these
restrictions will imply that the (dense) domain of H(t,m) is
independent of ¢, i.e., D (H(t,m)) = D,C 57 for all t€[0,T].
Note that for complex masses, the Hamiltonian operators
H(t,m) are not generally self-adjoint unless Im m = 0. Fin-
ally the symbols 7, and (T2 ) denote the closed (and open)
two-dimensional time regions {(z,s)eR?* O<s<¢<T} and
{(#5)eR* 0<s <1< T}

The abstract (5 -valued) evolution problem® in T,
takes the following form. A function ¢: [s,T] — 5 is said to
be a solution of

#p(t) = H(t,m)¥(1), (2.1)

if ¢ takes values in D, possesses a strong derivative 1//
throughout the interval [s,T7], and satisfies (2.1) for all
te[s,T]. Suppose f is an arbitrary function chosen from D,
and s is the time at which the initial data condition is im-
posed. The Cauchy problem in the triangle T, is the problem
of finding, for each fixed s€[0,T], a solution ¢(-,s) of (2.1)
on the interval [s,7’] that satisfies the initial condition

Y(s,s) =1 (2.2)

Consider the description of the solution to the Cauchy
problem in T, in terms of an evolution operator. Let Z ()
be the Banach space (with operator norm ||-}}) of all bound-
ed operators mapping #° into 5. The evolution map
f—¥(1,s) defines a linear operator from D, into 7. The
extension of this operator to #” is defined to be the evolution
operator U(t,s;m). In greater detail, for each fixed value of
meC_, one has the statement.

Definition 1: A two-parameter operator-valued function
U.T, - % (5°) is said to be the Schridinger evolution gen-
erated by {H(t,m): t€[0,T]} if the following holds.

(1) For (t,5)eT,, U(t,s;m) maps the domain D, into
itself. (2.3a)

(2) Uis uniformly bounded in T, and for some positive
finite ¢,

|U(t,s;m)||<exple(t —$)], t>s. (2.3b)
(3) Uis strongly continuous in 7}, .
(4) The following identities hold in Z (#°):
U(tsm) = Ult,r;m) U(r,sm), 0<s<7<t<T, (2.3¢)
UGs,ssm) =1, se[0,T]. (2.3d)

(5) On the domain Dy, U is strongly continuously dif-
ferentiable relative to ¢ and s. Furthermore, U satisfies the
equations of motion on T'%,

i# (—% Ultssm)f = H(m) Ultsm)f, feDy, (2.3¢)
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— iﬁai U(ts,m)f= U(ts;m)H(s,m)f, feD,. (2.30)
s

Now we introduce the family of potentials that are the
Fourier transforms of complex bounded measures on R?.
First, it is notationally simpler to combine the two scalar
fields ¢ and V into a single potential, viz.,

v(x,t) = qb(x,0) + V(x,t). (2.4)

At this point the charge coupling constant ¢ will be taken
into the definition of a so that ga in (1.1) is replaced by a.
The vector and combined scalar potentials are assumed to
have the general form,

a(x,t) =Je“’"‘ dy(t), (2.5a)

v(x,t) = f e dv(t). (2.5b)
Inthese integrals the measures y(¢) and v(¢) are time depen-
dent, while the variable of integration acR? (the wave vec-
tor) is not displayed in the measure symbol dy(¢) or dv(t).

Our measures [y(¢) and v(¢)] will be chosen from the
Banach spaces .# (R?,C"), (r =d or 1) of C’-valued Borel
measures ¥ on R? which have complex-valued Fourier im-
ages (2.5a) and (2.5b). The space .#*(R%C") is the sub-
space of .# (R C") whose images are real valued. The norm
||| for 4 (R,C") and .#*(R?,C") is defined using the total
variation measure |y|, via

71l =171 (R) < co. (2.6)

The same symbol ||-|| is used as the norm for a variety of
different spaces. The context will determine its correct
meaning. An additional restriction on the measures is the
requirement that they have compact support. Let S, CR? be
the closed ball of radius k and center at 0. Then .4 *(S,,C")
will denote the Banach subspace of measures in .#* (R%,C")
that have their support contained by S,..

A time-dependent measure is defined by the map

y(): [0,T] —'-/*(Rd,C’).

From this point of view, ¥(¢) is a Banach-space-valued func-
tion of ¢. In the space .#*(R%C") one has the conventional
definitions® of continuity and differentiability with respect
to ||-||. The symbol y(¢) denotes the derivative of y(+) at .
With this terminology in place we may state the hypothesis
on the potentials that is required for the remainder of this
paper.

Potential class (4): Let k < . The potentials ¢ and v are
said to be in the class (A) if @ and v are the Fourier images,
Eqgs. (2.5a) and (2.5b), of time-dependent measures y( )
and v( ) satisfying

(1) y(e#s*(S, ,,C, t[0,T],

(2) v(tyea*(S,,0), [0,T],

(3) both ¥(-) and v(-) are continuously differentiable

on [0,T].

Hereafter the hypothesis that a and v are in (A) will
always be assumed and so will not usually be cited as a part of
the various lemmas and theorems. The functions a(-,¢) and
v(-,2) in class (A) are R? and R-valued analytic functions.
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The requirement that k < oo means that the electric and
magnetic fields have a space frequency cutoff &. The portion
of our analysis that forces us to adopt class (A) is the con-
structive determination of the propagator K. The Schrs-
dinger evolution operators U(z,s;m) are known to exist>® for
a much wider class of potentials.

Some useful constants related to @ and v that often ap-
pear in the subsequent estimates are

vr =sup|lv()ll, yr=sup|ly()|, yr=sup|r],

2.7)
where each supremum is taken over t€[0,7"]. For a more
complete discussion of the measures ¥(¢) and v(#) and their
properties consult Ref. 2, Sec. I1.

Three immediate consequences of hypothesis (A) are
(for all meC_, t€[0,T1) (1) that H(x, — i#iV,t,m), inter-
preted as the minimal operator on C & (R?), has a unique
closed extension H(t,m) in 5, (2) that the domain of
H(t,m) is time independent and is the same domain D, as
that of the self-adjoint extension of the Laplacian; and (3)
that H(¢,m) is strongly continuously differentiable in ¢ on
D,. Given the validity of these three properties for the family
of Hamilitonian operators {H(¢,m): t€[0,T]}, one can
adapt without difficulty the general theory>® of evolution
equations in Banach space, with unbounded operator coeffi-
cients, to obtain the existence of the complex mass evolution
operator satisfying all the properties of Definition 1. For
details of the proof see Ref. 2, Theorem 2.

Theorem 1: For each meC_, the family of Hamiltonian
operators { H(¢,m): tc[0,T] } generates a Schrodinger evolu-
tion operator U(-,;m): T, — F# (F7).

It is often the case in physical problems that the bound-
ed evolution operators U(¢,s;m) turn out to be represented in
terms of an integral kernel.” For the system (1.1) an appro-
priate definition of the propagator is as follows.

Definition 2: Fix meC__. A two-parameter family (in
T2 ) of functions K (+,z;-,5;m): R X R — C that are measur-
able and locally integrable on R? X R is called the propaga-
tor for evolution {U(t,5;m): (2,5)eT S } if for all feL @ (R?),

[U(t,s;m)f1(x) =fK(x,t;y,S;m)f(y)dy, a.a. Xx.
(2.8)

The notation L 4 (R?) denotes the L ? functions of com-
pact support. Observe that (2.8) determines U(t,s;m)f for
all fe7. The space L & (R?) is a dense subset of . Thus
each feJ¥ is the strong limit of a sequence { £,} CL & (RY).
The value of U(z,s;m)f is then given by

Ult,s;m)f =s-lim | K(-.5 p,s;m)f; (v)dy,
which holds for all f£77.

Definition 2 of the propagator as a type of integral ker-
nel is structured to deal with the difficulties of interpreting
the free propagator as a kernel. The function
Ko(t —s;x —y;m) is bounded but has no decay as
|x — y| - . As a consequence, for an arbitrary wave func-
tion fe%°, one does not generally have that
Ko(t —s;x — y;m)f(y) is L '(R?). This difficulty is circum-
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vented by requiring that £ be in L & (R?). In addition, note
that Definition 2 implies that for each (£,s)€T$, the propa-
gator K(-,t;"s;m) is uniquely defined almost everywhere.
The point ¢ = s is excluded from the specification of the pro-
pagator since, as the case of the free propagator K, shows,
one cannot expect that X be defined for zero time displace-
ment.

The Dyson expansion®* provides, when successful, a
perturbative method for obtaining the operator U(#,s;m).
The non-Laplacian portion of Hamiltonian (1.1) has the
differential structure

B )V + T (Vaa) (5,0) + —— a(x,0)? + p(x0).
m 2m 2m 29

Using standard techniques for perturbing closed operators,®
H(t,m) can be shown to be the sum of the closed extension
H,(m) of the free Hamiltonian — #*(2m)~'A and a per-
turbing operator ¥(#,m) associated with (2.9), i.e.,

H(t,m) = Hy(m) + V(t,m).

The unbounded operator V(¢,m) is defined on the domain
D, [the domain of H,(m)] and is Hy(m) bounded. The
formal integral equation equivalent to the equation of mo-
tion (2.3e) for U(t,s;m) is

Ultsym)f = Up(t:)f — %f dr

X Up(t,7) V(r,m)U(r,s;m)f, (2.10)

where U, (t,s) is the evolution operator generated by H,(m).
Iterating (2.10) leads to the formula

D, (ts;m)f
=(——;-)f dt, Uy(t,t,)V(t,,m)Up(tytn_ )

X"'XV(tpm)Uo(tps)f; (2.11)

where t, = (¢,,...,t,) and < is a shorthand notation for the
n-dimensional time-ordered domain A, (¢,5) = {t,€R" s<t,
<H< <L, <8

In the circumstances where ¥(-,m) is uniformly bound-
ed in the interval [0,77] then it is well known (Ref. 5, Chap.
II) that the sum of terms (2.11) converges strongly to
U(t,s;m)f. However, for the problem at hand (with a#0),
the term (i#i/m)a(x,t)-V isunbounded no matter how nicely
a(x,t) behaves. This difficulty may be overcome? by the use
of the complex mass embedding method. In this method one
obtains the propagator K for real mass values by continuity
from the evolution kernels for complex masses. This tech-
nique is similar to Nelson’s program® of using analytic con-
tinuation in mass to define the Feynman path integral.

For Im m > 0 an operator characterization of the nth
Dyson iterate (2.11) and its summation over » is found in
Ref. 2. Let % be the Schwartz space of complex-valued func-
tions on R? of rapid decrease. If f&.’, meC _ , then the right-
hand side of (2.11) is defined as the n-dimensional strong
Riemann integral on 5. Thus for each (z,5;m)eT, XC,
and n>1 the map D, (¢,5;m): ¥ -5 is well defined. In ad-
dition, for sufficiently short time displacements, ¢ — s, the
sum over n of D, (¢,s;m)f converges strongly to U(z,s;m)f.
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Consider next a kernel representation for D, (t,s;m),
Im m > 0. The relevant formulas are built up in terms of
integrals of composite measures formed from y(-) and v(-).
These measures and their combinatorics are defined as fol-
lows. First, the measure () is given by

w(t) = 2m) "y (e)ry(r) + v(2).

Here * is the scalar convolution of two measures in
4 *(R%C?) that constructs a measurein .# *(R?,C). Recall
that if #(¢) has support in S, ,,, then y(#) *y(¢) has its sup-
port contained in S,. The Fourier transform of u(¢) is the
scalar function (2m) ~'a(x,t)? + v(x,t), which is the deriv-
ative-free part of expression (2.9).

It is helpful to introduce the polar factorization of y(¢)
relative to |y(¢)|. For each [ 0,T] there exists a Borel-mea-
surable function 7(7,): RY—C¢ whose C? Hermitian norm
|(t,")| = 1. Specifically if B denotes the Borel subsets of R?,
then

fdr(i) = f n(ta)d |y(t)| (eeB).

An i-tuple of vectors in R is represented as o; = (a,,...,a; ).
In terms of the parameters n, /, a; _ |, ¢, define the measure
i—1
uito,_y)(e) = f (—az— + > a,-)'ﬂ(t,a)d ly(®],
e i= 1
(2.12)

where the dot denotes the summation over the components
of vectors in C. A combination of the previous two measures
leads to

pi(t) =p(t) — (A/m)ui(ta;_ ).
It follows from its definition that p, (£)e.#*(S,,C).

The measures that appear in the formula for D, (z,s;m)
are constructed from p, (¢;) and |y(¢;)|. For 0<r<n, let J,,
denote the collection of all »-element subsets of {1,...,n}.
Thus J,, = {@} if r = 0, while if 1<r<n, J,, contains (})
sets j, = {j,..,j, }, where we may suppose j; <j, < *** <Jj,.
Each j,eJ,, defines a measure in the n-fold product space
(RYX---XR%B X+ XB) by

A"(yot,) =p1(8) X X |y(5)|

XXy )| X Xp, (2,). (2.13)

The right-hand side of this equality is to be understood in the
following way. If » = 0 the measure involves only products
of p;(t;) for i=1~n. In the case where r>0 and j,
= {j,+.sJ, } then the j;th term of the product for the r = 0
case has element p; (¢;) replaced with |y(#,)|. Finally we
specify the summation convention

n

X=2 X

rj, r=0jel,,
and set ¢, to be

( m ds2 —i\" %Y
c,, = - .
i Zﬁiﬁ(t—s)) ( # ) (l'm)

The integral kernel behavior of D, is then summarized
by the statement (Ref. 2, Lemma 9).

Lemma 1: Suppose that meC_ and (zs)eT$. Let
d, (- ,t;:,5;m): R X R?— C be the parametric integral (n>1),
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d,(xt,y.5m) =3 c,, f dt, JdA"(J’,,t,. ),
3, <
(2.14a)
with the integrand

ifi
a, ——

n
(t—t,Vt))a, a
Zmp,,;ml p Vi Yp

fzexp[ix' S

/=1
im

e (X, — 2} Z, 2.14b

+2ﬁ(t-—»s)( n—Y) ( )

where t,, V¢, = max{¢#,,.,} and

—im X
4 =exp[m (X, ”‘J’)z} {'.];Il [ﬂ(’fi’afi)'vy]]

im
__im__x _ 2], 2.14
XexP[M(t—s)( » (2.14c)

ﬁ n
X,=x—— 3% (t—t,)a,.
m ;< PR

(2.14d)

Then d, (*,t;-s;m) is a Carleman'® kernel for the operator
D, (t,5;m),

D..(t,s;m)f=fdn(',t;ys;m)f(y)dy, . (2.15)

Basically this conclusion emerges from the study of iter-
ations of the map explit,Hy(m)/fV (r,,m) (1,,7,>0) act-
ing on an element of .. Observe that the function d, re-
mains well defined for nonzero real values of m. Hereafterd,
will denote the function (2.14a) on the enlarged domain 77
XRIXRIXC,.

The propagator K is obtained as the sum over n of the
functions d,,, with d, =K. This fact and the explicit formula
(2.14) for d,, is the reason for calling this resuit a construc-
tive representation. The sum over n has a finite radius of
convergence which may restrict the allowed time displace-
ment ¢ — s in T, but which is independent of the x, y vari-
ables. We introduce the convenient convergence parameter

T, = min{|m|(2eky,)~',T}. (2.16)

Theorem 2: Let meC, and (£,5)eT3. Ift —s< T, then
for each(x, y)eR?XR? the (pointwise) sum over n of
d,(x,t; y,s;m) is absolutely convergent and gives an x, y
jointly continuous function

K(xt; y,ssm) = i d, (x,t; y,s;m), (2.17)

n=90

which is the propagator (in the sense of Definition 2) of the
Schrédinger evolution operator U(t,s;m).

Proof: For masses that are in C_ or have positive real
values this result is established in Ref. 2 (Proposition 4 and
Theorem 3). The proof given there is also applicable if
m <0. [

The U(1) gauge dependence of time evolution for sys-
tem (1.1) is well understood.'"-'? The fact that the concept
of evolution has been widened here (via Definition 1) to
include complex masses in C, leaves this situation un-
changed since the mass parameter does not appear in a gauge
transformation. However, in view of the specific results
above several questions relating to gauge invariance arise.

The first question concerns the stability of the potential
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class (A) under gauge transformations. Is there a natural
class of gauge transformations that leave class (A) invar-
iant? An affirmative answer is provided by the following
construction. Let A: R?X [0,7°] =R denote a gauge poten-
tial.

Gauge class % : Let k < ». The gauge potential 4 is said
to be in the class ¥ (k) if A is the Fourier transform,

Alx,t) = J. er*de(n),
of a time-dependent measure £(¢) satisfying
(1) S(esa*(S, ,,0), t[0,T],
(2) £(-) is twice continuously differentiable on [0,7].

Note that A (x,t) defines a -dependent family of bound-
ed operators on . Namely let A(2)eZ (F°) be specified,
for each 1[0,77], by

(A 1(x) = A(x,0)f(x), fe27.

The operator norm of A(z) obeys ||A(2)||<||&(2) || Similar-
ly, thestrong ¢ derivative of A () isalso a uniformly bounded
operator on [0,7'] and is given by

[AMF100) = RAenf(x), foF.

The symbol d4 denotes the partial derivative of A with re-
spect to time. The Abelian U(1) gauge group is convention-
ally taken to be the family of unitary operators {exp[ (¢/i#)
X A(t)]: geR}. However in (2.4) and thereafter the charge
coupling constant g was incorporated into the definition of a
and ¢. To be notationally consistent, here, it is necessary to
set g=1 and write the unitary gauge operator as
exp[ () "'A(D].

Itis easy to see that the measure images of the two gauge
transformation equations,

(2.18)

a(x,tA) = a(xt) + VA(x,1), (2.19a)

v(x,5A) = v(x,t) — dA(x,1), (2.19b)
take the respective forms

y(EA) =y () + VE(), (2.20a)

V(LAY = (1) — £(1), (2.20b)

for all t€[0,T]. Here VE()et * (S, ,,,C?) is defined by
VE(ty(e) = f iadf(t) (eeB).

The definition of & (k) ensures that the right-hand sides of
(2.20a) and (2.20b) are, respectively, in #*(S, ,,,C%) and
M *(S,,C), and satisfy the t-differentiability conditions re-
quired in (A).

Time evolution, whether described in terms of U(z,5;m)
or its kernel from K, possesses a simple gauge dependence.
Let H(t,m;A) be the Hamiltonian operator determined by
(2.9) witha(x,t;A) and v(x,7;A) substituting for a(x,t) and
v(x,t). Further, let U(z,s5;m;A) be the family of complex
mass Schrodinger evolution operators (described in
Theorem 1) generated by {H(¢,m;A): t€[0,T1}. It follows,
without difficulty from (2.3e), that

U(r,s;m;A) = expliA () /AUt s;myexp — iA(s) /5],
This is the operator-valued form of the U(1) gauge depen-
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dence of the evolution process. In an obvious notation its
kernel analog reads

K(x,t; y,s;m;A) = explid (x,0)/#]K (x,1; y,s;m)

xexp[ — iA(y.s)/A]. (2.21)

For sufficiently short time displacements, Theorem 2 guar-
antees the existence of both propagators in (2.21). However
the condition ¢ — s < T, for Hamiltonian H(#,m;A) involves
sup||y(¢,A)||, whereas Hamiltonian H(t,m) uses sup||y(2)||
= y,. Thus the convergence criterion (2.16) is not gauge
invariant. This circumstance is just an artifact of the esti-
mates of d,, (x,t; y,5;m), used in Ref. 2, to study the conver-
gence properties of the series (2.17). Each term in series
(2.17) is highly gauge dependent and it is difficult to bound
them in a manner that reflects the simple U(1) gauge de-
pendence of the exact K.

. LARGE MASS ASYMPTOTIC BEHAVIOR

This section focuses on the mass dependence of the ker-
nels d, (x,t; y,s;m) and K(x,f; y,5;m). It is verified that the
factorization (1.4) is valid and that K,(f — s;x — y;m) car-
ries all the essential singularity of the propagator X in the
inverse mass variable at m~'=0. We show that
F(x,t; y,s;m™ ') admits a m ™" expansion about the point 0.
An explicit bound is obtained for the total truncation error
of this large mass expansion.

The basic formula upon which the results of this section
rest is the expression (2.14) for d,,. We discuss this formula
in detail and show that, in spite of its rather elaborate nature,
it has a structure that permits one to find simple estimates.
These estimates will suffice to determine the mass depen-
dence of K.

It is useful to employ the variable ¥ = m ™. Let % be
the u-complex plane and let % _ (% . ) represent the lower
half-planes Im # <0 (Im #<0). Furthermore, denote the
open semidisk of radius uo by % _ (1) = {ue% _ : |u| <up}
and its closure by % _ (u,). The large mass limit then corre-
sponds to u—0in % _(u,).

To begin, consider the integrand .# defined in (2.14b).
The product of gradients V,, appearing in & may be evaluat-
ed (Ref. 2, Lemma 8) with the result

r/2}

{
Z =3 3 —ithu@—s]""0q;a,)¥(q,;e,),
i=0 q,

(3.1a)

where ® and ¥ are the functions
1
(I)(q’;a") = H n(tq,vz:"aibazi ) .ﬂ(IQr--ZA‘— ]’aqr—2i~-»l )’
{=0

(3.1b)
r—21

Y(q,;a,) = [] 7(¢,.a,)

[

'[y—x—}—(ﬁu) i (t»—tp)ap]. (3.1¢)
p=1

The summation convention in (3.1a) for q, is the fol-
lowing. The symbol [r/2}] is the greatest integer less than or
equal to r/2. Suppose the index set j, = (J,, /5., J, ) is giv-
en. Foreach 0<I/<[r/2], q, represents a particular two-stage
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selection from the set j,. First choose 7 — 2/ elements from
J-» and denote them gq,,g,,...,q, _ ,,;. Next select / pairs from
the remaining 2/ elements in j,, and denote them by
{9, 21419 _214 2 }s{q, _ 1,4, }. The summation involv-
ing q, denotes all A[2'(r — 20)!111] ! distinct choices of this
type.

It is convenient to abbreviate the space-time arguments
of d, by writing O = (x,#; y,5). The dependence of ¢ and ¥
upon { and t, is suppressed, for reasons of notational econ-
omy. Note the simple numerical bounds that ® and ¥ obey

[®l<1, |¥|<(Z,) % (3.2a)
Z, =y —x| + |u|n#kT. (3.2b)

A form of d, more suitable for estimates results from
making the change of variables

{izs—{—é‘{(t—s), g,e[osll’

In the new variables §, = (£,,55,...,5, }€[0,1]" the time-or-
dered integral in (2.11) becomes the £-ordered integration
(0<€, <6< g€, <),

f dt,,=(t—s)”f dg,.
A1) <

Writing .# in the £, variables gives us, after combining the
arguments of the exponential in (2.14b),

I =expli(x —y)*/2%u(t — s) lexp(ib, ) f;,
where

fr=hE, .0, —su) = exp[ — ifu(t —5)a, /2],
{3.3b)

[==l~n.

(3.3a)

an =an(gn)an) = 2 g(é‘,,gj)ai'aj’

fj=1

(3.3¢)

n

b, =b,(§, 0%, =Y a, [y+&x—»],
=1
’ (3.3d)

gL =& (1 -§.). (3.3¢)

Here £ . =Min{£,£ '} and £, = Max{£,£'}. The function
gisa Green’s function for the operator d 2/d£ * on the interval
[0,1]. Observe that the vector y 4 £, (x — y) in (3.3d) is the
space part of w(£,) in (1.8).

A generalized form of the integral (2.14) occurs in
much of the subsequent analysis.This generic form results
when the factors corresponding to K, (¢ — s,x — y;m) are de-
leted and £, is replaced by other related functions of
§,,0,,t — s;u. Denoting these functions by A, ,a, .t — s;u)
define

S, (f,Qu) =(— 1)"2 E (%)n—lui(t_s)n—wz

ri, g,
xf dt, JdA"u,,tn (E)) Gt — 500)

X®(q,;a,)¥(q,;a,)exp(ib,), (3.4)

where {t, (§,)}, =s+ &, (t —5), i = 1 ~n. If we return to
the case with f == £, then (2.14a), (3.1), and (3.3) imply the
factorization
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d, (Om) =Ko(t —s,x —y;m)d, (@m™"),  (3.52)
where
d,(Qu) =S, (f,Qu). (3.5b)

Notice that in (3.5a) one must restrict £>s and m~'#0 in
order to avoid the essential singularity in K, while d, re-
mains well defined by (3.5b) for z = s and # = 0. Of course
(3.5a) gives d,=1.

A number of the basic properties of d, (Qu) follow im-
mediately from its integral form S, ( £5,Q;u). Note first that
A"(j,,t,) has finite total variation in the n-fold product
space (R?X -+ XR%B X * -+ X B). In the notation of Sec. I,
A" is a mapping of J,, XA, (T,0) into the Banach space
A *([S,]",C). As a consequence of (2.7), (2.12), (2.13),
and the fact that a; (/ = 1 ~n) has compact support S;, the
norm of A"(j,,t, ) has the estimate

[A"G,t) || = [AG,ot,) | (R

<(pr+ |ulfinky )"~ "(yr)”
forallj,eJ,, and t, €A, (T,0).

Now observe that f, and ® are x, y independent while
exp(ib,) is a C = function of x, y and that ¥(q,;a,) is a
polynomial of order r — 2/ in x — y. Combining these facts
shows that d,, has partial derivatives with respect to x and y
to arbitrary order that are continuous on the domain 7,
XR¥XR%X % . Furthermore, d, has first-order derivatives
with respect to ¢ and s that are continuous on the domain 7°Q
XR¥XR?X % . Finally for fixed QeT, X R?XR?, d,, is an
entire function of u. Verification of this last statement fol-
lows from an application of Morera’s theorem. The measure
A"(j,,t,) is a polynomial in ¥ and the remaining portion of
the integrand is an entire function of u. Integrate d, over an
arbitrary smooth finite length contour in % . In this case the
multiple integral is absolutely convergent, and thus Fubini’s
theorem shows one may interchange the order of the « and
the A” integration. Doing the u integration first shows that
the complete multiple integral is zero for all contours. Thus
d, is entire. This result is a particular consequence of the fact
that the measures y(z) and v(¢) have compact supports .S, .
If the supports for these measures were all of R then the
multiple integral would not be absolutely convergent for u in
the upper half complex plane and Fubini’s theorem would
no longer apply.

Next consider F of (1.4). From (3.5a) and (2.17) it is
evident that F(x,t; y,s;m™") [ = F(Q;u)] is the sum over n
of d, (Q;u). In fact this sum provides a proper definition of
F. More specifically the following proposition is found.

Proposition 1: Assume the potentials @ and v are in class
(A). Let u, < (2ekty) "

(a) For each (Q;u)eT, X R XRY X % _ (u,) the sum
over n of d, (Q;u) is absolutely convergent and provides a
pointwise definition of the function F, i.e.,

FQuw =3 a,(Qu).
n=20

(3.6)

(3.7

(b) The function F has partial derivatives to arbitrary
order in x, y that are (jointly) continuous on the domain 7',
XRIXRIX % _ (uy).
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(c¢) F has first-order partial derivatives with respect to ¢
and s that are continuous functions on T'% XRYXR?
X U < (uy).

(d) For each QeT, X R? X R F(Q;*) is holomorphic
in % _ (u,) and continuous in % _ (u,).

(e) Let K be the propagator defined in Theorem 2. On
the domain T8 XR? X R? X {meC . : |m~'|<u,} the func-
tion K admits the factorization (1.4).

Proof (sketch): Consider (a) and (d) together. The se-
ries (3.7) and (2.17) are the same, modulo the multiplica-
tive function K, so the convergence proof (Ref. 2, Lemma
10) with obvious modifications applies to (3.7). A minor
c_iiﬁ‘erence in the series (3.7) and (2.17) is that the functions
d, are nonsingular at the point # = 0 and so this point may
be added to the domain of convergence of (3.7). The esti-
mates obtained in demonstrating the pointwise convergence
of (3.7) also show for each fixed QeT, X RYxX R that the
sum (3.7) is absolutely and uniformly convergent in
% . (uy). Since each d,(Q;) is holomorphic in % _ (u,)
and continuous in the compact % . (u,), it follows that
F(Q;-) is holomorphic in % _ (#,) and continuous in
U . (u).

Examine (b) and (c). Let V% , denote the partial deriv-
ative with respect to the variable set (x,,...,X, ¥y,..., ¥4 ) that
is specified by the multi-index ¥ = (¥y,...,734). Use the
method of estimating d, (Q;u) found in Eq. (6.25) of Ref. 2
and which is elaborated on in the proof of Theorem 3 below.
In this way bounds for V1, ya,, (Q;u) are obtained that show
the series over n of V2, y;i,, is absolutely and uniformly con-
vergent for (Q,u) in arbitrary compact subsets of T, X R?
XR¥X % _ (u,).Thus

vi, $a.ouw=73 v,d,0m.
n=0 n=0

Each term in the sum on the right is uniformly continuous in
the compact subsets selected above and so this sum defines a
continuous function in T, X R XR¥X Z _ (uy).

A similar argument verifies that the partial derivative
on the set te(s,T) [or se(0,¢) ] may be interchanged with the
sum over n in (3.7). The sum of dd,, (Q;u)/3t is uniformly
convergent for compact subsets of 7% X R*XRYX %  (u,).
Thus the partial derivative of F with respect to ¢ exists and is
a (jointly) continuous function on the domain 7% X R* X R?
X % . (uy). Finally (e) is an immediate consequence of (a)
and (3.5a). 0

From now on we use the factored form K F of Eq. (1.4)
as the preferred representation of the propagator K. The be-
havior of K in the neighborhoods of t = sand ¥ = O1is conve-
niently studied with the representation K F because both
t = s and u = 0 are allowed in the domain of F.

Proposition 1 is just one of several ways of summarizing
the conclusions that result from analyzing the convergence
properties of series (3.7). In the specific form above the val-
ue of u, was chosen sufficiently small so that the time-dis-
placement condition (2.16) is T, =T, i.e., no restriction
beyond the standard requirement (#,5)eT, . Moreover, even
if the physical mass of a system is such that |m ™| > u,, then
the results of Proposition 1 apply in an altered form. Let
¢>1 be large enough so that m~—'e% _ (cu,). The series

(3.8)
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(3.7) remains convergent if the time displacement obeys the
limitation ¢t — s < T /c.

The holomorphy of F(Q;u) in % _ (u,) means that for
each Q, F(Q;u) has a convergent Taylor series expansion
about every point in % _ (u,). Unfortunately this fact is of
no help in deriving expansion (1.6) since the point ¥ = 0 is
notin thedomain % _ (u,). Instead we proceed to derive the
small # expansion of F(Q;u) by an appropriate restructuring
of series (3.7).

To begin with let us consider the behavior of £, in
% . (uy) that is critical in the following analysis. Recall that
a, is non-negative and has the simple bound (Ref. 13,
Lemma 5),

n 2
0<a, (&, ;0,)<2 3 ai< (ﬁ) .
4 = 2

Ifue% . the argument of the exponential in £, has a nonposi-
tive real part for all §,, o, and so f, admits an

(3.9)

M-term asymptotic  expansion. Upon setting
¢; = (j1) 7 '[#(t — 5)/2i]/ we have for M>1,
fz(gn»un’t —5u)
M—1 . .
= z cjuj(an)J+cMuMHM(§n9an,t'—s;u)’
j=0
' (3.10a)

where the remainder H,, has the u-independent bound
|Ha|<(a, )< (nk /2)*" (3.10b)

for all 0< £, < - <&, < 1 and all ¢,€S,..

In addition to the # dependence in f, the integrals
S, (f,Q;u) acquire # dependence from the measure
A"(j,.t,) and the function V. A convenient description of
the latter # dependence is given by the following lemma.

Lemma 2: Let the symbol L={n,r,j,,l,q,} represent a
set of summation indices that characterize the functions in
(3.12)-(3.1c). Let (1,5)€T,, i>0, and let ue % with |u|<u,,
Denote by .# (L) the following multiple integral that occurs
when (3.10a) is substituted into (3.5b):

f(L)sj de, f At (6,0 [0 (Bt ]!

xexp[y —1b, | ®(q,;0,)¥(g5e,). (3.11)
Then .# is a polynomial in « of the form

FL) = "ﬁ‘:uPA,,(L), (3.12)
whose coeﬂici:nts obey the bound
(2 —9)"""(up) P|4, (L) |<(t —5) P4, (L),  (3.13a)
A, (L)=T"="=7(n)) " (nk /2)*( pr
+ fiugnkyr)" ~"(yr)(Z3)""%,  (3.13b)
Z 3 =|x —y| + uon#kT. (3.13¢)

Proof The measure A" contains n —r factors of
p; = ¢ — ufiu} having u dependence, while ¥ of (3.1c) has
r — 2/ factors each containing one power of . This leads to
(3.12).

Contributions to A » (L) thus arise by selecting a factors
of u from A", where @ =O0,...,min{n — r, p}. These terms
contain @ measures — fiu? of bound #inky,, n — r — a mea-
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sures u; of bound i, and r measures |y;| of bound y. The
remaining p — a factors of u are selected from V. The coeffi-
cient functions of these factors of  in ¥ are bounded by
#in(t — s)k, while the complementary factors from W are
bounded by |x — y|.

Noting that §_d§&, = (n!)~! and upon employing
(3.9) these observations give

(o) 714, (L)
n—r 2
<o 3 3N Gonky )y~ ey ()
N a=o0 2

"—2 _ p—a _ r—2l—(p—a)

X(P_al)(uonﬁk [t—s]) |x —y| ,
(3.14)
where ( ;:f,’ ) is understood to be zero if a > p. Upon multi-
plying (3.14) by (¢ — 5)" ™" one can extract (¢ — s) ? from
the sum over a, and replace (¢ —s)” "~ ° by the larger
T"~ "2 since n — r — a>0. Next multiply and divide the
resulting right-hand side of (3.14) by T'?. The result of these
manipulations is that the factor [ — s] in (3.14) has been
replaced by T, and afactor (¢ — s) °T" ~ "~ ? appears outside
the summation over a. Finally replace the index p — a with b
inside =, and sum over b = 0,...,r — 2/ to obtain (3.13). O
The elementary observations made in (3.10) and
Lemma 2 play a key role in the derivation of the small «
asymptotic expansion of F(Q;u). It is helpful to first intro-
duce the functions that appear in the remainder term bound
of this expansion. Define o;: [0,1) »R by the convergent

series

o= S v+ Dr¥ (50, (3.152)
n=1
and let J;: RXR—R be
I (vy,vy) = (ﬂ)—l(ﬁkz/s)i("])ia'i(zequTkT)
xexp(ce! + ¢5vs), (3.15b)

where

¢t = Quohik) ™" (pr/yr + 1/2kT),

o) = QughkT) ™.
With these conventiohs we have the following theorem.

Theorem 3: Let u, < (2ey-AT) ~'. For all integers M > 1
and each QeT, X RYX R?, F(Q;u) has the small u asympto-
tic expansion in %  (u,),

M1

F(Qu) = 3 uw'P(Q) +u"Ey(Qu).

Jj=0

Throughout their domains of definition the M complex-val-
ued u-independent coefficient functions P;: T, XRXR?
—~C, and the error function E,;: Ty X RIXRIX % _ (ug)
—C possess continuous partial derivatives up to arbitrary
order in (x,y). On the more restricted domains 7% X R?
XR¥and T XR*XRYX % _ (uo), P; and E,, have contin-
uous first-order partial derivatives with respect to ¢ and s.

Furthermore, for each (Q,u)eT, X R'XRYX % (u,),
P; and E,, obey the estimates

(3.16)

t—s\/ JZ
II)J(Q)|<( s) Ii(uoj;lx_yl) +5j,0,
uoT 0

(3.17)

i=
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IEM(Q;u)|<(’uO;) PRATELE

In addition, the derivatives of E,, obey the following order
estimates, as t — s— 0%, uniformly for (x, y,u) in compact
subsets of R¥XR?X % _ (u,). For all |¥| > 0 the spatial de-
rivative V7, ,E,, = O((t — s)™), for (¢,5)eT,. The time de-
rivatives (3 /9t)E,, and (3 /9s)E,, are O((t — s)™~") for
(1,5)€T%. Thus expansion (3.16) may be differentiated to
first order in the time variables and to arbitrary order in the
space arguments.

Proof: Replace f5in S, ( f,,Q;u) with expansion (3.10a).
After summing over n to obtain F(Q;u) one finds

(3.18)

F(Qu) = A_’}fl F,(Qu) + Fy (Qu), (3.19a)
where -

F(Qu) =cu’ i] S.((a,)',Qu) + 8,0, (3.19b)
and .

Fa Q) = cpt™ S S, (Hypo Q). (3.19)

n=1
Consider the series that sums to F, (Q;u), and let ue %,
|u| <u, for the moment. The function S, ((a, ),Q;u) is a finite
sum of integrals.# (L) that are precisely those characterized
in Lemma 2. Hence 4'S,((a,) ,Q;u) is a polynomial in
u, and F; is given by the multiple series [with ¢/
=(- D" =D /@h],

n—21
F(Qu)—8,=3 3 ci#i*'="
L p=0
X (t -—S)i+l+n—rui+1+pAp(L).
(3.20)
If we bound the coefficients (z —s)"~"u’4,(L) using
(3.13) then (3.20) has the following majorizing series,
which we denote as I, =1, (|u|,t — s,|x — y|),
n—21
j‘_ - 2 Z (i12°) = 1ﬁi+1—nlu|i+l(t _ s)i+1+p2p (L).
L =0
: (3.21)
An important property of this majorizing series is that it is
monotone increasing in each of the three variables |u|, ¢ — s,
and |x — y|. This is a consequence of the fact that the alge-
braic powers of these variables are always non-negative.
Thus a bound of I, found for any particular value of ||,
t —s, and |x — y! is applicable to all smaller values of these
variables.
Note that in terms of the indices in the set L, the bound
(3.21) and (3.13) is independent of the more elaborate sets
j,andgq,.In (3.21) onealwayshas (¢ — s) #T ~—?<1; thesum
over p has a maximum of n+ 1 terms, and there are
A[2'(r — 2D)U1] ~! terms in the q, sum, thereby

n—2l

> Y (t—s)4, (L)

q, p=0
(n4 D)AT" " (_ri)”
2r—20Mnt \ 2

X (g + fiugnky )"~ "(yr) (Z9) 2. (3.22)
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Multiply (3.22) by (12°) "% +'~"(Ju|(¢t — 5))'* " and then
sum over the additional indices n,7.j,,/ to obtain

2\i i n
j.<_l_(ﬁ|u|(t—s)k ) ) (rn+ Dn? (_T_)
nnrj,

T 8 n! fi
X (pr + fugnky)" ~"(vr)'B,,, (3.23a)
where
(/2] ' AL 1
B,.,EZ——"——( ) (h“‘) . (3.23b)
TS (r=2DMINT 2Z°

One completes the bound study of 7, by using the same pat-
tern of estimates found in (6.22)—(6.25) of Ref. 2. Namely
in (3.23b) replace 1/(r — 2I)! by the larger n'/(r — I)! and
extend the / sum from [7/2] to 7. The final estimate for 7 ;18

T, (Jult = s,|x — p|)
<((t —8)/TYI, (4T, |x — y}) < o0, (3.24)

where /; is the function defined by (3.15b). This bound ap-
plies for all />0, and requires 2eu,y kT < 1 for its validity.

This convergence property of the infinite series (3.19b)
of polynomials in u implies that F, (Q;-) is holomorphic on
the complex disk |u| <u,. Let f; ; be its Taylor series coeffi-
cients at the origin, viz.

J

1@ =07 (Z) Fgw

u

From (3.20) it is clear that f; ; =0 whenever j<i. Then
write

(j>0).  (3.25)

u=0

M1

FQu) = 3 ulf (@) + uMF  (Qu),

i=i
which defines F, ,, for O < |u|<u,. Combining (3.26a) with
(3.19a) gives the desired small ¥ expansion (3.16), where

PO =S £,(0 (j=0..M—1),
i=0

and the remainder term is

(3.26a)

(3.26b)

M—1_
Ep(Qu) =3 Fa(Qu) +u~"Fy (Qu). (3.26¢)
i=0

Consider next the bound (3.17). To compute f, ; from
(3.25), we may differentiate series (3.20) term by term. In
this way one finds that f; ; is the coefficient of the jth power of
u in the series (3.20),

n—2

fi@=Y ¥ 8

i+ 1l+p
L p=0

X (t—5)"""TI"PA, (L) 4 8,08,0. (3.27)

Estimate this sum term by term. First use (3.13a) in order to
bound (¢ —s)"~" A,(L), next employ the Kronecker
delta  restriction j=i+/I/+p to write T ™7
=T —/+i+ly i+1+r—Jand finally replace the Kronecker
delta with 1. In this way one finds

t—s\/
| £, (0)|<8,08;0 +( uOTs)

n--21 1 )
Xz ‘ﬁ'+1_"u6+lT'+l+"_’
12!
L p=0 U

C'{ﬁi+l—n

k 2 2i
xﬂ’T/,’— oy + Fiugnky,)" ="
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X (rr)(Z3) % (3.28)
Summing inequality (3.28) from i/ = 0 to/ leads immediate-
1y to the bound (3.17).

The error function E,, is a sum of terms ~,., M and
u~ MF,,. Examine F, a first. Comparing (3.20) and (3.26a)
shows that

= n—21 .

Fu@u=3 3 OU+I+p—MacH*'="
L p=0
X(t__s)n—r+i+lui+l+p_MAp(L)’

(3.29)

where O is the Heaviside function with value 1 for argument
0. After taking the modulus of each term in (3.29) employ
inequality (3.13a) and use the restriction i + 7+ p>M to
replace |u|'*!+P~Mby uit TP~ Mand [(t —s)/T)+'+?
by [ (¢ — 5)/T 1%, then replace the Heaviside function by 1.
Now proceed in the same fashion as in the estimate (3.23) to
show that

|, pe (@) | <((2 — $)/uoTYMI, (T, |x — p|).  (3.30)

The final function to bound is u —¥F,,. Upon using
(3.10b) the series (3.19¢) for F,, is majorized term by term
by I, (|u|,t —s,]x — |). Since the series T,, has only posi-
tive powers of ||, with the least power equal to M, it follows
that

|u=MF\ (Qu) | <ug My (o)t — 5,]x — )

<t = $)/ueT Iy (uoT|x — y]),
(3.31)

where the final inequality has utilized (3.24) with i = M.
Adding inequalities (3.30) and (3.31) establishes (3.18).
Observe that P; is of order (#—s) / and E,, is of order
(t —s)M.

It remains to verify the differentiability claims for P,
since those for E,, then follow from Proposition 1 and
(3.16). The basic idea is to show that the integrals defining
A, (L) have the desired differentiability, and then that series
(3.27) has the required absolute and uniform convergence.
This lengthy but elementary task can be carried out using
similar methods to the one sketched in Proposition 1. The
order estimates for V7  E,, and the time derivatives of E,,
are obtained by a direct (similar to that above) majorization
of their defining series. O

Several remarks about Theorem 3 and the analysis lead-
ing up to it are warranted. It is natural to question why ex-
pansion (3.16) is an asymptotic expansion of arbitrary order
M and not a convergent series expansion in ». If one attempts
to write (3.16) as a series by setting M = « one must re-
place asymptotic expansion (3.10a) by the related Taylor
series for f,. After making this substitution and using the
estimates (3.22)—(3.24), then expansion (3. 1§) would form
a convergent series if the sum over i>0 of I, were finite.
However, a little study shows that this sum is divergent. This
negative result does not entirely rule out the possibility thata
convergent series expansion of F(Q;u) in u exists, but rather
indicates the methods found in this section, for bounding the
multiple series expansion of F(Q;u), are not precise enough
to resolve this issue.
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The new feature used in estimating the series (3.7) and
its companion series such as (3.29), which was not utilized
in Ref. 2, is the observation that the majorizing series like
(3.21) are monotone increasing in the variables |u|,  — s,
and |x — y|. As an example consider the bound for series
(3.7). After employing the inequality | f,|<1 and upon us-
ing the fact that only non-negative powers of # and t — s
occur in the majorizing series we find

|F(Qu)|<(1 — 2euyrkT) ' exp(e) + c5|x —y]).
(3.32)
This bound is an improvement on (6.30) of Ref. 2, in that it
is uniform with respect to all compact subsets of 7, X R?
XRIX U _ (ug).

IV. GAUGE-INVARIANT RECURRENCE RELATIONS
AND EXPANSION COEFFICIENTS

This section completes and consolidates the derivation
of the large mass asymptotic expansion (1.6). It is estab-
lished that the propagator K, as constructed by Theorem 2, is
asolution of the time-dependent Schrodinger equation (1.2)
interpreted as a classical partial differential equation in the
open region T4 XR?X R If the boundary points ¢ = s are
added to T'%, the propagator determines the fundamental
solution of (1.2). The series (3.7), which defines F, is expli-
citly summed for u =0 in order to determine the co-
efficient function Py(Q). It turns out that P,(Q)
= exp[ (i#) ~'J(Q) ], where J(Q) is given by (1.7). By in-
troducing the representation

F(Qu) = T(Qu)exp[ (i) ~J(Q)], (4.1)
the function F is split into a gauge-dependent part
exp[ (i) ~'J ] and a gauge-independent function 7. The
small u expansion for T follows from representation (4.1)
together with expansion (3.16) of Theorem 3. The resultant
coefficient functions T, are shown to be determined by a
manifestly gauge invariant recurrence relation. Bound esti-
mates for all 7; are found and explicit formulas are given for
T,and T,.

First, let us find the specific form of P,(Q). The asymp-
totic expansion (3.16) is applicable if ¥ =0, i.e.,

Py(Q) =F(Q0) = ¥ d,(00). (4.2)

n=0
The following is a consequence of formulas (3.5b) and
(4.2).

Lemma 3: For all QeT, X R? X R?,

Py(Q) = exp[ (iA) ' T(Q)]. (4.3)
Proof: Tt will be shown that for all integers #n>0,
d,(@:0) = (1/n)) [ (i) =T (Q)]". (4.4)

Given identities (4.2) and (4.4) the result (4.3) follows at
once. In order to establish (4.4) use

d,(Q:0) =S, ( f,20).

Note the various simplifications of (3.4) that occur if 4 = 0.

(a) All terms on its right-hand side with /> 0 vanish
since they contain a multiplicative factor #' and the remain-
ing functions in the integrand have no negative powers of u.
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(b) The measure A"(j,,t,) of Eq. (2.13) hastheu =0
form

AT (,.t,)

u=20
=A6" (1)
=v(8) X Xy )| Xy )| Xv(e,). (4.5)

On the right-hand side of (4.5) all measures p, (¢;), i4j,, in
A™(j,,t, ) have been replaced by their « = 0 values v(z;).
(c) For u = 0wehave f, = 1, and for / = 0 the function
® has value 1. Furthermore the sum over g, has one term q,
= j, so that

W(a 0o = [T 7052, 0 —x). (4.6)
i=1

Taken together properties (a)—(c) imply that
_J

4,(Q0) = (#) " 3 z(t—s)"—'f ds,

=07

xfdA:;u,,t"(gn))exp(ib,,mj,;an>|,=o.

Observe the simple product form now assumed by the 7, j,
sum

S dA3 (Gt (6, ) Goe, ) (£ —5) =7
ri,
_x_

— 11 [0 - 222 ants 6,0,

ji=1 r—

Since exp(ib, ) factors into a product of exponentials each
with argument being ia; - [y + §;(x — y) ], the n-fold multi-
ple integral over @, becomes a product of » integrals, viz.,

d,(Q0) = (z'h)—"j dg, f TT €1 = $)an(t, (5.0) — (x — p)-drle; (&) explia, [y + & (x — ) 1)}

J=1

= (iﬁ)“"f dg, fI [t =)&) — (x —p)aw(E))]

i=1

= { f dE [(t — Yo (€)) — (x — y)-a(wcg))]]".

Employing the identities (2.5a) and (2.5b) shows that the
second equality follows from the first. The integrand of
(4.7a) is invariant with respect to permutations among the
set {£,,...,&, }. Using this symmetry leads to (4.7b), which is
just the statement (4.4). O

The next task is to establish that the propagator X is the
pointwise solution of (1.2) which in the limit #—s* obeys
the initial condition (1.3). As a preliminary it is useful to
recall the following multidimensional stationary phase
asymptotic formula.

Lemma 4: Let §>0 and let hi: R X % _(§)>C be a
function satisfying the following.

(i) There exists a compact set YC R, whose interior
contains supp 4 (-,4) for all Ae% _ (8).

(ii) For every d-component multi-index y of length
|¥|<d, the partial derivatives V?A: RYX % . (8§) —C exist
and are continuous.

For 0#Ae% . (6) define the complex-valued integral

d/2 22
I(4) E(—l—) f exp[iv—] h(y.A)dy.
A R A
Then

lim I(4) = h(0,0). (4.8)
A0

Proof: We omit the details that demonstrate this familiar
result. For real values of A the principal term /(0;0) of (4.8)
is the same as that found in Theorem 2.2 of Fedoriuk’s re-
view article'® on the stationary phase method and pseudodif-
ferential operators. However, our hypotheses differ from
those of Ref. 14. The result above is most easily obtained by
treating the multidimensional integral on the left-hand side
of (4.8) as d iterated one-dimensional integrals and then
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(4.7a)

(4.7b)

applying iteratively Fedoriuk’s method for deriving the sta-
tionary phase expansion for one-dimensional integrals. The
y differentiability of 4 is necessary since the proof depends on
integration by parts with respect to y. O

We denote the nth-order continuously differentiable
functions of compact support on R? by CZ (RY).

Proposition 2 Let uy<(2ekTy;)~' and m~
€%  (15)\{0}. The propagator K of Theorem 2 satisfies the
Schrodinger partial differential equation

1

ifi % K(x,t; y,s;m) = H(x, — ifiV,t,m)K(x,t; y,s5;m)
(4.9a)
identically for all (£,5x,3)eT % X R? X R®. Furthermore, for
all gC 2 (RY),

xeR?, s€[0,T).

(4.9b)
Proof: It is most convenient to use representation (1.4)
for K, wherein F is defined by series (3.7). Fix s€[0,T).
Theorem 3 tells us that within the domain R?X (s,T)
X R4, F(x,t; y,5;m ™) has continuous partial derivatives to
first order in £ and to second order in x. In view of the explicit
form (1.5) for K,(t — s;x — y;m) it follows that both the
left- and right-hand sides of (4.9a) exist and are continuous.
Suppose geD,NL % (R?). Let the function ®: R¥ X (s,T)

—C be the integral

lim | K(x,t; y,5;m)¢(p)dy = d(x),

st

P(x,t) = fK(x,t; yus;m)d(y)dy. (4.10)

From Theorems 1 and 2 one has that ®(-,¢)el 2(R?) and
Ults;m)p = (- ,2), te(s,T). (4.11)
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We claim that ®(-,£)eC*(R?), te(s,T); P(x,")eC(s,T)
for each xeR% and furthermore that

Vid(x,1) =fV£K(x,t;y,S;m)¢(y)dy, ly|<2, (4.12a)

a

=z 4.12b
E ( )

O(x,0) = f g;K(x,t;y,s;mm(y)dy.

The proof of (4.12) uses the theorem in analysis justify-
ing the interchange of partial derivative of a parameter and
integration. Consider (4.12a) first. Under the hypotheses
that (i) for a.a. yeR?, K(-,¢; y,5;m) () is C2(R?); (ii) for
every xeR9 and y such that |y|<2, VIK(x,5;",5;m)$( ") is
L'(R?); and (iii) for every compact XCR? and y with
|7| = 2, there exists a function gkeL '(R}) such that for all
(%, y)eX X R, |VIK(x,8 y,5;m)$(y)|<g% (), then (1)
e€C?(R?) and (4.12a) is valid for every xeR? and every y
with |7|<2 (cf. Ref. 15, Appendix B.3). The specific form of
K, and Proposition 1(b) shows that (i) is valid. Require-
ments (ii) and (iii) are also a consequence of Proposition
1(b). In particular, note that for |y|<2, VIF(x,t; y,5;m ™) is
C(RZ XR}), thereby VZK(x,t; y,5;m) has a uniform bound,
A(7,X) < coonthe compactset X X supp ¢. This fact togeth-
er with ¢eL?(R?) suffices to establish (ii). In (iii) an
acceptable choice for the x-independent L ' (RY) majorizing
function g% (») is 4(3,X) |#()|. Thus ®(-,1)eC?*(R?) and
(4.12a) holds. A revision of this argument using Proposition
1 (c) and (d) verifies (4.12b) for each (x,t)eR?X (s,T).

Consider the effect of H(¢t,;m) on ®(-,¢). By (4.11),
(2.3a), and (4.12a) one has that ®(-,t)eD,NC?*(RZ). On
functions of this class the action of H(#,m) is the same as that
of the classical differential operator H(x, — ifiV,t,m), i.e.,
for almost all x,

[H(t,m)D( 1)1 (x) = H(x, — ifiV,t,m)P(x,t).
Identity (4.12a) shows that
[H(t,m)P(-,t)](x)

(4.13a)

- fH(x, VL m)K (58 psm)$ 0Ny, (4.13b)

A similar reduction is possible for the strong ¢ deriva-
tive, (d /dt)®(-,t), which exists by virtue of Definition 1(5)
and Theorem 1. Letting A, (¢), te(s,T), be the difference
quotient

(1) =n[®Ct+n"") —O(,0]
for suitably large integers r, then (d /dt)®(-,¢) is the strong
limit in &% = L 2(R?) of h, () as n— o. From the L ?(R¢)
convergent sequence {h,, (t)},, we may extract a subse-
quence {h,,j ') - that converges pointwise almost every-
where (Ref. 16, Theorem 3.12). Since ®(x,-)eC ' (s,T), this
pointwise limit is just the classical partial derivative 3®/3t.
In other words,

[i <I>(-,t)](x) =8_<I> (x,t) (a.a. x). (4.14a)
dt ot
Applying relation (4.12b) gives

[iﬁ% o( ',t)] (x) =ifi f %K(x,t;ys;m)qf(y)dy-
(4.14b)
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The 77 -valued equation of motion (2.3e) requires that
the left-hand sides of (4.13b) and (4.14b) are equal almost
everywhere. By continuity it is then true for all x that

f [ih —g—t K(x,t; y,s;m) — H(x, — i#iV,t,m)

xK(x,t;y,S;m)]¢(y)dy= 0. (4.15)

For fixed x,t,5,m the function in the curly bracket is C(R} )
and thus it is L >(Y) on any compact subset YCR;. Inter-
preting (4.15) as an inner product on L *(¥) shows that
(4.9a) holds almost everywhere in Rj . The y continuity of all
the functions in (4.9a) show it holds everywhere in 7% X R?
X R4

Finally consider statement (4.9b). Fix any xeR® and
s€[0,T). In the integral appearing in (4.10) change the vari-
able of integration by y -y + x and define A = 2#(z — 5)/m.
Then

.2
®O(x,t) = (7il) ““zfexp(%—) h(pA)dy = I(A),

(4.16a)
where
hYA)=F(x,5+ A | |m|/QF)y + x,5m~ Dy + x)
(4.16b)

is defined for all Ac % _ (8) with 6 = 24(T — s)/|m|. Now A
satisfies the hypothesis of Lemma 4 because (i) we may take
Y as the closure of any open ball containing — x + supp ¢,
and (ii) the differentiability and continuity are a conse-
quence of (4.16b), Proposition 1(b), and the hypothesis
#eC & (R?). Now take the limit £—s* in (4.16a), which im-
plies A ~0. Applying (4.8) it is seen that

,linl D (x,t) = h(0,0) = F(x,5%,5)$(x) = $(x),
which is just result (4.9b). The last equality used (3.16)-
(3.18), (4.3), and (1.7). O

We note that (4.9b) implies, in particular, that the fam-
ily of linear functionals'” K %° ((¢,s)eT % ,xeR?) on Z (R?)
= C & (R?) defined by

(K@) = f Kt p,5m)é(»)dy

satisfies

tl_i.rsn+ (K20) =d(x) = (5,,9),

where ¢€Z (R?) and &, is the Dirac delta function with
support at x. This means that K % is a distribution in &' (R?)
[the space dual to & (R?) ] and converges in the topology of
2'(R?) to 8, ast—s*. In other words, the propagator K of
Theorem 2 constructs the fundamental solution of the
Schrédinger equation on the time domain 7, with initial
condition (1.3).

The function J is real for all arguments, thus
exp[ (ih) = J(Q)] is a complex-valued unimodular func-
tion. This lets us use (4.1) as a definition of the function T:
Ty XR*XRYX % _ (u,y) —C in terms of the known function
F. Consider the gauge-dependent behavior of T Let F, , J, ,
and T, be the functions F, J, and T obtained from (3.7),

Papiez, Osborn, and Molzah 653



(1.7), and (4.1) when a(x,t) and v(x,t) are replaced by the
gauge transformed potentials a (x,#;A) and v(x,;,A). Choose
the time displacement small enough so that both propaga-
tors K(Q;m;A) and K(Q;m) are defined by their construc-
tive series (2.17). A simple calculation shows

JA(Q) =J(Q) —A(x,0) + A(p.s). (4.172)

Upon writing the gauge transformation identity (2.21) for
propagators in terms of J,T and J,,T, it is evident that
(4.17a) implies

T, (Qu) =T(Qu), Ae¥ (k), (4.17b)

i.e., that T(Q;u) is the same function for all gaugesin ¥ (k).
Clearly J(Q) carries all the gauge dependence of the propa-
gator K.

The functions T and F both suffice to completely deter-
mine the propagator K and both have well-defined small
expansions. However, the large mass asymptotic expansion
of T is of greater interest for physical applications since T
and the associated expansion coefficients are gauge invar-
iant.

In order to prepare for the next theorem recall the fol-
lowing formulas from electromagnetism. The vector f: R?
X [0,T ] - R? will represent the electric force on the system
plus the contribution from V,

fi(x,t) = — (V) (x,t) — Fa, (x,1). (4.182)

The magnetic part of the electromagnetic field tensor is giv-
en by

A;(x0) = (Vig)) (x,0) — (Va,) (x,0). (4.18b)

In (4.18) the indices / and j denote the Cartesian compo-
nents of vectors and rank-2 tensors in R?. The symbol V' is
the partial derivative with respect to the ith component of
the vector argument x€R?. On the other hand, the notation
V. (and A,) describes the gradient (Laplacian) with respect
to the first-vector argument of a function, e.g., (V,J) (Q) is
the x gradient of J. Similarly, Jd is a partial derivative with
respect to a scalar argument, in (4.18a) the time argument.

The functions f; and 4, are well known to be gauge
invariant quantities. In terms of (4.18) and the path w(&) of
(1.8), we define the function £ T, X R¥ X RY—R? by

FA()) =£ d§§[(r—s>f,-(w(§))

d
+ 3 =) (4.19)
i=1
Note how similar in form (4.19) is to integral (1.7) defining
J. The function f/(t —s) has the interpretation of a £-
weighted average Lorentz force experienced by a system of
classical particles moving with constant velocity (x — y)/
(¢ — 5) from y to x. Because f; and 4; are gauge invariant so
is f;. It is helpful to recall a basic identity linking f toJand

a, namely
Q) = — (V,))(Q) —a(x1). (4.20)

Equation (4.20) is verified by using definition (1.7) for J
and then forming the partial derivative (V,J)(Q). An inte-
gration by parts with respect to £ leads to (4.20). For more
details see the discussion priorto Eq. (4.11) in Ref. 1. Given
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thata and vareinclass (A), itis evident thatﬁ is differentia-
ble to arbitrary order in x, y and differentiable to first order
in ¢ and s on the domain 7% X RY X R®.

The principal result of this paper is the following.

Theorem 4: Assume the potentials @ and v are in class
(A) and that u, < (2¢kTy;) " For all integers M>1 the
gauge-invariant function T: T, XRIXRX % _(uy) —C
has the small u asymptotic expansion in % _ (u,),

M1
T(Qu) = 3 w'T;(Q)+ u™E,(Qu), (4.21)
j=o
where the coefficients 7} are defined in terms of P; by
T,(Q) = expl — (iA) "' J(Q)1P,(Q)

(j=0,..,M—1), (4.22a)
and the error function E,, in terms of E u DY
E, (Qsu) = expl — (i) ~'J(Q)1E, (Qu). (4.22b)

The functions T, E w are the same functions for all
gauges A€¥ (k) and have the same differentiability proper-
ties as P, and E,,. The error term satisfies |E,,| = |E,,| and
is bounded in % _(#,) by the u-independent estimate
(3.18).

For all QeT, XR?* XR4, T,(Q) = 1 and the higher-or-
der coefficient functions 7} (Q) are uniquely determined by
the manifestly gauge invariant transport recurrence relation

1
T =4=2 f dE(RAT, | (w(E)pss)
(4]

— 26 W) wis)V, T, _  (w(£); yss)
+ [ () = Fw(£); y.5)?
— VW& v T, (w(£); ps)}. (423)

Proof: Expansion (4.21) is obtained from (3.16) by
multiplication with exp[ — (i#) ~'J(Q)]. Since a and v are
in class (A) and J is defined by (1.7) and (1.8) it follows for
each (2,5)eT, that exp[ — (i#) ~'J(Q)]is a C © (R X R?)
function with partial derivatives in x and p that are (jointly)
continuous functions on T, X R? X R% Furthermore, the
phase function J has first-order derivatives with respect to ¢
and s that are continuous on the domain 74 X R? X R? Thus
T,T;,and E,, have the same differentiability properties as F,
P;,and E,, cited in Proposition 1 and Theorem 3. The coeffi-
cients 7; and error term E,, are gauge invariant because
both 7" and the expansion parameter « are gauge invariant.

Consider the recurrence relation (4.23). For (Q,u)eT$

XREXRYX [ % . (up)\{0}] the representation
K(Qu™") =Kot —s;x —pu™")
Xexp[ (if}) ~'J(Q) 1 T(Qsu) (4.24)

follows from Proposition 1(e) and (4.1). In addition, Prop-
osition 2 states that K(Q;u~") is the pointwise solution of
(4.9a). The insertion of (4.24) into (4.9a) determines the
partial differential equation satisfied by T,

L2 (iﬁ)—‘(am]r

at
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- % {(i#)A,T — 27(V,T)
+ [ ~F2— (VeHITY

- [x —Y T (i#)"! ["—“—l F+ v]T].
t—s t
(4.25)

In obtaining the right-hand side of (4.25) we have employed
the identity (4.20). In (4.25) the omitted arguments of the
various functions are T = T(Q;u), v=uv(x,t), f=/Q),
andJ=J(Q).

The next step is to substitute expansion (4.21) into
(4.25) and then to equate the common coefficients of the
differing powers of the independent functions u/,
Jj=0~M — 1. In carrying out this substitution we rely on
the facts that 7, (Q) and E,,(Q;u) have x derivatives of or-
der 2 and r derivatives of order 1 that are continuous
throughout the domain 73 XR*XR?X % _ (u,). Further-
more, we use the fact that the x and 7 derivatives of E,, (Q;u)
are uniformly bounded in % _ (u,) for each QeT% XR?
X R The coefficient proportional to (#)° cancels identical-
ly by virtue of the definition of J. This mass-independent
term is exceptional in that it is the only part of (4.25) that is
gauge dependent.

The coefficient function T} (Q) isrelated to T; _, (@) by
the family [in the parameters (y,s)eR?X [0,T)] of partial
differential equations

(t—ys) % + (x —y)'Vx] T;(x,t; p,5)

= (t - s)gj— 1 (xyt; y,S), (4.263)
where
&i_1(x,t; y.5) B
— [V f = G T, (x5 95). (4.26b)

The continuity of V2 T; _, for 0<|y|<3 on T, X R**X R and
the continuity of VZa for 0<|y|<1on R*X [0,T ] means that
g_1 is a continuously differentiable function of (x,1)eR?
X (s,T). If j= 1, g, is determined from the known coeffi-
cient 7,

In studying (4.26a) it is convenient to have a common
Euclidean notation for the time and space variables.
To this end set x,,, =¢ and y,,, =s, whereby (x,t)
= XXy 1) and (y,8) = (¥, Vg1 )- In these vari-
ables (4.26a) reads

d+1

%)
z (x; —yi) 'é—

i=1 i

T;’ = (X441 _yd+1)g.i~1’ j>1.
(4.27a)

The (joint) continuity of T; on the set 7, X RYx R? together
with (4.22a) and (3.17) gives us the condition

lim T;(xtps)=T;(ys5595) =0, j>L (4.27b)

(x,8) =+ (3,5)

For each j>1, (4.27a) is a linear first-order partial dif-
ferential equation for T in the variables {x,}{ * ', containing
the parameters { y;}¢ *'. Finding the appropriate solution
T, of (4.26a) subject to the condition (4.27b) is similar to
the Cauchy initial value problem'® for this partial differen-
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tial equation. We seek a solution in the region @ =R
X [s,T) of (x,t) space. Specifically, if the initial value mani-
fold is chosen to be the plane, w (8) ={(v,s + 6)eQ: veR%},
where 6€(0,T — 5), then the Cauchy problem is to deter-
mine the solution T, of (4.27a) provided that the values T,
are given on the manifold w(8) CQ. In the problem faced
here the step of assigning values of T, on () is replaced by
the limiting condition (4.27b).

The solution for this type of initial value problem can be
obtained by the method of characteristics. The characteristic
curves for (4.27a) are the solutions of the autonomous sys-
tem of d + 2 ordinary differential equations,

A x() =x,(0) —y,

i=1~d+ 1),
2r (i +1)

(4.28a)

L 2(r) = (g () — gy (T ). (4.28b)

dr

Because (4.27a) is linear, the equations (4.28a) decouple
from (4.28b) and may be solved independently to provide
the base characteristics in the space . The initial conditions
appropriate for the manifold w(8) are x,(0) =v, (i=1
~d), x;,,(0) =5+ 6 and 2(0) = T,(vs + 6;p,5). Upon
introducing the change of variables £ = ¢” the solutions of
(4.28) are

x (Ev) =y, + (v; — ;)&
Xd 41 (§,U) =S+6§,

(i=1~d), (4.2%9a)

(4.29b)

'3
2E0) = T, (0,5 + & y5) + f 8¢, (x: (€"0); ys)dE .
1

(4.29¢)

Equations (4.29a) and (4.29b) represent a coordinate trans-
formation (&,v) - (xy,....x;, ;) = (x,t). The Jacobian of
this transformation is 8¢ . Thereby it is seen that only the
point corresponding to & =0 is singular. This point is
(x,t) = (y,5). The base characteristics defined by (4.29a)
and (4.29b) are straight lines that emanate from the singular
point at (,s5).

Given any point (x,?)€{) at which we wish to evaluate
the solution 7} to (4.27), we may choose a coordinate v(x,)
on the manifold w(5) and £(x,r)eR such that the corre-
sponding base characteristic passes through (x,?), viz.,
x;(&(x,t),v(x,8)) = (x,2). Specifically, one finds

E(xt) = (t—x)67", (4.29d)

v(x,t) =y +8(t—s)"Hx—yp). (4.29¢)
According to the general method of characteristics, the
unique C* solution of the initial value problem is given by
T, (x,t; y,s) = z(£(x,t),v(x,t)). This result becomes, after
employing (4.29d) and (4.29¢) and then changing the inte-
gration variable to £ = 8(¢ —s) "1,

T(Q)=T)(y+6(t—s)""(x—p)s+8ps)

1
+ (2 —35) & —1(w(&;Q); y.s)d§.
8/(t ~5)
(4.30a)

Now let 5§ —»07. The limiting condition (4.27b) shows that
the second factor of T; in (4.30a) vanishes while the contin-

uity properties of g;_, allow the lower limit of the integral
term to be replaced by 0. Thus we obtain, for t>s, j>1,
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1
T, (et p.5) = (£ —5) f g (W(EQ)WSME. (4.30b)
0

This is just recurrence relation (4.23). The right-hand side
of (4.30b) displays the base characteristic transport struc-
ture that is commonly found'-'®-?! in the determination of
integral recurrence relations for expansion coefficients.

All the functions of £ in the integral (4.23) are gauge
invariant and thereby the recurrence relation is gauge invar-
iant. Forj = 0, Lemma 3 shows that 7,,(Q) = 1, thus (4.23)
recursively determines all 7; (Q), j>1. O

The recurrence relations (4.23) allow one to obtain nu-
merical bounds on the expansion coefficients 7; that are su-
perior to those that result from their constructive series de-
finition. Inspection of (4.23) reveals that, in order to
estimate T, one also requires bounds onf, T,_,, and their
first few spatial derivatives. Hence the recursive process re-
quires estimates of arbitrary partial derivatives of f and T,
with respect to x, from the outset.

Bounds for £, defined by the average (4.19), are based
on the following simple bounds obeyed by the potentials. For
example, using bounds (2.7) one finds (with ¥ a d-compo-
nent multi-index)

|V7u(x,t)| = ‘f i'7’|ayeia-x dV(T) <k Iy"VT,

and similarly

V73, (x,0) [<GK) Myr, V7 da, (x,0]< (4k) "y
Using these simple facts it is not difficult to obtain the fol-
lowing bound for the components of /. Setting Z to be

Z=Z(x—ylt—s) =Jdyr(1+k|x—y|)

+ (t —$) (kv + ¥7),
then

V17 (Q) <k MZ(|x — p|,t —5).

Note that Z is  independent and is a monotonically increas-
ing function of its arguments. The final results, stated below,
use the additional quantities

L=max{Z,sik}, A,=(1+3/""2%
Corollary 1: For j>1 and any multi-index y the coeffi-
cient functions T; have the estimate
IVIT;(Q)|<kM[4(t —s5)d ] /ZL' ™!
X [3"(Z /h+A,k) ] (4.31)
Proof (sketch): Estimate (4.31) is verified by induction
on j. It is simple to verify (4.31) for j =1, and it may be
extended to larger j by using (4.23). O
Solving the recurrence relation (4.23) for the coeffi-

cients T, and T, give us the following explicit formulas. First
it is convenient to set

0 (21 =Q,(z,70) =f,(z,7) + (t —5) " (x —p);4;(z,71),
where i = 1 ~d and (hereafter) the repeated index j is summed from 1 to d. Then

T,(Q) = (2#) (¢ — 5)° j dE, dE, (€62, (E))Q, w(E,))
12

R Ldgl(s“l &1 [V-f(w(é’,)) + (’: :“:)jV%.-j(w(él))]-

(4.32)

Here g is the one-dimensional Green’s function defined in (3.3e), and /" = [0,1]". The function T} is more elaborate. One

finds
2
1,0 =ST\(@7+ 3 (h'~'G/(D),
I=0

where the functions G, are given by

(4.33a)

6@ = — L (1—9° [ b dfs ds 6606 0,0 (6D ()

X [8(£2:65)V 0, w(s) + (-5~ 9,8(£5,63)4,;(w(£2))],

(4.33b)

Gi(@) =t —5)* | dEi g6 {06060 TR (&)

+ (& (1 — s))—lf}i(w(gl))] [viﬂj(w(§2)) + (§2(2 — S))—lAji(w(gz))]
+E3E (1 — £)Q (D) [ AL (w(E)) + 2é, (1 — 5)) 7 'ViA,(w(£)))]

+ &6 ;1[2§> - (£, + 1)§2]Qj(w(gl))[vjviﬂi(w(é‘z)) + (52(’_5))_IV'A11'((§2))]},
G,(Q) = — (8)“1(t——s)3fd§1[§1(1 — EDVPIAVQ) J(w(E)))
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(4.33¢c)

(4.33d)
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A few comments on the technical aspects of computing
T; using the recurrence relations are helpful. When 7, _ , and
its derivatives are substituted into the right-hand side of
(4.23), one may employ the composition law for the linear
path w,

w(gw(4;0); y,s) = w(E4;Q).
Then one can change the integration variables A in the inte-
grals arising from 7, _, to y = £A. It is then possible to per-
form explicitly the single integral over £ that occurs in

(4.23). In this way some of the Green’s functions g(¢,,£;)
appearing in (4.32) and (4.33) arise, cf. Ref. 1, p. 1704.

V. CONCLUSIONS

The two previous sections demonstrate that for each
space-time coordinate Q = (x,t; y,s), the propagator K ad-
mits the multiple factorization

K(Qm) =K,(t — s;x — y;m)

Xexpl (i#) "' T(Q) 1 T(Gm ™). (5.1)

The u = m™! singular behavior of X as well as its gauge
dependence are completely characterized by representation
(5.1). Within the closed semidisk % _ (u,) and for each val-
ue of Q with ¢>s, the propagator K(Q;u~"') has only one
singular point, namely an essential singularity at ¥ = 0. This
singularity is entirely carried by the free propagator
K, (t — s;x — y;m). The mass-independent unimodular
phase factor exp[ (i#) ~'J(Q)] carries all the gauge depen-
dence of K(Q;m). As a result the function 7(Q;u) is gauge
independent and sufficiently smooth in % _ (u,) to be de-
scribed by the asymptotic expansion of Theorem 4. Since u is
the multiplier of the highest-order differential operator (the
Laplacian) in the differential equation (4.9a) obeyed by
K(Q:u™1), the asymptotic expansion (4.21) together with
(5.1) provide a detailed characterization of the singular per-
turbation behavior as u—0 of the fundamental solution of
the time-dependent Schridinger equation (2.1).

The asymptotic expansion of K via (5.1) and (4.21) has
a number of attractive features. It constructs an approxima-
tion for the propagator that is nonperturbative in the sense
that it has contributions from the Dyson series to all orders,
cf. (4.2). In addition the values of the potentials a, ¢, and V'
appear only in J(Q); all expansion coefficients T,(Q) are
functions of derivatives of the fields. The expansion is valid
for all QeT, X R?X R to an arbitrary order M. The expan-
sion has uniquely determined gauge invariant coefficients
and error term both of which are uniformly bounded for Q
taking values in compact subsets of 7, X R XR*. The ex-
pansion is robust (stable) in the sense that identity (4.21)
may be differentiated to first order in # or s and to arbitrary
order in x and y. The resultant identities are also valid
asymptotic expansions with an error term whose order esti-
mate remains O(|u|™). This stability feature of the expan-
sion means that one has all the ingredients to determine from
(4.21) the time evolving expectation values of operators that
are representable as sums of partial derivatives with locally
integrable coefficients. This class of operators includes most
observables (self-adjoint operators) of interest in quantum
mechanics. '
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Another interesting property of (4.21) is that contained
within the small u expansion is a type of small z — s expan-
sion. Estimates (3.17) and (3.18) together with (4.22) or
(4.30b) allow one to define

T;(Q) = (t —5)'TH*Q), (5.2a)
E\(Qu) = (t —s)ME %, (Qu), (5.2b)

where TF(Q) has (t,5) independent bounds, i.e., T pa(2))
= 0 ((t —5)° (j>0). In this notation (4.21) assumes the
form

M—1
T(Qu)= Y [u(t—1'THOD)
=0

+ [u(t — ) IME % (Q;u). (5.2¢)

Expansion (5.2c) is not a conventional double asymptotic
expansion in the variables » and ¢ — s since there is a residual
tand s dependencein T ¥. However, in the case wherea and v
have higher-order derivatives in ¢ it is not a difficult calcula-
tion to expand T'*(Q) in powers of ¢ — s in order to find the
short-time asymptotics of 7(Q;«) implied by (5.2¢). In ex-
amining the small ¢ - s implications of representation (5.1)
we have emphasized the behavior of T(Q;u). It is also possi-
ble to expand the phase factor exp[ (i#) ~'J(Q)] for small
t — s but doing so will break the gauge invariance of the
representation. A recent overview of the widely studied
small time expansion of quantum propagators may be found
in the review?? of Fulling.

A particular advantage of having solved the evolution
problem for complex mass is that the representation (5.1) is
also capable of describing the equilibrium statistical physics
of our N-body system. First observe that the constructive
series (2.17) for the propagator K remains valid if the poten-
tial class (A) is enlarged to allow complex valued scalar
potentials, i.e., the measure v(¢) for v(x,?) is in .#(S,;,C)
rather than .#*(S,,C). Suppose the interactions @, ¢ and ¥
are static, and replace g¢ + V in the Hamiltonian (1.1) by
i~'(gé + V). If my> Ois the physical mass of a particle and
after setting t —s=#%B, s=0, and m™' = u = (imy) "
€% . (uy) one finds that the Schrédinger equation (4.9a)
becomes the Bloch equation which describes the equilibrium
behavior of the N-body system interacting with static fields
and having inverse temperature 5. In this case the expansion
(4.21) provides us with the large mass asymptotics of the
fundamental solution of

P o
_-ﬁK(x,ﬁﬂ;y,O;(lmo) )

=[ ! (— AV, — qa(x))* + gd(x) + V(x)
2m,

X K (x,7B; p,0;(img) ™). (5.3)

Consider in detail the physical meaning of the phase J.
The construction of the propagator in Theorem 2 requires
only that the potentials a, ¢, and V be in class (A). How-
ever, the circumstances of greatest interest in physics occur
when the external fields arise as solutions of Maxwell’s equa-
tions. Let index / = 1 ~ N label particles whose coordinate
positions are specified by r,eR?, i.e., x = (r,,...,ry). Each
particle i interacts with a four-potential {a, (r,,t),8, (r;,t)}.
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All N four-potentials determine the total fields appearing in
Hamiltonian (1.1) via

a(x,t) = (@,(ry,t),...a5 (Ty,t)),

N
¢(xyt) = z ¢,'(l'i,t).

i=1
Now assume that {a,,#,}V are solutions of Maxwell’s
equations. Structurally J is similar to the well-known Dirac
magnetic phase factor® that plays the central role in the
Aharonov-Bohm effect.?* If I'(r’,r) is a smooth directed
path in R® from initial point r’ to final point r and a(r”) isa
static vector potential then the one-body Dirac phase factor

is
q ” "
expy — — a(r”)-dr }
p{ iﬁ Jl"(r’,r) (

In comparing J to the Dirac phase it is helpful to split J into
two parts. Let J,, denote the contribution toJ that is propor-
tional to ¥, and write

J(Q) =J (D) + T, (D). (5.6)
Then J, is defined solely in terms of the electromagnetic
potentials. Let {w,(£),7(£)} be the projection of path
w(&;x,t; y,s) onto the space-time coordinates of the 7th parti-
cle. If y=(r},....,ry) then w, (&) =1+ &(r; —r]) and
T=5+£(t —5) 50

L@=q 3 [ [¢=8m @)

i=1

(5.4a)

(5.4b)

(5.5)

— (r; —r})a,(w,(£),7(£))]ds. (5.7)
For each value of £€[0,1] the integrand above is a Lorentz
scalar formed by the product of two Lorentz four-vectors.
Inspecting (5.5) and (5.7) shows that J, is an extended
version of the Dirac phase in which time-dependent poten-
tials are allowed and in which the scalar fields {¢;} are ad-
joined in such a way that the phase J; is a Lorentz scalar.
The static Dirac path I'(r,r”) is extended to the linear
space-time path {w, (£),7(£)}.

It may appear unexpected that Lorentz invariant fea-
tures appear in a problem whose particle dynamics are strict-
ly nonrelativistic. But of course phase J, is an average of the
electromagnetic potentials {a;,4;} with respect to the path
{w,(£),7(&)}. The path integrals of the form (5.7) would
define a Lorentz invariant for any smooth space-time path
connecting y,s to x,z. The residual effect of our constructive
solution is that it selects the particular path in J, to be
w(&;0).

As is well known, quantum systems exhibit semiclassi-
cal behavior if the particle mass is large. The semiclassical
aspect of the representation (5.1) and its companion asymp-
totic expansion (4.21) is reflected in the geometrical charac-
ter of the transport averages over the linear path w(£;Q) that
enter the phase factor J(Q) and the expansion coefficients
T.(Q). Let r=54£(t—s) be the running time variable,
then (1.8) leads to

x(r)=y+ [(r—5)/(t =] (x—y). (5.8)

Path (5.8) is the geodesic for the free evolution problem
having initial point (y,s) and end point (x,#). Furthermore
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note that the one-dimensional Green’s function g(£,£') in
(3.3¢) and (4.32) is also a manifestation of this underlying
two-point classical boundary value problem. These semi-
classical properties have emerged directly from the exact
Dyson series description of quantum evolution without the
need to resort to any semiclassical ansatz about the analytic
character of K near u = 0.

It is interesting to contrast the large mass expansion of
Theorem 4 with available results for the WKB approxima-
tion for the same dynamical system. A major difference
between the 70 asymptotics of the propagator and the
u = m™ ' -0 asymptotics is that # appears only in the quan-
tum evolution problem (1.2) whereas the variable mass pa-
rameter m enters both the quantum evolution and the com-
panion classical evolution problems. In Ref. 1 a detailed
comparison of the #i—0 and u — 0 limits was used to formally
obtain expansion (1.6) from the higher-order WKB repre-
sentation of K. Such an approach is instructive in how the
formula (1.6) emerges from the classical trajectories having
two fixed end points that enter the WKB approximation but
it suffers from the drawback that it is difficult to make rigor-
ous. Here we have not had to make any ansatz concerning
single valuedness of the action, the absence of caustics or the
type of singular behavior the propagator has in the limit
#—0. We note finally that expansion (4.21) is relatively easy
to use in the calculation of observables since the phase factor
J and expansion coefficients 7T’; are explicitly given expres-
sions of the fields whereas the analogous calculation in the
WKB approximation for K requires one to first solve the
difficult two point boundary value problems for the Hamil-
tonian dynamical equations in order to obtain the action
function and expansion coefficients.

In the physics literature the factorization (5.1) has been
postulated a number of times. The first detailed account is
apparently that given by Valatin.?® For a related representa-
tion of the propagator for the Dirac equation see Refs. 26 and
27. Some attempts®®?® have been made to use the path phase
factors like J(Q) in the description of the time-dependent
wave function ®(x,t), cf. (4.10). However this is unnatural
(and not very successful) since there is no geometrically
distinguished initial point y,s for a wave function as there is
in the case of the propagator K.

In the special case where the interaction is static and the
evolution problem is that for the Bloch equation the large
mass expansion is known to be equivalent to the Wigner~
Kirkwood®**! approximation. Extensive discussions of the
large mass expansions for the Bloch equation can be found in
Refs. 32-34. A Wigner function analog of (5.1) is treated in
Refs. 35 and 36.

In the theory of stochastic processes®’ results parallel to
ours have been obtained. If i# is replaced by 1 throughout
(1.2) a parabolic differential equation results. This equation
can be investigated by the constructive Dyson series method
in the same manner as the Schrédinger equation but it also
can be studied, unlike the Schrédinger equation, through the
specific methods of stochastic differential equations. The
propagator of this parabolic equation has the interpretation
of the transition probability density for the diffusion process
starting form position y at time s and ending at x at time z. A
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singular perturbation problem that includes the m — oo limit
for the parabolic equation is investigated by Kifer.*® Upon
specializing Kifer’s asymptotic expansion [Ref. 38, Eq. (4)]
from a Riemannian to a Euclidean manifold, it can be shown
equivalent to expansion (4.21).
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Using the theory of self-adjoint extensions of symmetric operators the precise mathematical
definition of the quantum Hamiltonian describing a finite number of § interactions with
supports on concentric spheres is given. Its resolvent is also derived, its spectral properties are
described, and it is shown how this Hamiltonian can be obtained as a norm resolvent limit of a

family of local scaled short-range Hamiltonians.

I. INTRODUCTION

Recently Antoine ez al.’ performed a rigorous and sys-
tematic study of the quantum Hamiltonian describing a §
interaction with support on a sphere in arbitrary dimensions
n>2.

In this paper we obtain a generalization of some of the
results of Ref. 1 by considering a finite number N of § inter-
actions with supports on concentric spheres of radii 0 <R,
<R, < - <Ry. In fact, using the techniques of Ref. 2 one
can treat the case N = oo.

In Sec. IT we employ the theory of self-adjoint exten-
sions of symmetric operators in order to give the precise
mathematical meaning of the formal expression

N
H=—A+ Y a;8()x - R)), (1.1

Jj=1
where
a? a2 a2
A= C
ax}  ox: Xk
is the Laplacian.
We show that (1.1) corresponds to the self-adjoint op-
erator H,, () given by Eq. (2.12), i.e,,

bt —1
Hepamy = 8 U Higapimy UL

In this section we also derive the resolvent of Hy, (x; -

Section I11 is devoted to the description of spectral prop-
erties of A;(,; (xy and finally in Sec. IV we show how
h(ap.(ry Can be obtained as a norm resolvent limit of a fam-
ily of local scaled short-range Hamiltonians.

i1. DEFINITION OF THE HAMILTONIAN

In this section we give (in dimension »n = 3) the precise
mathematical formulation of the quantum Hamiltonian de-
scribing N & interactions with supports on concentric
spheres of radii 0 < R, < R, - - < R, formally given by

N
H= —A+ Y a,8(x|—R)). 2.1)

j=1

) On leave of absence from the Department of Mathematics, University of
Burundi, BP 2700 Bujumbura, Burundi.
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Considerin L >(R?) the closed, non-negative minimal opera-
tor

H=""A| (2.2)

N R
C& RN = IK(O,R)
where K (0, R;) is a closed ball of radius R; centered at the
origin in R®,
Following, e.g., Ref. 3, p. 160, one can decompose
L?(R®) with respect to angular momenta

L*(R®) =L*(0,0); 7dr)® L%(S?) (2.3)

(S?is the unit sphere in R?), and introduce the unitary trans-
formation

, [L2:<0,oo>;»Zdr)~L2(<o,w)),
"l wH ) =, >0,

in order to obtain the following decomposition of L 2(R?):

(2.4)

L¥(R®) = Eo U~'LY(0,0); dr)e [ Y],

leN,, (2.5)

where [ Y '] represents the linear span of the spherical har-
monics. i
With respect to the decomposition (2.5) H reads

— I<mkl,

H:EO U=hym Usl, (2.6)
where
; d*  Id+1
hn = =g
D (hyry) = {fe L*(0,00))] £, f" € AC,oc (0, 0));
f0)=0if I=0; fIR,,)=0;
—f"+ I+ 1)r? fe L*(0,00))},
leN,, 1<j<N, {R}=1{R,...Ry}.
X))

Here AC, {(0,00)} stands for the set of locally absolutely
continuous functions on (0, « ), and

Sfx . )= lim fix+e).

e—0,

The adjoint H * of H is given by

H*:lgou—'h;fm Usl, (2.8)
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1eNg 1N (2.9)

b = —5—;+l(1:; D ,
D (h ) = {feLY(0,0))| £, f €ACic (0,0 )\{RD;
f(0,) =0 if I=0;
AR; ) =fR;_)=f(R;);
—f" + I+ Dr 2 feL}(0,0))},

A straightforward calculation shows that the equation

h¥gy ¢1(k) =k2¢,(k), $,(k)e D (htm),
Imk>O0,

has the solutions
|

¢IJ (k’r) =

/2y RV2H® . (kR)F?J (kr), r<R;
[( J i+12 j 1+172 (2.10)

],
(iw/2) R}y 1o (KR)PPH (Y |, (Kr), Imk>0, 1<j<N,

r>R;,
where J, (z) and H {"’(2) are, respectively, Bessel and Hankel functions of order v.* Thus the deficiency indices of hy(xy are
(N,N) [we write def(h,{R}) = (N,N)], and consequently all self-adjoint (s.a.) extensions of h,{R} are given by an N2

parameter family of s.a. operators.

In this paper we consider a special N-parameter family of s.a. extensions of &, ( ry_corresponding to the formal express1on
(2.1). The construction of the general (N 2-parameter) family of s.a. extensions of & 1iry Will be reported elsewhere.’
We introduce in L 2((0, ® )) the following family of closed extensions of 4, ¢, :

I+n
higapiry = — d_r2 =

D (hyapam) = {FEL(0,0))f,f' € AC. (0,0 ) \{RD);
if I=0; fIR,_)=f(R,,)=f(R)),

—f"+ I+ 1)r 2 fe LY(0,00))},
leN,,

f(0+) =0
fl(Rj+ ) _‘f’(R]_ ) _alf(R )’
{a,;} =A{a,;- an},

A simple integration by parts shows that &, (z) is
symmetric. Moreover, since def (h wry) = (N,N) and the ¥
boundary conditions in Eq. (2.11) are symmetric and linear-
ly independent it follows from Ref. 6, Theorem XII, 4.30
that 4, () is self-adjoint.

The case a;, = oo for some j; € {1,...,N} in Eq. (2.11)
describes a Dirichlet boundary condition at R, whilea; =0
for all j=1,..., N (i.e., {a,;} = 0) coincides with the free
kinetic energy Hamiltonian 4,, for fixed angular momen-
tum /. .

By definition the operator A, ; (z; defined in L *(R?) by

H{a,},{R} = ISO U—lhl,(a,},{R} U1 (212)

describes N & interactions with supports on concentric
spheres of radii 0<R,<‘** <Ry. Actually H,, (z} pro-
vides a slight generalization of (2.1) since a;: 1<j<N may
depend on /e N, If {a,} = «, then H_ (; coincide with
the Laplacian with Dirichlet boundary conditions at
JK(O,R)), 1< j<N. The case {a,} = 0 yields the free Ham-

iltonian |

glk(r’ ) [

Proof: Equation (2.13) except for the factors i, (k) fol-
lows from Krein’s formula.® In order to determine the fac-
tors u;; (k) we proceed as follows.

Let g, € L %((0,)) and define

xi(kr) = ((hyap oy — K2 7)), 217
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— 00 <A;< o0,

(2.11)

1<j<N.

)
Hy= — A, 9 (H,) =H*R?,
where H 22(Q) is the Sobolev space of indices (2,2).7
The resolvent of 4, (,, (z; is given by the following
theorem.
Theorem 2.1: If ¢;; #0, j = 1,...,N, then the resolvent of
hitap.(r) 18 given by

(Aiapiry =k 7!

=(ho—kH "+ z wy (K@ (— k), )y, (K,

(i7r/2)r”2H(”,/2 (kr)rll/z‘ll+l/2 (kr ), r<r
m/2)r' 2 H® (kP2 k), P21, Im k0.

=1
k*ep(hyupmy), Imk>0, IeN, (2.13)
[ p(-) the resolvent set], where
(k) ]1-,7‘ = — [ay 8y + 8k (R;, R;)L]'},=1 (2.14)
with
8= (h—k*H™', Imk>0, (2.15)
the free resolvent with integral kernel,
(2.16)

where & is chosen in such a way that det u(k)+#0. Since
X1 € D (hy(qy.(r) ) it follows from Eq. (2.11) that y, satis-
fies the following boundary conditions:

X1 €AC,((0,0)), (2.18)
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Xi(R; ) —xi(R;_ ) = a; xi(R;), (2.19)

((Brgapmr — 5D X))
= _X;'(k,r) + (I + 1)/r2)x,(k,r) - k2)l’1(k;r)
r£R, 1<j<N. (2.20)

=g,(r), r>0,

The verification of the boundary conditions (2.18)—(2.20)
gives the factors u;; (k). The resolvent of H, () may easi-
ly be obtained using Egs. (2.12) and (2.13). We get
(Heapimy — k7!

1

oo N
=(H0—k2)“+lea ® py (k)

=0m= —Ijj=l
X(|*| 7'y (— k) YT,
X7l (k) YT, k*ep(Hyyry)s

Imk>0, leN,. (2.21)

lll. SPECTRAL PROPERTIES OF h, ,, , (5,

Spectral properties of 4,5 () are contained in the fol-
lowing theorem [0(+), 04 (%), 04 (*), 0 (*), 0, (+) de-
J

br'’2J, 1,2 (kr), 0<r<R,,

Y (kr) = am+,r"2H§21/2(kr) +bm+1’1/2J1+1/2 (kr), R, <r<R, ..,

note the spectrum, essential spectrum, absolutely contin-
uous spectrum, singularly continuous spectrum, and point
spectrum, respectively.’]

Theorem 3.1: Assume a;#0, 1<j<N. If all a;# «,
then A, .5 () has at most N eigenvalues which are all nega-
tive and simple. If ¢, = oo for at least onej € {1,..., N}, then
h, (ap.cry has at most N negative eigenvalues (counting mul-
tiplicity) and infinitely many non-negative eigenvalues ac-
cumulating at «. The remaining part of the spectrum is
purely absolutely continuous and covers the non-negative
real axis

Ocss (Migapiry) = Ouc Biiapiry) = [0,0),
3.1

O (hl,{a,}.{R} ) = ¢’ — o< ajI < oo, 1<]<N

Proof:Since h; (z, >0and def(/, () ) = (N,N) it follows
from Ref. 10, p. 246, that 4,,, (x) has at most N negative
eigenvalues counting multiplicity. Suppose 0<R, <R,
< Ry.If |@;| < 0, 1<j<N, then following, e.g., Ref. 11,
one can define

I<m<N — 1, (3.2)

ay (PPHR L k) by 72T k), >Ry, Imk>0, k#£0,
wherea,, ., and b, , are unique nontrivial solutions of the system

am+1 H;:—)I/Z(kRm) +bm+l JI+1/2(kRm) =4, H§-l§-)1/2

(kRm ) + bm Jl+ 172 (kRm )’

A 41 ["lle;?l/z(kr)]ERm +bmi1 ["1/2-’1+1/2(k’)];=k,,,

—4a, [’”2Hﬂ: 172 (k")]:znm —b, ["”2-,1+1/2 (kr)]; -,

(3.3)

= Apy [am+lR:n/2H;1+)l/2(kRm)+bm+lR:n/2J1+1/2(kRm)]’ a,=0, b=>b

A straightforward computation shows that the function
¥, (k,r) satisfies the boundary conditions

(kR ) =9 (kR;_), (3.4)

¢;(k’ Rj+ ) - '/’;(k, Rj— ) = ajl 1//1(k’ Rj),
j=1.,N. (3.5)
Furthermore, the uniqueness of the coefficients a,, . , and

b, 1, 1<m<Nimplies that ¢, (k,r) is the unique solution of
the differential equation

’”; Dy, (kr) = k24, (kr),

r#R,;,

satisfying the boundary conditions (3.4) and (3.5).Ifk 250,
then ¢, (k,r) e L}(0,0))ifand only ifay, ; = by, =0,
i.e., ¥;(k,r) = 0. Since the same argument may be used for
k = 0, we conclude that

Up (hl,{a,},{R}) C ( —_ 00,0).

Suppose now that k 2 < 0. The simplicity of this eigenvalue
follows from the uniqueness of ¥, (k,r). (We observe that

dz
_P'pl(k’r) +

r>0, j=1.,N, (3.6)
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T
k? <0is an eigenvalue of #, (, (»; ifand only if by, | =0.)
Consider now the case when exactly one a; = «, e.g.,
a,;; = o and N>2. The boundary condition at r = R; be-
comes a Dirichlet boundary condition and therefore divides
(0, 0 ) into two independent intervals (O,R; ) and (R; , ).
The operator A, ,; (zy With @;;, = o is then a direct sum,

Ritapimr =R {0 R (Rpm
acting in L*(0,0))=L?*(O,R,))®L*(R,,)) (and
satisfying a Dirichlet boundary condition at » = R; ). Hence
k {1tz in L?((O,R; )) has a pure point spectrum in (0,0 )
accumulating at 0. The relation (3.1) follows from Weyl’s
theorem (Ref.12, p. 112) and the absence of singularly con-
tinuous spectrum follows, e.g., from Ref. 13, Lemma 2.4.

IV. APPROXIMATION OF h,,, =, BY A FAMILY OF
LOCAL SCALED SHORT-RANGE HAMILTONIANS

In this section we show how 4, ;, , (z) canbe obtained as
a limit of a sequence of local scaled short-range Hamilto-
nians. Let 4;;: [0,e0 ) =R, / € N, be analytic near the origin
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with 4,(0,) =0 and denote by U, the unitary dilation
group in L %((0,« )), given by

(U.N)y =€ fr/e), €>0, feL*(0,00))
4.1

Forallj = 1,...,N, let ¥;: R— R be measurable, ¥, (r) =0 for
r<0, ¥, € L'((R,)), and define

v(r) = V(DY w(r) = V(0| sgn [V;(N].

(4.2)
Next we introduce
B, (k): L}(0,00))¥—>L*(0,00))",
—~ N —
[Bie (k) (g1 8N) ] = z B, ; (k) g;, (4.3)
=1
gj GLz((O,w)),
where
By (k) =A,(€); 8, ;, €>0, 44)

Imk>0, jj=1,.,N,
with ‘

#;(ry = u(r— (1/€)R;), b;(r) =v;(r— (1/6)R)),

€>0, j=1,.N, (4.5)
and g,, given by Eq. (2.15). _

Following, e.g., Ref. 11, one can show that B, (k),
JsJ =1,.,N, extend to Hilbert-Schmidt operators for
Im k>0, k 0.

Let us define the form sum® in L *((0, 0 )):

. N .
h(@ =hg+ 3 @V +R), €0 (46)

=1

with resolvent given by
(h;(€) — k)~

N ~
=81k — Z (81« ﬁj) [1 +Bl,e(k)]_l(l~4]:gl,k)y

hi=1

€>0, k2eplh,(€)), Imk>O0. (4.7)
Next we define the Hamiltonian 4, in L*((0,00)):

he=€?U h(e)U!

. -2 N (' - RJ)
=ho+e Y LV, | —). (4.8)
j=1 €
The scaling behavior
Ue gl,k Ue_l =€—2gl,s_'k’ Imk>0, 6>O, (49)

and atranslation7—7 + €' R;,€>0,j = 1,...,N, then yields

(hye = kD™ =€ U, [h(e) — (ek)?] ' U

N
=gu—€ ' Y 4,;(k]1 +B,.(B];!

=1
Xlil(e)cl,s‘f (k)’ €>09 kzep(hl.e)v
Imk>0, (4.10)
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where the Hilbert-Schmidt operators 4, ;(k), B, ; (k),
and C, ; (k) are defined through their integral kernels

Ao (k') =g, (rer’ + Ry (r), Imk>0,
(4.11)
B,y (kirP) =€ ' (e)u;(r)
X8 (€r + R;.er + Ry v, (), Im k>0,
(4.12)
Cie;(kirr') = u;(r)g (er+ R,r'), Imk>0.
' (4.13)

Next we define the rank 1 operators 4, ; (k), B, ;(k),
and C, ; (k) via their integral kernels

Al,j(k;rrrl) =gl,k (r’ Rj)vj(rl)y Imk>0y (4'14)
B[,jf (k,r,r) = i}l(o)gl,k (Rj9 Rj )uj(r)vj (r),

Im k30, k #0, (4.15)
Citkrr) =u;(r)g(R;,r), Imk>O0. (4.16)

Lemma 4. 1: For fixed k, Im k> 0; and for allj = 1,...,N,
A,.,(k), B, ;(k), and C,_;(k) converge in Hilbert-
Schmidt norm to 4, ; (k), B, ;; (k), and C, ; (k), respective-
ly, as e-0,.

Proof: Using dominated convergence, one can easily
show that

w-lim Al,e,j(k) = Al,j (k)’
-0,

v::l(i)m B,  ; (k) =B, ; (k), (4.17)
V\er:}(i)m C,.; (k) =C, (k).
By Theo;'em 2.21 of Ref. 15 it suffices to prove
Elij& 4, ; (K2 = || 4, ; (R |
61_1.1(1)1 |Bc. 7 ll2 = |18y, 5 (K |2 (4.18)

Elirgl NCie,s Kz = IC |2

which can be easily done, again using dominated conver-
gence. O
Now we can state the main result of this section.
Theorem 4.2: For allj = 1,...,N, let ¥;: R— R be measur-
able, V;(r)=0forr<0,and ¥, € L ((R,)). Then 4, con-
verges in norm resolvent sense to A, (., (z) as €-0,, ie., if
k?€p(hiayiry) then k2 € p(h,, ) for € small enough and

n-lgm (h,'t_ - kz)—l = (hl,{a,},{R} — kz)_l, (419)
where
a; =A4;(0) f drV;(r), leN,. (4.20)
R
Proof: By (4.10) and Lemma 4.1 we obtain
J. Shabani 663



n-lim (b, — k%) '=g, — ﬁ’: A, (k)
€0, M=t
X[14B,(k)]; ' A} (0)C; (k),
k?eC\R, Imk>0, (4.21)
where B, (k) is defined by

B,(k): LY(0,00))"=L*(0,:0))", Imk>0, k50,

N
[ Bl(k)(gl:'",gN)]j = 2 B,,j,v(k)gj-, (422)
=1
g €L}(0,0)), 1<j<N.
But
B, ; (k) = A ;(0)g, (R, R;) (v, (4.23)
implies

N
m=1

X[ 2k ) vy, ), (4.24)
where
ack) = [617 +/1j’1(0)(vj9uj)gl,k (R, Rj)]},vj=l’
Im k> 0. (4.25)

If A ,(0)(v;, 4;)#0 for all j=1,..,N then a comparison
with Eq. (2.14) shows that

[AK)]; A 7(0) (v ,u;)
= - [,u(k)]j,:_l, a; =/1;,(O)(uj,uj),

joJ =1,..N, (4.26)
which by (2.13) completes the proof after inserting (4.26),
(4.14), and (4.16) into (4.21). |

Formulas (4.21), (4.24), and (4.26) show that bound
states (resp. resonances) of &,(,; () are given by zeros of
the Fredholm determinant det[1+ B,(k)] in the upper
(resp. lower) k-half plane.
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Properties of the Lie algebra gl(n,C) are described for a basis which is a generalization of the
2% 2 Pauli matrices. The 3 X 3 case is described in detail. The remarkable properties of that
basis are the grading of the Lie algebra it offers (each grading subspace is one dimensional)
and the matrix group it generates [it is a finite group with the center of SL(#,C) as its

commutator group].

I. INTRODUCTION

The purpose of this paper is to exploit recent results in
mathematics"? in order to generalize the 2 X 2 Pauli matri-
ces to the n X n case. The generalization is unique up to nor-
malization and change of basis. For n = 3 it is very different
from the familiar generalization of the generators of the Lie
algebra su(2) to su(3), known as the Gell-Mann matrices.’

We start by asking the following question: What is the
most important property of the Pauli matrices? A definitive
answer to this question cannot be given since “importance”
is relative to the purpose one may have in mind, and because
the familiar case of 2 X 2 Pauli matrices is too small in size to
really appreciate the analogous properties for larger values
of n. However, it is well known that the 2 X 2 Pauli matrices
have other nontrivial properties besides spanning the Lie al-
gebras su(2) and s1(2,C) (real and complex parameters, re-
spectively). We list their properties in Sec. II. The general-
ization of the Pauli matrices is thus related to what one
considers to be the defining important properties of these
matrices.

In this paper we adopt the following point of view: The
first one of the defining properties of what will henceforth be
called the generalization of the Pauli matrices and denoted
by Z, is that they provide a finest grading of the Lie algebra
gl(n,C). The role Z, plays in grading gl(n,C) has two
aspects: The adjoint action of &, on gl(n,C) provides the
grading group, and the generators of the graded gl(»,C) are
found among the elements of 7.

The second defining requirement is that the set of n X n
matrices &, generates a subgroup of SL(n,C) with the cen-
ter of SL(#,C) as its commutator subgroup. It simply means
that the group commutator of &7, must be as large as possi-
ble given its role in the grading of gl (»,C). Throughout this
paper we try to emphasize those basic properties of 7, that,
in our opinion, should find a reflection in any lasting applica-
tion of the results in physics.

Until now the role of the gradings in physical applica-
tions of Lie algebras and their representations were rarely
noticed or emphasized except perhaps for the Z, gradings
underlying the classification of real forms of simple Lie alge-
bras, the structure of superalgebras, and the Wign/gr—lnénii
contractions of Lie algebras. Also the affinization A4 of finite
simple Lie algebra 4 involves an infinite Z grading of the
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algebra A Implicitly another type of grading underlies the
Cartan or root space decomposition of simple Lie algebras
(finite and Kac-Moody ones).

Therole of gradings of a Lie algebra in physics cannot be
overestimated. In conventional terms it means the existence
of preferred bases of the Lie algebra which admit additive
quantum numbers. Naturally one wants to know all such
bases and all nonequivalent choices available in a given situa-
tion. Moreover, such bases “force their way” into physics
even if one is not set up to study them. Thus the matrices A
and D below which generate &,,, , are encountered in
physics literature.*

In general terms a grading of a Lie algebra L means that
L can be written as a direct sum of linear subspaces,

L=X,0X, 02X, ® -, absc,.cS, (1L.1)

labeled by a set S of finite sequences of integers or integers to
a module a = {a,,a,...,a,, }, b = {b,,b,,....b,,}. The set S
may be finite or infinite, there may be more than one integer
labeling each subspace, etc.; the subspaces are supposed to be
not zero, often even of dimension greater than 1. The decom-
position (1.1) of L is called a grading provided the nonzero
commutation relations of L have the following form:

[xtnyb] =za+b’ (1-2)

forany x,, y, of L for which a,beS, x,€X,,, y,€X,, [X,, Vs ]
#0 so that a + beS, z,, ,€X, . ,. Note that the m-tuple
a + b is formed componentwise and it must also be a part of
the labeling set S. Practically grading L means to find gener-
ators of L and a labeling set S such that (1.2) is satisfied.

In the case of a Z, grading the decomposition (1.1) con-
tains exactly two subspaces labeled by integers mod 2. Such
gradings most often can be refined to gradings with more
than two components, they are coarse gradings. Of interest
to us here are the fine gradings, where the sum in (1.1) con-
tains as many subspaces as possible given the requirements
of (1.2), among which are the finest gradings in case all
subspaces X, in (1.1) are one-dimensional. The finest grad-
ings of A, algebras are described here for the first time al-
though we exploit results of Refs. 1 and 2.

Furthermore, it may be possible to grade simultaneous-
ly the Lie algebra and its representations, decomposing a
representation space ¥ of L into a direct sum of subspaces
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V=V,eV,0V,0 ", defeS,
with the property

xalyd)EVa+d’

(1.3)

ad,a+desS; |y,)eV, . (1.4)

The relations (1.3), (1.4) contain (1.1), (1.2) as the partic-
ular case of the adjoint representation of L.
In quantum mechanics the labels of the set .S are the
admissible additive quantum numbers, which are eigenval-
- ues of a chosen set of mutually commuting diagonable opera-
tors. In the case of a semisimple or reductive Lie algebra L,
or of the Kac-Moody algebras, the traditional choice of the
“diagonal” operators are the generators (i.e., a basis) of a
Cartan subalgebra ) = {4,,4,,...,4, }. The remaining genera-
tors of the Lie algebra are then taken to be the eigenvectors of
B This is the traditional scenario which leads to the shift-up
and shift-down generators similar to L _ and L_ generators
of the angular momentum theory. If the rank of L is #, then
each label has  components. Such a label is called a weight of
L; in the case of the Lie algebra these weights are the roots of
the algebra, and the decomposition (1.1) of L is a grading
called either the root space decomposition or the Cartan de-
composition of L. Such a grading is fine but not the finest
since dim ) = r> 1 for all but the 2 X2 case. Note how re-
strictive the grading concept is in comparison with arbitrary
decompositions of a Lie algebra into linear subspaces [ cf. the
matrices (2.2) below], that is, most decompositions do not
admit a labeling of the generators with the property (1.2).

Our construction departs from the traditional approach
by the observation that the 2 X2 Pauli matrices generate a
very particular maximal nilpotent subgroup #, of SU(2),
the quaternion group of order 2*. This group is non-Abelian
and therefore it is not a subgroup of the maximal torus of
SL(2,C). However, its adjoint action on the Lie algebra
s1(2,C) is Abelian and hence in many standard situations it
can be used instead of the maximal torus.

Since the features of the general case appear already in
the lowest case, n = 3, we describe them in detail for the
3% 3 example in Secs. III and IV often leaving to the reader
the verification of the properties by straightforward compu-
tation. In Sec. V the general (2n + 1) X (2n + 1) case is
dealt with because it is somewhat simpler than the even size
generalization presented in the last section. The 4 X 4 exam-
ple is also briefly considered there.

The matrices &, of any degree n provide a finest grad-
ing of 4, _ . But not every finest grading of 4, _, is conju-
gate under SL(n,C) to the grading provided by the group
Z .. The general theory of Ref. 2 provides the answer that all
finest gradings of 4, _, (with the exception of some low
rank cases) are obtained upon using the Kronecker product
groups

P ®P p,® 8P, mmy m=n.

An appropriate name for these matrices would be general-
ized Dirac matrices since the ordinary Dirac matrices corre-
spond to 7,8 Z,.

Il. PROPERTIES OF THE PAULI MATRICES

The set of matrices
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(10 01
G=N (o 1)’ "‘=N(—1 o)’

0 i i 0
"2=N(i o)’ 03=N(o —i)

with any complex nonzero normalization constants N, N ' we
shall call the Pauli matrices. Sometimes it is convenient to
admit also the value N’ = 0 and thus consider ¢, 0,, and o,
as the Pauli matrices without the identity matrix o;,. In phys-
ics the most common normalization is N' =1, N= — i,
which makes all four matrices Hermitian.

A well known 3X 3 analog of (1.1) are the Gell-Mann
matrices,?

(2.1)

0 1 0 0 —i 0
A=lt o o) 4,=[: o o}

00 0 0o 0 o

1 0 0 0 0 1
s,=lo -1 o], 2,=|o o o)

0o 0 0 1 00

0 0 —i 0 0 0 (2.2)
as=lo o o} a,=[o o 1),

i 0 0 01 0

00 0 10 0
a=lo o —i| 4,=Llo 1 o}

0 i 0 Bl o -2

10 0
i,=lo 1 ol

0 0 1

The matrices (2.2) generalize (2.1) in that their R- or C-
linear combinations span the Lie algebras u(3) and gi(3,C),
respectively, just as the Pauli matrices span the Lie algebras
u(2) and gl(2,C). However, the Pauli matrices have other
remarkable properties not shared by (2.2). They are as fol-
lows.

(1) With N=1, N'=1 the Pauli matrices (2.1)
(equipped with matrix multiplication) generate the maxi-
mal nilpotent subgroup Z, of SL(2,C), a group of order 23,
Explicitly the group &, consists of the following elements:

£ 1) (50
(o) o 20

Note the coincidence of the centers of the groups #,,
SL(2,C),and SU(2). All the matrices (2.3), except the mul-
tiples of identity, belong to the same conjugacy class of
SL(2,C) elements of order 4 denoted® by [11]. It is the
unique class of the lowest order regular elements. Note also
that the Hermitian normalization of (2.1) would generate a
finite group which is quite different from #,.

(2) The adjoint action of the Pauli matrices on them-
selves is diagonal and does not depend on N #0, N'#£0:

(2.3)

aaaul_[ak’ if j=k or k=0 or j=0,
TR T — o, if O#j£k #£0.
(2.4)
J. Patera and H. Zassenhaus 666



Existence of the group ¢, satisfying (2.4) and the irreduci-
bility of & , are the requirements defining the generalization
of Pauli matrices in this paper.

Among the interesting consequences of (1) and (2) let
us point out the following.

(3) With N = i/2 the commutation relations of (2.1)
have integer structure constants. The normalization of oy is
irrelevant for this property since o, commutes with all the
others.

(4) Introducing the following notations for the genera-
tors of s1(2,C):

01=(1’0): 02=(191)9 03=(0,1),

the grading of the algebra is made obvious:

[(pg)(p',g)] =const(p+pg+q), (2.5)
where p,q, p',q’, p + P',q + ¢’ are integers mod 2.

Let us note the following properties which find some reflec-
tion in the generalization.

(5) The Lie algebra su(2) {or sl(2,C)] decomposes
into a sum of one-dimensional real (or complex) subspaces
generated by ¢,,0,,0; each of which is a Cartan subalgebra.
For n = 2 this means that ¢,,0,,0; are diagonable.

(6) The three Cartan subalgebras are pairwise orthogo-
nal,

tr(0;0,) = 2N8,  (jk=123). (2.6)

The properties listed above are not independent of each
other. The general theory can be found in Ref. 2.

IN. THE GENERALIZATION

We will repeatedly use in Secs. III and IV the constants
o =" and £ =¢*"/® and the obvious identities they
satisfy.

Consider the following 27 matrices:

1 0 O 1 0 O
D,=0*|0 o 0) Di=0"*l0 & 0],
0 0 &? 0 0 w

-~

{

g

x
O O -

0 0
1 0), with & an integer mod 3.
0 1

(3.1)

The set of matrices (3.1) is the 3X3 analog Z , of the
group 2, of (2.3). Under matrix multiplication they form a
subgroup of SL(3,C) of order 3® whose center,
{I,, k=0, + 1 mod 3}, coincides with the center of both
SL(3,C) and SU(3). All but elements of the center belong to
the unique SL(3,C) conjugacy class [111] of lowest order
regular elements.>®

Any linearly independent subset of (3.1) is a basis of the
Lie algebra gl(3,C). Our choice of the s1(3,C) linear genera-
tors will be (dropping the subscripts and writing the genera-
tors in bold characters)

01 0 0 o 0
A=[o o 1| B=[0 0 &?}
1 0 0 1 0 0
0 @ 0 10 0
C=|0 0 w]} D=|0 w O),
1 0 0 0 0 o
0 0 1 0 0 o (3.2)
A-=[1 0 of B-=(1 o o]
01 0 0 o 0
0 0 o 1 0 0
c-=[1 o o} p=[0o «* o0}
0w 0 0 0 o

The Lie algebra gl(3,C) is generated by (3.2) and by the
identity matrix I. Note that the matrices B and B—, C and
C~ arenot inverse to each other, their products are multiples
of the identity. Such a choice makes them a particular case of

0 10 0 01 (5.6) below. :
4, =00 0 1} 47 =0"%|1 0 0}, It would be possible from now on to consider only Her-
1 0 O 0 1 0 mitian (or anti-Hermitian) linear combinations of the gen-
0 w O 0 0 w erators (3.2), but this would reveal little of the general struc-
B, =o*l0 0 o?] By =0*f1 0 o], ture and introduces many cumbersome complications (as
1 0 o0 0 & 0 happens in the angular momentum theory) although it
) ) could prove useful in some applications, for instance where
0 & 0 00 o the pairwise orthogonality of the generators with respect to
C,=0"|0 0 o} Ci=0"*1 0 0], the Killing form is required. The Hermitian version of (3.2)
1 0 0O 0 o O is thus
J
0 1 1 0 o 1
A.=A+A =]1 0 1} B,=B+0B =|w® 0 &°},
1 1 0O 1l o O
0 i —i 0 — iw i
A_=i(A-A")=| —i 0 i, B_=i(B—o’B7)=| io? 0 —iw?],
i =1 0 —1i 703 0
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2 0 o 1
D,=D+D= —1 ) C,=C+aC =|lw 0 a],
2

0 0 —iw? i

D_=i(D-D")=\2 1 , C_=i(C—awC)= iw 0 —iw].
-1 —1i iw? 0
—
The matrices (3.1), besides spanning the Lie algebra and also
gl(3,C) (under matrix commutation), form at the same XY X7 'Y:'=1 (3.7¢)

time a finite subgroup of SL(3,C) (under matrix multiplica-
tion). Thus any matrix (3.1) can be interpreted as a group
element or a Lie algebra element. The two interpretations
differ by the implied composition law: commutation and lin-
ear combinations for the Lie algebra, and matrix multiplica-
tion for the group.

The generators (3.2) make obvious a decomposition of
the Lie algebra s1(3,C) into a sum of four two-dimensional
subspaces

81(3;(:) =[)A +ba +bc +I)D ’ (33)
where the subspaces are spanned by two commuting genera-
tors, _

[)A = {A,A_}, [)3 = {ByB—}’

34
be = {C,C"}, b, ={D,D"}. (34

Hence each of the four subspaces is a Cartan subalgebra of
s1(3,C) and, taking suitable linear combinations of genera-
tors, also of the su(3). Furthermore, one easily verifies the
pairwise orthogonality of the subspaces §),,hz,5c,5p with
respect to the Killing form,

tr XY =0, forXehy, Yeh,, X #Y. (3.5)

The commutation relations of the generators (3.2) are
summarized in Table I. The nonzero structure constants are
cyclotomic integers of the form

Ex g gRrT (3.6)

Finally observe that the property (2.4) of the Pauli ma-
trices also generalizes to higher ranks. Namely,

XkYk'Xg_]:ijk' (3.73)
or equivalently
XY, =a’Y. X, (3.7b)

for any X, ,Y,.€Z ;. The factor w’ is given in Table I as the
power of £% in the structure constant in [X,Y]
— ( §2j+§2j+ l)Z

The finite group &, of the matrices (3.1) is obviously
non-Abelian. Hence it is not a subgroup of the maximal
torus of SL(3,C). Nevertheless its action (3.7a) on the gen-
erators of s1(3,C) is Abelian. As a result of that it can be used
instead of the maximal torus in many ways.

IV. SOME FURTHER PROPERTIES
A. The cyclotomic quarks and antiquarks

In (3.2) we have a new basis of sl(3,C) with unique
properties. Now let us consider the elementary representa-
tion theory in terms of the new basis.

The natural (quark) representation of the generators of
s1(3,C) coincides with (3.2). Let us choose the basis vectors
(quarks) of the three-dimensional representation space as
the eigenvectors of the generator D, label them by the power
p(mod 6) of £ in the eigenvalue £ ? of D, and call them the
cyclotomic quarks (most of the relevant numbers related to
them in the representation theory are cyclotomic integers).
Thus we have the quarks

1 0 0
0y =j0), ]2)=|1], |4)=]|0 4.1)
0 0 1
defined by
D|p) =& ?|p), p=evenintegermod 6. 4.2)
One verifies directly that
D|p)=¢&*lp), D |py =& ~*|p),
Alp)=|p—2), AT|p)=|p+2),

TABLE I. The commutation relations of the s1(3,C) generators (3.2). The 0 blocks on the diagonal indicate the presence of the generators of four Cartan

subalgebras in our basis. Only the upper part of the table is shown.

A A B B- Cc- D D~
A 0 0 (14 56C” (1+£3HD~ (1+£%B- (1+6)D" 1+ 6B~ (1+&%5cC
A 0 0 (1+£°D (1+£€C (1+£D (1+£°B (1+£%C 1+ 86€B-
B 0 ] (E*+EDHA™ (£*+6)D (1+8C (14+£%A
B~ 0 0 (£24+6)D (§*+£MHA (1+&HA~ 1+ 4€)C
c 0 0 (1+£)A (1+£%B
c- 0 0 (1+£%)B" (1+£A~
D 0 0
D~ 0 0
668 J. Math. Phys., Vol. 29, No. 3, March 1988 J. Patera and H. Zassenhaus 668



Blp)=£%p—2), BT|p)=£""Ip+2),

Cipy=£77p—2), CTlp=£"p+2).
The relations (4.3) are rewritten in (4.15) below in a com-
pact form using different notation for the generators.

Note the “rotating” action of A, B, C and that of A™,
B~, C~ on the quarks and the fact that during commutation
the rotations add up. Neither of the generators is a “shift-
up” or “shift-down” operator. Symbolically one has

(4.3)

P
| p) lp+2) |p) |p+2)

A,Bc—/ \A,B,c/
p+4)

lp+4)

(4.4)
In order to consider other representations, say the anti-
quark one, it is helpful to distinguish between the abstract
generators, which we denoteby 4, B,C, D, A~ ,B~,C ",
D ~, and their representations. Thus the matrices (3.2)
stand for the s1(3,C) generators in the quark representation
g. The abstract generators in the antiquark representation ¢
are represented by matrices which are the negative transpose

of those of (3.2). In particular,

g(D)=D, gD)= — D"= - D. (4.5)
Therefore the antiquarks | p) are

1, 13 19, (4.6)
defined by

—D|p)=¢£7p), p=oddintegermod 6. 4.7)

Thus to every quark | p) there corresponds an antiquark
| p + 3). Transformation properties of the antiquarks analo-
gous to (4.3) are given in (4.15¢).

B. The finest grading of si(3,C)

Before proceeding further in this direction, it is useful to
consider a grading of the Lie algebra s1(3,C) unique to our
basis.

The rotating action of the generators on the quarks al-
lows one to decompose gl(3,C) into three subspaces L,,
d =0, + 1 mod 3, spanned by the generators

L] = {A_,B_,C_}, Lo = {D,D—9I}9

(4.8)
L..l = {A,B,C} s
with the grading property
[Lr’Ls] gLr+smod3 . (49)

The subspaces (4.8) can be defined as eigenspaces of the
adjoint action (3.7a) of the generator D,

L, ={X|DXD"'=o‘X}. (4.10)

Thus (4.10) allows one to label each gl (3,C) generator by an
integer 4 which can take three values. However, (3.7a) is
valid not only for D but for any generator (3.2). Therefore
we can use any other generator of s1(3,C), or all of them
simultaneously, and label the generators by up to eight three-
valued integers. In order to label completely all the genera-
tors without redundancy of notation, it suffices to use any
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two of them which do not commute. Choosing in addition to
D, for instance, the generator A, and using its eigenvalues to
label the generators, we end up with a new notation for the
generators,

A=(0,-1), A~ =(0,1,), D= (1,0,),
B=(1,-1,), B =(-11,), D =(—-10,),
C=(-1,-1,), C =(11,), I=(00,),

(4.11)

where the first label refers to A and the second to D [cf.
(4.10)]. The Abelian property of the adjoint action (3.7a)
assures the grading structure of the commutation relations

(k)K" j)} =const(k+k',j+j) mod 3 (4.12)

of gl(3,C) with the structure constants given as before in
Table 1. Since no two generators are labeled by the same
symbol in (4.11), the grading (4.12) of gl(3,C) cannot be
further refined. We say that it is'fine. Note that (4.9) is a
coarsening of (4.12) obtained when one ignores the first la-
bel. The decomposition (3.3), however, is not a grading.
Moreover, since the subspaces {(i, )} generated by each
(i, j) are one dimensional the grading is finest. We then have
the fine decomposition of the Lie algebra gl(3,C) into a sum
of one-dimensional subspaces:

3 G0}

Finally, note that the grading (4.11) allows us to write
the commutation table (Table I) in a compact form. Name-

ly,
[(k’j):(k I’j,)] = (wkf -

gl(3,C) = (4.13)

o*7)(k+k',j+j) mod3,

(4.14)
and that the transformation properties (4.3) of quarks by
the generators (r,s) of {4.11) including the matrix elements
can be written in a simple form:

(rs)| p) =€"|p+2s5) . (4.152)
In (3.2) and (4.11) we have identified the abstract genera-
tors (r,s) with their matrix (quark) representation ¢(7,s).
Without such convention the relations (4.15a) should have
been written as

q(rs)|py =£"|p+2s) (rs mod3; p even mod 6) .

(4.15b)

The corresponding relations in the antiquark representation
g(r,s) of the generators are then

g(rs)| p) = — P~ Dp —2s)

(r,s mod 3; p odd mod 6) . (4.15¢)

C. The gl(2,C) and o(3,C) subaigebras of si(3,C)

There are two maximal subalgebras of gl(3,C) which
are often used. Let us now write their generators in our basis
of g1(3,C).

First note that the 3 X 3 matrices E;;, i,j = 1,2,3, with 1
at the intersection of the ith row and jth column and O else-
where, can be written as follows:

1

3
E;=—
ii 3 2

m=1

' =P"D" | E, = E,A*"".

]

(4.16)
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The subalgebras are now generated for instance by

gl(2,C): Ey, = ExsA™, Ep=E, A,
Eyp—E;p=}(£*4+£(D-D7), (4.17)
2E,, ~E;, —E;;=D+D7

0(3,C): E, + E;y =12+ £ 'D+EDN)A,

E, +E,=—12+D+D"HA™',  (4.18)

En—Es=}(1+£HD+ (1+£6D7Y.

D. The Weyl group and the weight lattice

Among the most important tools of the general repre-
sentation theory is the Weyl group W and the weight lattices
and weight systems of representations. We finish this section
by pointing them out in the new basis.

The s1(3,C) weight lattice is usually given as the integer
span of the two fundamental weights,

Q=12Zv,+1r,. (4.19)
Here Z denotes any integer. In our notations the fundamen-

tal weights are written as the highest weights of the quarks
and antiquarks,

vwv=1 and v,=¢. (4.20)
Hence the weight lattice Q consists of all the points
Q=Z+2=2+70. (4.21)

The Weyl group action in Q is generated by two reflec-
tions,

ri{a+b&) =r(a+ b+ bw)
=—a+@+b)=b+(a+b)w,

r,(a + b&) =r,(a+ b + bw) (4.22)
=a+b—bl=a—bo.

In particular all quark s1(3,C) quantum numbers (weights)
are found on the same Weyl group orbit,

=100, £2=rf"= —1+fo2,

(4.23)
E'=r£0= —f o4,
Similarly one finds the antiquarks on another orbit,
3 _ F—J—
Eeol, &P=rrné=—13, (4.24)

§5=r2§=1—§<—>5.

The standard representation theory can be developed in
terms of this basis, irreducible representations are construct-
ed in tensor products of the quark and antiquark ones, etc.

V. THE GENERAL CASE OF gl(2n1,C)

The properties of gl(3,C) described in Secs. III and IV
are particular cases of those which will be described here.
Similar properties of gl(2n,C) also exist; however, some
modification is necessary there. They are described in Sec.
VI

The finite group #,,,, represented as a group of
(2n + 1) X (21 + 1) matrices of determinant 1 is generated
by the cyclic permutation matrix
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0 1 0 0
1 0 O
A=]: A¥r+i=1, (5.1)
0 1
1 0 0
and by the diagonal matrix
D =diag {1,£,£%...62"}, =™+, (5.2)
The group consists of (27 + 1)* matrices given by
Kioa = gkA °D d’ k’a’dGZZn+ 1 (5.3a)
which means that k,a,d assume integral values
mod(2r + 1). Equivalently we could have chosen
K;,=¢("D%U° kadel,,, ,, (5.3b)

instead of (5.3a). The transfer between the two conventions
is made as follows. Because

ADA " '=¢(D&DAD "' =¢ 74, (5.4)
one has

AaDdA —a=§adDd<:>DdAaD—d=§—adAa (55)
and therefore

K oa =6 Kiaa - (5.6)

Rewriting (5.5) in terms of K, ,;, we establish easily the
crucial property of the group Z,,,, which generalizes
(2.4) and (3.7). Namely,

Kkade’a’d’ (Kkaa' ) = ; ad’~ a‘de’a’d’ s
aaddd'eZ,, . (5.7)
Linear combinations of the matrices (5.3) with complex
coeflicients span the Lie algebra gl(2n + 1,C). A suitable set

of generators can be chosen, for example, by putting X = Oin
(5.3a). To be specific we choose the generators

K., =Koy —n<ad<n. (5.8)

In particular, the one-dimensional center of gl(2n + 1,C) is
generated by the identity matrix

Koo = Kooo ;
the matrices A and D are also among the generators
A=K =Kp10, D=Kg =Kp; .
Moreover, the subgroup of SL(2n + 1,C) generated by A,D
has as its commutator subgroup the whole center of
SL(2n + 1,0).
When it is possible to decompose sl(27 + 1,C) into the
algebraic sum

n

si2n+1,80) =h+ 3 b

d= —n
of 2n 4 2 Cartan subalgebras? It can be done, according to a
conjecturein Ref. 1, ifand only if 2n + 1is a prime power. If
2n + lisa prime number then we find the following solution
for which we conjecture that our solution is the only one that
can be refined to a finest grading:

[)d - {(Kld)ay 1<a<2n} )
while §j is the Cartan subalgebra of diagonal matrices,
b= {Ky,,1<d<2n} ={D,D?D?..D*"}. (5.10)

(5.9
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The property (5.7) specialized for the generators, i.e.,
k =k’ =0, allows one to label the generators by the eigen-
values of other generators acting as in (5.7). Thus the
(2n 4 1)? basis elements of gl(2n + 1,C) can each be la-
beled by (27 + 1) eigenvalues. Avoiding redundancy of no-
tation, it suffices to use eigenvalues of any two generators
which generate Z,, . | upon multiplication. Our choice of
labeling generators from now on is 4 and D.

A generator K, is labeled by the eigenvalues of the
transformations

AK A '=¢K,,, DK, D7 '=¢"9K,. (5.11)
For simplicity of notation we write
Ky =(d,—a). (5.12)

Here — a and d are integers mod(2n + 1). Note that each
generator of gl(2n + 1,C) is labeled by a distinct pair
(d, — a). The identity K, is labeled by (0,0).

Consider the commutation relations

[Koo - Ky 1 = [(g,—P) (¢, —P))]
=(¢q,—p)¢,—p)— (¢, —p) (g —p).
Since
(¢, —p)(q, —p') =A?DI4PDT
—A4P+tP4 —PDIq DT
=§ —raq PHPpe+d ,

all the commutation relations of our generators of

gl(2n 4 1,C) can be written in the explicit form

[A aDd,A a’Dd‘] — ( § —ad __ g —ad’)A a+a'Dd+d’ ,
(5.13a)

[(ab)(@b)]=(5" =5V a+ab+b"), (513b)
where the addition of the generator labels a,b,a',b ' is under-
stood mod(2n + 1). The finest grading of gi(2n + 1,C) re-
alized by our basis (5.10) is made obvious in (5.11). Note
that (5.11) is valid also for sl(2n + 1,C) which requires the
exclusion of (0,0) from the set of generators of the algebra.

There are 2n Casimir operators of s1(2z + 1,C). In our
basis they are written in an obvious way. Indeed,

C(Z) — z

(p1:90)(P24>) ;

P +p=0
9 +¢,=0
CcO® — (P1,91) ( P2:92)( P3:43) ;
pi+p,+ps=0
g +g+g,=0
Cn+D — 2 (Pvg) (P2q,)

P+ Py 1 =0
@+ + @ =0

X X (Pans182n41) -

(5.14)

It is understood that only the generators of s1(2n + 1,C) do
appear in (5.14), i.e., (0,0) is excluded.

Finally observe that also the relations (4.16) generalize
in an obvious way:
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1 2n 41

= (l—-i)mDm’
2n+1 mgl g

Ey=E; A", 1<ik<2n+1.

[

i

(5.15)

VI. THE GENERAL CASE OF gi(2n,C)

The development in this case follows the same line as in
Sec. V. Differences occur in two ways: the generating matri-
ces A and D have to be modified in order to assure that their
determinant is 1, and the orthogonal decomposition of
gl(2n,C) into Cartan subalgebras holds only for n = 1.

The group Z,,, of 2nX2n matrices of determinant 1 is
generated by

o 1 0 - 0
1 0 0
A=] : L, A= —1, (6.1)
0 1
-1 0 0,
and by the diagonal matrix
— di 3 4n — 1 __ p2wi/4n
D =diag {n,7*,...7*"" "'}, n=e , 62)

D= .
Similarly as before & ,, consists of (2n)> matrices given by
K, , =7n*4°D", (6.3)

The property (5.7) of the group £ ,,, which lies at the
origin of our interest in it, is written as

k.,a,d integers mod 2n .

KyoaKyowa (Kiaa) = "72(“' - a‘d)Kk wdrs JELy, . (6.4)
It is verified directly using (6.3) and the relations
ADA"'=u’D, DAD '=9"%4. (6.5)

Choosing the labeling elements 4,D and using the nota-
tions

K., =K,y a,d integers mod 2n (6.6)
for the basis of gl(2n,C), we have
== = , — 1 s D = = 1’0 s
A=K;,=(0,-1) Ko, = (1,0) (6.7)

A4°=(K,;0)*=(0,—a), D= (Ky)*=(d0).

The subgroup of SL(2n,C) generated by 4,D has as its com-
mutator subgroup again the whole center of SL(2n,C).

A generator K, is labeled by the eigenvalues of the
transformations

AK 4 '=9*K,, DK, D '=5"%K,. (68)

For simplicity of notation we write K ; = (d, — a) [cf.
(5.12)] rather than K, = (77,7~ 2).

Then the commutation relations of our basis of gl (2n,C)
are given by (5.13a) where ¢ = ¢>™/>", In the case of (5.13b)
one should remember that now, because of the identity X ™

= — X™* 2" for X = A and D, we have

[(Pg),(Pg)] =€ — ) (p+Pg+7q).
(6.9)

Here e= — 1 if either 0<g+¢'<2n<g+¢q <4n or
0<g+4q'<2n<q+4q <4n, and €= 1 otherwise. The
2n — 1 Casimir operators of s1(2n,C) have the structure giv-
enby (5.12). Also the relations (5.15) hold practically with-
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out change taking into account that 4 is of order 4» in the
present case,

Finally let us briefly consider the generalized Pauli ma-
trices of degree 4. The subgroup Z , of GL(4,C) is of order

2n
= 1 Y ¢ -2bmpm 4, 1t is faithfully represented by the following 16 matrices
2n ==h (6.10y  cach multiplied by + 1and 4 i:
Ey=EA*', 1<ik<2n.
J
1 i i
. i 1
wo=p=g} ° _ , eo=02=| T , B0 =D=q ; :
—i —1i —1
0O 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 01 —1 0 0 0
3)=A= 02)=A4%= , () =4°= ,
0,3) =4 0 0 1 0.2) -1 0 0 O O 0 -1 0 0
-1 0 0 O 0 -1 0 0 0 0 -1 0
o i 0 0 0 —i 0 O
0O 0 -1 o0 0 o i O
—AD = . (2,3) =AD?= ,
(AH=dDb=7} o o o _if ®¥ 0 0 0 —i
-1 0 O 0 —-i 0 0 O©
0 1 O 0
0O 0 —i 0
= AD3 =
Gy =ap’=q| = o o |
- 0 0 0
0 0 ~1 0 0 0 ¢/ O
0 0 0 —1i 0 0 0 —i
=A4°D= , (22)=4D%= ,
(12)=4D=q| o o o} @ —i 00 0
0 —-i 0 0 0 /i 0 O
0 0 —i 0
0 0 0 —1
— 42D3 —
(32)=AD =7l . o o o}
0 -1 0 0
0 0 0 i 0 0 O —i
1 0 O O —-i 0 O 0
=A3D = 2,1 =A3D2= )
(LD=A4D=n1 4 _; o of ®V o i 0 0
0 0 1 0 0 0 —-i O
0 0 0 -1
ans_ |- 0 o0 0
0 0 i 0
1
1
0,0)=I= 1
1
r
Here 5 = exp(27i/8). The 16 matrices above are linearly = ACKNOWLEDGMENTS

independent and all but the identity are traceless. Equipped
with the commutation relations they generate the Lie alge-
bra gl(4,C). One can also verify that among them one does
not find the Dirac matrices given relatively to an uncommon
basis. Similarly they do not belong to the symplectic or or-
thogonal subgroups of GL (4,C).
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For the stationary axisymmetric Einstein vacuum equations in cylindrical coordinates we find
that both the Ernst equation and the two real equations which alternatively describe the
stationary axisymmetric problem separate, leading to Painlevé transcendents. The boundary
and asymptotic behaviors of the resulting space-times are investigated in both cases. Two
families of solutions are determined which, away from the symmetry axis, become
asymptotically flat. The analysis provides an example to the conjecture that the Painlevé

property implies integrability.

I. INTRODUCTION

The Einstein vacuum equations with one timelike and
one spacelike commuting Killing fields (the stationary axi-
symmetric problem) reduce either to the complex Ernst
equation (for the squared norm W and the twist potential ¢
of one of the Killing fields) or to two real Ernst-type equa-
tions (for suitable combinations of the metric coefficients y,
). In the present paper we investigate the separable solu-
tions that these two sets of equations admit in cylindrical
coordinates. Although the equations are nonlinear we find
that the (axial) z dependence of the solutions can be expo-
nential or sinusoidal and that the radial amplitudes satisfy
(ordinary) differential equations of the Painlevé type V or
III. We investigate the boundary (near the axis p = 0) and
the asymptotic (for o — « ) behavior of the resulting space-
times and we determine two families for which the metric
becomes, away from the axis, asymptotically flat.

That the complex Ernst equation separates in cylindri-
cal coordinates and the separation leads to Painlevé equa-
tions is known even more generally than the vacuum'™ case,
for the Einstein-Maxwell equations,’ and the Einstein equa-
tions coupled with any number of U(1) gauge fields.>’ It
seems to have escaped notice, however, that the system of
two real, Ernst-type equations separate as well. We should
clarify at this point that the real Ernst-type equations arise
only in the studies of the vacuum Einstein equations; they do
not arise in the Einstein—-Maxwell theory.

All previous investigations have essentially confined
themselves to the study of the Ernst equation. None of them
has investigated the boundary and asymptotic behaviors of
the resulting solutions, nor the integration of the remaining
two Einstein equations, leading to the determination of the
conformal two-dimensional geometry “orthogonal” to the
two Killing fields. These two problems are addressed sys-
tematically in the present investigation. In fact the reduction
of the separated equations to Painlevé ones is such (the re-
quired transformations are not analytic) that the asymptotic
behaviors can be obtained with difficulty from the behaviors
of the Painlevé transcendents, if the latter were known. So, in
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the Appendix, we determine the behaviors of the solutions of
the separated system of equations before their reduction to
Painlevé equations.

There is a long standing conjecture®® that an ordinary
differential equation is integrable when it possesses the Pain-
levé property, meaning that all movable singularities are
simple poles. A partial differential equation is integrable'®
when the ordinary differential equations obtained by an ex-
act reduction of the partial equations possess the Painlevé
property. The stationary axisymmetric problem is complete-
ly integrable: it possesses an infinite number of conserved
currents' ' and it has been integrated by the inverse scatter-
ing method.">* That the (complex) Ernst equation reduces
to one of the Painlevé equations (which are actually charac-
terized by the Painlevé property) is one of the few standard
examples of the conjecture. The conclusion of the present
paper that the real equations of the stationary axisymmetric
problem also possess the Painlevé property provides addi-
tional new evidence in favor of the conjecture.

. THE FORMALISM

For stationary axisymmetric space-times'” in the Papa-
petrou'® gauge the metric is of the form

(ds)? =ply(dt)* — (1/y) (dp — wdt)?]
— e*[(dp)* + (d2)?), (2.1)
where (Jd /dt) and (J /dgp) are the two Killing fields. Setting
Yto=(0+F)/(1-F), y—o=(1+G6G)/(1-G),

(2.2)
the vacuum Einstein equations become
(1 — FG)D*F = — 2G(DF)?,
(1 — FG)D*G = — 2F(DG)?, 2.3)
K= # (X,px,z - w,pa),z)
F_G F .G
_PFEG.+ .2 ) (2.42)
(1 — FG)
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__ L P p 2 2 2
K, ” + A o =X,z — @, +@;)
= —._1_.+p(F’PG»P _F‘»vaz) (2.4b)
4p (1-FG)*

where D is the gradient operator in three-dimensional flat
space but acting on scalar fields with azimuthal symmetry;
thus, in particular,

DH=H,, + (1/p)H, + H _,,

!, P ~ (2.5)
(DHY(DHY=H_H, + H ,H ,,

for any two scalar fields H and A.
Alternatively, if instead of Eqgs. (2.2) we set

‘l’:p/X’ ¢,p=(p/X2)w,z’ ¢,z= _(P/Xz)(’),p’
(2.6)

and introduce the complex Ernst potentials Z and E by
¥Y+id=Z=(1+E)/(1-E) 2.7)

the vacuum Einstein equations (2.3) and (2.4) become, re-
spectively,

(EE* — 1)D°E = 2E*(DE)?, (2.8)
+1nW), = (p/29%) (¥, ¥, + D, )
E_E*, + ELE
_PEEL +EGR) (2.92)

(EE* — 1)?

(L+iln¥) , = (p/4¥°)(V°, — ¥, + P2, — D7)
__p(E_E} —E E%)
~ (EE*—1)?

Equations (2.3) and (2.8) are the two real and the one com-
plex Ernst equations, respectively, associated with the met-
ric functions (y,w) and the norm and the twist potential

(¥,®) of the azimuthal Killing field (3 /3p).
Finally we mention that setting

(2.9b)

X=X/ -3, o=a/("—a%), (2.10)

and repeating all previous steps with the variables (y,@) one
obtains the Ernst potential and the Ernst equation associated
with the Killing field (3 /d¢).

More generally, setting

f=ﬁu
5=(0+a)—0w)(1—0—0w)+0(1—6)Xz (2.11)
(1—-20+20%m ’
m=(1—6—60w)®>—0%?% 0<6K],
with inverse
x = (1/m) (1 — 26 + 20°)%%,
o= — (1/m){[1—0+06(1 —20+20%)a]
X[6—(1—6)(1—-20+20%5) (2.12)

+6(1—6)(1 — 206 + 2622,
m=[1—6+6(1—20+20%)a]*
—6%(1—26+200)%

and repeating the previous steps with the variables (y,&)
one would obtain the Ernst potential and the Ernst equation

675 J. Math. Phys., Vol. 29, No. 3, March 1988

associated with the Killing field (d/d@) = (1 —0)(3/
dp) + 6(d/dt), i.e., an arbitrary linear combination of (J /
Jdg) and (4 /dt). It should be noted, however, that the trans-
formation (2.11) for 8 = 1 should be followed by the “tri-
vial” transformation (y,®)- ( — ¥, + @), which also pre-
serves Egs. (2.2) and (2.3), in order to reduce to Eqgs.
(2.10).

Since the boundary (near the axis) and the asymptotic
(at infinity ) behaviors of the Killing fields should be differ-
ent for the azimuthal and the time-translational Killing
fields, any solution of the Ernst equation should be investi-
gated as representing either the untilded or the tilded quanti-
ties. Note, however, that 4 remains invariant in passing from
the untilded to the tilded variables.

For a solution to be physically interesting it should de-
scribe a reasonable space-time at least in some region, name-
ly, either near the axis p—0 + or at infinity p— . Such
solutions should have the following behavior.

(i) Near the axis

y=cp !, w=c,p”!, p=const, (2.13)
where ¢, > 0 and ¢, >0 are constants.

(ii) Asymptotically (away from the axis)

x=c;p~ ", o=o0(p~?), p=const, (2.14)

where ¢; > 0 is a constant.
These conditions should be checked for both sets y, w,
as well as ¥, @, fi.

lll. SEPARABLE SOLUTIONS OF THE REAL
EQUATIONS

It does not seem to have been noticed that the two real
equations (2.3) admit separable solutions in cylindrical co-
ordinates (p, z). Thus setting

F=e“f(p), G=e~"g(p), (3.1)

and changing to dimensionless coordinates x = ap, §{ = az,
Eqgs. (2.4) reduce to

(fe—=DIf"+W/x)Vf +f)=28(f+f%, (3.2a)

(fg—Dg" + (1/x)g +8)=2f(g*+ 8%, (3.2b)

where the prime denotes differentiation with respect to x.
Equations (3.2) admit the integral

x(fg —f'8)/(fg—1)* =k = const. (3.3)

Moreover, with the substitutions (3.1), Egs. (2.4) reduce
considerably; they read

a = const,

x(fg —f'8)
”’§=_T,{§__—17_=k» e
po= —Lxfe+/e '

4x (fg—1)?

From Egs. (2.2), (3.1), and (3.4) we find that the resulting
solution is determined from

Y= 1-fg
(1—ef)(l—ebg)’
£f —e—tg (3.5)

= ) =k ’
O (1 e gy MKMW

S. Persides and B. C. Xanthopoulos 675



where

dunx) _ _ 1 x(fg+/8)
dx x  (fg—1)?

The expressions (3.5) and (3.6), with f and g satisfying
Egs. (3.2), determine a four-parameter family of solutions.
Because of the presence of the term — } In x in the expres-
sion for u, arising from the integration of Eq. (3.6), the re-
sulting space-time is not regular near the axis.

Asymptotically (x— o) we find, after an elaborate
analysis which is demonstrated in the Appendix, that the
solutions of Egs. (3.2) behave like

(3.6)

f = (a,e® +are"®)x" V2 0(x"3?), (3.7a)

g =k (a, e +arte ?)x 12 4 O(x3?), (3.7b)
where

@ =x+ (4k,a,af)In x, 3.8)

and g, and k, are complex and real constants, respectively.
From the expressions (3.5)-(3.8) we find that

¥=14+0x""%), o=0ux""%,
u =k + 4kaatx + O(In x).

The resulting space-time is not asymptotically flat.

In the presence of the integral (3.3) one would expect
that the system of equations (3.2) would be essentially one
of the third order. We shall now show, instead, that it can be
reduced to a second-order Painlevé equation. For the reduc-
tion we set

f=Pe? g=¢Pe %, (3.10)

where e = + 1 or — 1 depending on whether fg>0 or
fg <0, respectively. Note that this transformation is locally
one-to-one and invertible, but it is not analytic. The integral
(3.3) then becomes

xP?Q'/(e — P*)* =

(3.9)

— €k /2. (3.11)

Using Eq. (3.11) to eliminate Q we find that P satisfies the
second-order equation

(P*— e)(P” +LP’) —2PP"
x

2——
_P(P2+6)[l+k (Pzpf) ] 0. (3.12)
Then setting
P=ny(eWw)~ 12 (3.13)

wherep = + lor — 1 depending on whether P>0or P <0,
respectively, we obtain

” 1 1 ) 12 1 ’
W' — W —W
(2W+ W—-1 +
3
_pFADF =1 S WHED o (34
W W1

with 8= k?/2 and § = 2. This is a particular case of the
Painlevé equation'” of type V. Note that Eq. (3.14) is inde-
pendent of € and 7, i.e., independent of the signs of £, g, and
P.

Much simpler is the case when k = 0 in Eq. (3.3) (in-
stead of a constant). Then f/g = const and without loss of
generality we can choose f = g = y (say), since the constant
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of theratio f/g can be absorbed in a shift of the origin of the z
coordinate. Equations (3.2) then reduce to the single equa-
tion

(V=D +(/x) Yy +y) =220y +y%). (3.15)
Now y is smooth near the axis, exhibiting the behavior
y=ay,+ [ao(a} + 1)/4(a} — 1)]x* + O(x*), (3.16)
where a, is a real constant different from + 1. Hence we get

x= Ly
(1 —ey)(1—e"%y)
1—d3
= O(x? ,
(1 —ageb) (1 —ape™ %) + 06D
_ 2y sinh § (3.17)
(1—ep)(1—e~%y)
2a,sinh § 4 o0,

(1 —aeb) (1 —age %)

p=ké—1Inx + O(x?),
and the space-time is not regular on the axis x = 0.

The general asymptotic expansion of y is given in the
Appendix. As a special case we find, with a, = (1 —i)/2,
that

= (cos @ +sin@)x~ "2 4+ O(x~3'?),
(cos @ ®) ( (3.18)
g=x+2Inx,
from which we can find the behavior of the metric coeffi-
cients

¥ =1+ (2cosh ¢ /yx)(cos @ +sin@) + O(x~ 1),
w = (2sinh ¢ /\x) (cos ¢ + sin@) + O(x™ 1),
@ =2x+ 0(lnx).
The space-time is not asymptotically flat.

Finally we note that by the substitution y = (w — 1)/
(w + 1) Eq. (3.21) reduces to

2
w” __ui._+iw'+_6_(w3_i)=o,
w x 4 w

withé = 1, which is a special case of the Painlevé equation of
type II1.

(3.19)

(3.20)

IV. SEPARABLE SOLUTIONS OF THE COMPLEX
EQUATION

The complex Ernst equation (2.8) also admits separable
solutions.?* Substituting

E=¢*H(x), {=az, x=ap, a=realconst
4.1)
into Eq. (2.9) we obtain
(HH* — 1)(H" + (1/x)H’ — H) = 2H*(H"? — H?).
4.2)

This equation admits the integral (as a similar equation in
Ref. 4),
x(HH* — H'H*)
(HH* — 1)?
as it can be shown by direct differentiation.
As in Sec. III, Eq. (4.2), essentially a system of two

=id, A =real const 4.3)
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ordinary differential equations, can be reduced to a single
second-order equation. Setting

H=H,(x)e®®, Hy,=|H|, 6(x)=real, (4.4)
the integral (4.3) reads
xH20'(x)/(H2 — 1) = —1/2, (4.5)

while Eq. (4.2) reduces to

(H3 — 1)(Hy + (1/x)Hg) — 2HHE? + Hy(Hj + 1)
X [1+A2(H2 — 1)%/4x*H4] = 0. (4.6)

This is similar to Eq. (3.12) and with the substitution
H, = W ~—"/2 reduces to Eq. (3.14) and f= —A?/2 and
8 = — 2,i.e., aPainlevé equation of type V. The reduction of
the (complex) Ernst equation to the Painlevé equation of
type V was first noticed by Marek,' and later, independently,
by Léauté and Marcilhacy.?

Using Eqs. (2.6) and (2.7) it is straightforward to ex-
press the metric coefficients (y,w) in terms of any solution of
Eqgs. (4.2). We find

y=p/¥ =[p/(1 —HH*)]

X (HH* —He* —H*e % +1), (47)
and
w, = — [x/(HH* — 1)?] [H(HH* + 1)¢*
+ H*(HH* + 1)e~ % — 4HH*], (4.8a)
w, , = — [ix/(HH* — 1)?][(H' — H?H*)¢*
— (H¥ —H**H')e %] +24. (4.8b)

The remarkable thing is that Eqs. (4.8) can be integrated for
o, using only the knowledge that H satisfies Eq. (4.2). We
find that

o= — [x/a(HH* — 1)?][(H' — H?H*)e*
+ (H* —H**H)e %] + 2z +w,(x), (49)
where
dow,(x) - 4xHH*
dx a(HH* — 1)?’
The last metric coefficient u is obtained from Egs. (2.9). We
find

(4.10)

B+iln¥), = —4, , (411)
w+iny), =x(HH¥ — HH*)/(HH* - 1)7,
from which we obtain
L= —alz—LiIn(p/y) +p.p), (4.12)
where
dp, _ x(HHY — HH*) (4.13)
dx (HH* — 1)?

A. Solutions smooth on the axis? No!

When H and H' are finite at x = 0, from Eq. (4.3) we
obtain A = 0 and therefore we should have HH* = H'H*,
for every x. It is then easy to show that H equals to a real
function (of x) times a complex constant which can be ab-
sorbed into the factor ¢ by a linear transformation of z.
Thus when A = 0 we can assume, without any loss of genera-
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lity, that H is real, satisfying the equation

(H2— 1)(H" + (1/x)H — H) = 2H(H? — H?).
(4.14)

Note that Egs. (3.15) and (4.14) differ only in the signs of
the last terms in the two sides. By the transformation
H = (w~1)/(w + 1) Eq. (4.14) transforms to Eq. (3.20)
with § = — 1, which is a Painlevé equation of type III.

In terms of any real H we obtain from Egs. (4.7),
(4.9),(4.10), (4.12), and (4.13) that

y=pMH?*+1—-2Hcos{)/(1 —H?), (4.15)
2xH’ cos £ do, 4xH?
0= —— s = , 4.16
a(H*—-1) T dx a(M?*-1)? (4.16)
and
1 H’+1-2H
/u=—-2—ln( +1 H COS§)+#1(X),
N 4.17)

duy _ x(H? -H?)
dx (H? - 1)2

Since the condition 4 = 0 is necessary but not sufficient
for a solution to be well behaved near the axis, we shall inves-
tigate the behavior of the solution (4.15)-(4.17) as well as of
the solution (¥,d, 1) obtained from Eqgs. (2.10) or (2.11).

Near the axis Eq. (4.14) admits the smooth solution
H=b,+ [bo(b] + 1)/4(1 = b})]x* + O(x*), (4.18)
where b, + 1 is an arbitrary real constant. Using this ex-
pansion we obtain

x=[(b3+1-2bycos§)/a(l—b})]x+ O(x*),

(4.19)

o= — [bex*/a(by + 1)*] + O(x*), (4.20)

p=iln[(b3 +1—2bycos8)/(1—b3)] + O(x?).
(4.21)

From Eqgs. (2.10), (4.19), and (4.20) we find that
¥=—a(l=b3)/(b} +1—2b,cos {)x + O(x),
@

=aby(1 —by)?/ (b} + 1 —2b,cos &) + O(x?),
(4.22)
when we interchange the two Killing fields. Similarly from
Eqgs. (2.11) we find that

¥=[0b3+1-2bycos¢)/a(l —b3)(1—6)*]x
+ O0(x*), (4.23)
B=0/(60-1)+0(x?),
when we consider a mixture of the two Killing fields, for

0 <8< 1. None of the resulting space-times behaves well
near the axis.

B. Solutions leading to asymptotically flat space-times

For large x we shall consider space-times arising from
solutions of Eq. (4.2) for which H and H' are finite as
x— + co. From the analysis in the Appendix we find that
these solutions of Eq. (4.2) behave like e *x~'? as
x-+ + co. Applying the integral (4.3) asymptotically we
find that A = 0. Thus we shall have HH* = H'H* every-
where and, as in Sec. IV A, without any loss of generality we
can assume that H is real.
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We shall consider solutions of Eq. (4.14) but referring
to the Ernst equation for the tilded potentials

¥4+i®=(1+E)y/(1-E), (4.24)
corresponding to the interchange of the Killing fields (9 /3¢)
and (3 /3p).

The expressions (4.15)—(4.17) are now applicable if we
replace (y.») by (¥.@). Using the asymptotic behaviors
(All) and (A12) for a real parameter 4 we find

T=p—Aa"\2rx"%e~*cos ¢ + O(x~ %), (4.25)
& =Aa"2rx"%e *cos L + O(x~ %), (4.26)
= —Am/2xe " *cos £ + O(x~ 3%~ *). (4.27)

Then from Egs. (2.10) we obtain
x=1/p+ad2rx"3%"*cos £ + O(x~>/% %),

(4.28)

o=ad\2r x 3% *cos{ + O(x~3%~%). (4.29)
For large p the corresponding metric (2.1) tends to

(ds)? = (dt)* — (dp)* — p*(dp)* — (dz)?, (4.30)

i.e., to a flat metric. It should be pointed out, however, that
for large z but near the axis the metric does not tend to a flat
metric (it depends sinusoidally on z).

For completeness we also investigate the possibility of
using the solution of Eq. (4.14) but now referring to the
Ernst equation for the potential

Vo +i®, = (1 4+ Ep)/(1 —E,y), (4.31)

corresponding to the arbitrary mixing of the two Killing
fields. Now y and w are obtained from Egs. (2.12), where
(¥.@) are given again by Eqgs. (4.25) and (4.26). As we have
mentioned in Sec. II, z will remain the same and it will be-

have as in Eq. (4.27). We find that ,

(1 —H2)(H2 + 1 — 2H cos {)

Ty = —0%(1—20+20%)%% + (1 —-0)*
+24a7%0%(1 — 20 + 262X 27x* "%~ *cos £

+ O(x"?%e— %), (4.32a)
x=—(1/6%p)[1+((1 — 0)/0%(1 — 28 + 26 *)%?)

+A\2rx" V2%~ *cos £ + O(x™3%~%)], (4.32b)
o=[(1-0)/01[1+(6%(1 —20+20%)p*)~!
+0(x%]. (4.32¢)

For large p the metric (2.1) tends to
(ds)?= — 0 ~%(d1)* + p*[6(dp) + (6 — 1) (d) ]?
— (dp)* — (d2)?, (4.33)
i.e., to a locally flat but physically unacceptable metric.

V. AN EHLERS TRANSFORMATION

The simplest expression of the Ehlers transformation
asserts that whenever Z = V¥ + i® is a solution of the Ernst
equation, so does

Z-: 1 - or W=——2——w—'~—2-,
Z+ic Vet (P +0) (5.1)
- Btec
V2 4+ (P +¢)?

where c is a real constant.

We apply the Ehlers transformation to the solution of
Sec. IV B for the tilded potentials ¥ and ], i.e., the squared
norm and the twist potential of the Killing field (3 /dt).
Since

¥ = (1 - H*)/(1 +H*—2Hcos §),

& =2Hsinf/(1+ H?—2H cos £),
where H is any (real) solution of Eq. (4.14), we find that

(5.2)

¥= s —, (5.3a)
(1—H»2+ [e¢(H?+1—2Hcos &) + 2Hsin £ ]
F_ _ [c(H?4+1—2Hcos¢) +2Hsin £ J(H2 + 1 —2H cos £) (5.3b)
(1—H>)?+ [c(H> +1—2Hcos{) + 2Hsin ¢ ]2 '
= » - = = r
Then y is readily obtained from y = p/'V. Also
Using the asymptotic expansion (A11) and (A12) we - . )
find that o= —(A/a)[2sing + (1 —c*)cos §']
¥=p(1 +c*) +Aa"[2csin§ + (1 —c*)cos & ] Xe~*2mx + O(x~ V%), (5.8)
_ XeTN2mx + O(x~"%e=), (54)  Moreover from Eqs. (2.9) we find that
V=1/(1+c*)—[4/(1+c*?*1[2sin¢
+ (1 —Mcos £ e~ WZm/x + O(x~¥%~%), (5.5) A=iln(+ch) +[4/(1+D)]
b= _ 2y __ 242 — 2Yai
b= —c/(1+c*)—[4/(1+)*1[(1 —c*)sin g x[2esiné + (1 — c®)cos £ |
—2ccosf le~X2m/x + O(x~ 3% %), (5.6)
and that Xe~5fm/2x + O(x~ %~ %), (5.9)
= _ = —3/2, —x
Z, = D, +0(x"?2% %), 5.7
V,=0,+0(x3%"%). Therefore for p— + oo the metric tends to
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(ds®) = @)/ (1 +¢*) — (1 +¢%)

X [(dp)* +p*(dp)* + (dz)?], (5.10)

which is flat ! As in the previous case, local flatness fails near
the axis of symmetry. This should have been anticipated,
since an asymptotically flat solution should be matched to an
interior solution, i.e., a solution of the inhomogeneous Ein-
stein equations that are appropriate for a region that in-
cludes the axis.

VI. CONCLUSIONS

We have investigated the separable solutions of the sta-
tionary axisymmetric problem in cylindrical coordinates.
For all these solutions we have obtained explicit expressions
for all of the metric functions and we have determined the
behavior of these solutions near the axis and asymptotically.
For one of these solutions we found that, for large distances
away from the axis, the metric tends to a flat metric. A sec-
ond space-time with the same property has been obtained by
applying an Ehlers transformation.

The separated equations always admit a first integral;
and the radial functions reduce to certain Painlevé equations
of type I11 or V, depending on whether the integral vanishes
or not. Since the Painlevé transcendents are determined
uniquely from the studied functions, we have, in fact, also
determined the near the axis behavior and the asymptotic
expansions of these (particular) Painlevé transcendents.

The solutions (4.27)-(4.29) and (5.4), (5.8), and
(5.9) go to a flat space-time exponentially as p— «. Fur-
thermore, they are both periodic in the z direction with peri-
od z, = 2w/a [see Eqgs. (4.15)—(4.17)] while the first cor-
rections of the asymptotic expansions change signs when £
takes values in the intervals ( — #/2, 7/2) and (7/2, 37/2).
If we were to allow ourselves to speculate, we could probably
say that such gravitational fields may be generated by a mat-
ter distribution which is periodic along the z axis and whose
rotation reverses itself every Az = #/a. In addition we could
say that the resulting curvature is very strongly localized
around the axis of rotation. It should be pointed out, how-
ever, that any rigorous interpretation of the solutions would
require considerations of the inhomogeneous Einstein equa-
tions around the axis. And that any interior solution ob-
tained should be joined, with a C > matching, with the asymp-
totically flat solutions of the present paper. Clearly, this
project is beyond the scope of the present investigation.
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APPENDIX: ASYMPTOTIC BEHAVIOR

We determine the asymptotic (x — « ) behavior of the
solutions of the system (3.2). It is convenient to set

f=x""f, g=x"%,; (A1)
then the system becomes
THA=— Q@) f1 =2 (f2+D)
+xfig1(f7 + 1) — (1/4x%) f
— (1/4x) f2g,, (A2a)
g +8&=— (2/x)g] —2x/£,8* +8})
+x/18:(87 + &) — (1/4x*)g,
— (1/4x)& f; . (A2b)

We seek an asymptotic expansion of f; and g, that would
satisfy Egs. (A2) to leading order. After a lot of trials we
find that

fi=(a,% +ae )x"' + O(x7?),

) , (A3)
g = (be ™+ b,e)x~' + 0(x7?),
where
g=x+alnx, o=x+LFInx, (A4)

and a,, a,, b,, b,, a, and B are free parameters, satisfy Eqs.
(A2) toO(x"). Infact, the only nontrivial step is the verifi-
cation that

T+HA=0GT?), g7 +8&=0(x7?). (AS)
Obviously, the expansions (A3) have too many free param-
eters, a freedom necessary for the expansion to be continued
to higher orders.

To restrict the parameters we consider the asymptotic

expansion of the solution of Eqs. (A2) to O(x~2). Thus we
assume that

fi1=(a,e® +a,e”“)x~!

+ (4,67 +A,e”®)x"2+ O(x7?), (A6a)
g = (bye™ % + bye)x!
+ (Bie ™%+ Be®)x 2 + O(x7?), (A6b)

and we demand that the system of Eqs. (A2) is satisfied to
O(x~?) as well. We find that the conditions to O(x~2) im-
pose restrictions on the parameters a,, a,, b,, b,, @, and 8 of
the O(x ') expansion, which do not involve the parameters
A,, A;, B,, and B,. Using

T+ A= —2[(a+iae”

+ (B—Nae~?]x 24+ 0(x7?), (ATa)
g +g = —2[a—ibe "
+ (B+ Dbe®]x"2+ O(x7?), (A7b)

we obtain the conditions

a,(a —4a,b,) =0, a,(B—4a,b,) =0 from Eq. (A2a)

and
bl(a - 4(12b2) = 0, bz(ﬁ—' 4alb1) - 0 fl‘OIn Eq. (A2b).
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The further requirement that the solutions (A6) are real and
nontrivial to order O(x~") give that
b,=kat, b,=b¥ a=pf=4kaat},
(A8)

where a, and k, are arbitrary complex and real constants,
respectively.

For k, = 1, f| = g, and the method gives the asympto-
tic behavior of the solution of Eq. (3.15). We find that for
real y the asymptotic expansion is

a,=at,

y= (aleiw +are—i¢)x—l/2 + 0(x—3/2)’

¢=x+4ala’,"1nx.

(A9)

We determine now the asymptotic behavior of H that
satisfies Eq. (4.2) and goes to 0 at infinity. Since the nonlin-
ear terms will go to O faster than the linear terms, the leading
term of the expansion is determined by the linear equation

H + (1/x)H —H=0. (A10)
This is the differential equation for the modified Bessel func-
tion.!® The solution that goes to O at infinity is

Ko=e a/2x[1+ O(x"")]. (All)

Hence the (complex) solution of Eq. (4.2) that goes to zero
at infinity is
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H=AKy(x) +o(e™*), (A12)

where A is an arbitrary complex constant and the complex
terms o(e ~ 3*) are obtained from the nonlinear terms of Eq.
(4.2).
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The Hauser—-Ernst homogeneous Hilbert problem (HHP) approach, formerly used in
connection with the derivation of stationary axisymmetric fields, is here adapted to the
derivation of colliding gravitational plane wave solutions of the vacuum Einstein equations.
Proceeding from Kasner metrics, and using a double-Harrison transformation, the HHP
approach yields a three-parameter generalization of a two-parameter family of colliding wave
solutions found recently by Ferrari, Ibafiez, and Bruni. In the present paper we provide the
details concerning the derivation of this new family of solutions, and we set the stage for future
applications of the HHP approach in connection with gravitational waves.

1. INTRODUCTION
A. General problem being considered

In this series of papers™” we are concerned with the in-
teraction of two gravitational plane waves moving in oppo-
site directions. In particular, we have focused attention upon
plane waves that do not interact at all until a certain moment
called the “moment of collision.” At the leading edge of each
of the Petrov type N plane waves, we permit the existence of
a Dirac delta function behavior of the curvature tensor, i.e.,
an impulse, and we permit the existence of a jump discontin-
uity of the curvature tensor, interpreted as a gravitational
shock wave.

It is convenient to describe the colliding wave solution
in terms of four space-time regions, separated from one an-
other by null surfaces. In region I the metric is simply that of
Minkowski space. In the adjacent regions II and III, the
metric is, generally, a Petrov type N plane wave solution of
the field equations, although in the particular case of the
Nutku-Halil solution® the metric is flat in the interior of
regions II and III. Finally, in another region, region IV, sep-
arated from regions II and III by null surfaces, the interac-
tion of the plane waves takes place. As a result of the interac-
tion of the gravitational plane waves, curvature singularities
may prevent region IV from being extended indefinitely.

In fact, the solutions of the colliding plane wave prob-
lem that have been found thus far were found by working
backwards. First, one finds a solution of the vacuum field
equations in region IV, the region of interaction. Then one
attempts to join this solution to appropriately chosen plane
wave solutions in regions Il and III, and to join the latter to
Minkowski space in region I.

In Paper II we identified a simple condition that the
solution has to satisfy in region IV in order that it be joinable
to appropriately chosen plane wave solutions in regions II
and III. This colliding wave condition plays a role roughly
analogous to the asymptotic flatness condition usually im-
posed in connection with stationary axisymmetric fields.
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B. Drawing upon experience with stationary
axisymmetric fields

The search for an effective way to construct all asymp-
totically flat stationary axisymmetric vacuum fields began
with a speculation of Geroch® that perhaps all such solutions
could be derived from a single solution, e.g., Minkowski
space, through the action of a group, the free product of two
SL(2,R) groups.

The first really useful realization of the Lie algebra of
the Geroch group was formulated by Kinnersley and
Chitre,> who displayed the action of the infinitesimal ele-
ments of the group in terms of an infinite hierarchy of poten-
tials. Kinnersley and Chitre, as well as Hoenselaers, Kin-
nersley, and Xanthopoulos,® exploited this formalism to
derive new asymptotically flat stationary axisymmetric solu-
tions, and also to demonstrate that certain famous solutions,
such as the Kerr solution, could be regenerated using these
techniques.

Two of the present authors, Hauser and Ernst,” intro-
duced a realization of the finite elements of the Geroch
group, and ultimately showed® that Kinnersley~Chitre
transformations could be carried out by solving an appropri-
ate homogeneous Hilbert problem (HHP). In particular,
they employed the HHP approach in order to prove®'® the

Geroch conjecture.
In Paper Il we described, within the context of colliding

gravitational plane waves, how the Geroch group arises as
the free product of two SL(2,R) groups. We also drew atten-
tion to the utility of augmenting the Geroch group with a
Kramer—Neugebauer involution.'" In the present paper we
shall replace the rather formal realization of the group de-
scribed in Paper I1 by a realization better suited to the gener-
ation of new solutions from old ones. We shall formulate an
HHP that is particularly adapted to the problem at hand,
and we shall show how we used it in order to derive a three-
parameter generalization of a two-parameter family of solu-
tions discovered recently by Ferrari, Ibafiez, and Bruni.'? It
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should be mentioned that these authors used a formalism
that involves solving a different Riemann-Hilbert problem'?
from the one that we solved.

Il. THE H AND F POTENTIALS

A. A class of vacuum space-times for which a linear
probiem is known to exist

During the last decade much progress has been made
handling not only the Einstein field equations but also other
nonlinear systems of partial differential equations. Invaria-
bly, the key to success is the reduction of the nonlinear prob-
lem to a linear one, to which traditional methods may be
applied. In general relativity this proved to be possible under
certain restrictive assumptions, the principal one being the
existence of two commuting Killing vector fields. No one has
yet had any success when less symmetry is assumed. More-
over, even when two commuting Killing vector fields are
assumed, additional assumptions prove to be necessary if a
reduction to a linear problem is to be achieved. Fortunately,
the vacuum and electrovac cases fall within the province of
problems that can be handled in this way, at least in the
absence of a cosmological constant.

We shall be concerned here with vacuum space-times
for which the line element may be expressed in the form

2
S 8 (wp)dx®dx® + 28, (u,v)du dv. (D

a,b=1

Here X;: = 3 /9x" and X,: = 3 /dx* are Killing vectors,
gabzzxa.xb (2)
has signature + +,g,, <0, and

P =g1182 — (812)°>0 (3)

over the domain of the chart which consists of all (x',x%u,v)
such that (x',x*)e R?, and (u,0) is a member of a connected
open subset of R 2. This class of vacuum space-times contains
the Kasner solutions as well as the set CW, of vacuum met-
rics which we defined in Paper II. It is sufficiently broad to
cover all conceivable vacuum space-times that we are likely
to consider in the current sequence of papers.

B. The H potential

When one considers vacuum space-times that possess
two commuting Killing vector fields, it is useful to introduce
a 23X 2 matrix generalization H of the Ernst potential . It
should be mentioned that the H potential was originally in-
troduced by Kinnersley'” in quite a different way from the
way we shall now employ. Moreover, throughout the follow-
ing discussion, the reader should bear in mind that we invar-
iably suppress the wedge symbol A in exterior products of
differential forms.

1. Definition of the H potential

Webegin with the fact that the Lie derivative of a p-form
Y with respect to a vector field X is expressible in the form

Ly Y=(—1[XdY—-d(XY)]. 4
When, as in this equation, we write a vector field immediate-
ly to the left of a differential form, we intend that the differ-
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ential form should be evaluated as a linear functional acting
upon the vector field. Thus, for example, we have

X, dx"=6,. (5)
More generally, if u is a p-form, v is a one-form, and w is a

vector field, then such contractions are to be evaluated using
the relation

w(uv) = u(wv) — (wu)v. (6)

Suppose now that X, and X, are commuting Killing
vector fields. It then follows that

Ly X, =0 (a,b=12), (7)
where X, is the covector of X, . Since

XX, =8, (ab=12), (8)
it follows from Eq. (4) that

dg., = X,dX,. (€)]

The expression dX,, is a two-form, which can be separat-

ed into self~dual and anti-self-dual parts. Assuming that X,
is real, we may express dX, in the form

—2dX, =W, + W, (10)

and we may identify W, as a self-dual two-form, W as an
anti-seif-dual two-form. Hence Eq. (9) may be reexpressed
as

dg,, = — Re(X, W,). (11)

Now, observe that the Lie derivative of the two-form
W, with respect to the Killing vector field X, must also
vanish. It follows from Eq. (4) that

dX,W,)=X,dWw,. (12)

However, in the case of a vacuum space-time, it can be
shown that

dw, =0. (13)
Therefore, there exists a complex potential H,, such that
X,W,=dH,. (14)

Because of Eq. (11), the constants of integration may be
chosen so that

—Re(H,,) =g, (ab=12). (15)

2. The self-duality relation

As a result of the self-dual nature of W, the H potential
satisfies a relation which we like to call the “self-duality rela-
tion.” This relation may be expressed in the form [Ref. 8,
Eq. (31)]

\(H+ H")Q dH = (z — p*)dH, (16)
where H ' is the Hermitian conjugate of H,
o i
a=(2, o)
—-i 0 (17
the real field z is defined by
2iz:=H,, — H,,, (18)
and * is a two-dimensional duality operator such that
*du = +du, »dv= —db. (19)
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3. The z and p fields

The real field z defined by Eq. (18) is intimately related
to the field p defined by Eq. (3). In fact [Ref. 8, Eqs. (26)
and (30)],

*dp= —dz, *dz= —dp. (20)

Of course, one can use the fields z and p, which are like the
Weyl canonical fields in the stationary axisymmetric field
problem, as coordinates, but it should be kept in mind that
— p then plays the role of a time coordinate. Generally,
however, we prefer to use coordinates # and v such that, in
region IV,

z=u*—v’, p=1—u’"—"v, (21)

and we shall do so throughout this paper.

4. Relationship to Ernst potentials

Both H,, and H,, can be shown to satisfy the Ernst
equation.' We shall arbitrarily choose to denote H,, by & .
Aswesaw in Paper II, it is convenient to follow Chandrasek-
har and Ferrari,' and introduce a second Ernst potential £
which is directly related to the metric tensor components by

E: = (gzz)—l(P'f‘iglz)- (22)

In practice, the H potential can be computed from
& =f+ iy or from E = F + iw by employing three equa-
tions derived from the real or imaginary parts of three com-
ponents of Eq. (16):

[ ldy= — F 'sdo, (23)
d(Im H,,) = F*df + o dy, (24)
d(Im H,)) = —2p*dw + 28,,*dF — f ~'g,, dy. (25)
It should be noted that

f= —83 fF= —p. (26)

Thus, for example, one may first evaluate E = F + iw and f
directly from the metric, then evaluate the twist potential y
by integrating Eq. (23). This provides

H 2 = g = f + ix.
The real parts of the other components of the H matrix are

determined by Eq. (15), while the imaginary parts are deter-
mined using Egs. (18), (24), and (25).

&. The H potential of the Kasner metrics

Let us denote by # the 2 X2 matrix whose elements are
g (a,b = 1,2). In the case of the Kasner metrics, we have

hE = (/"1 N )
0o p=
where we shall refer to the exponent » as the Kasner param-

eter. Using Eqgs. (23)-(25) we can easily establish that

H"—( —p'tn i(l—n)z)
T\ il +n)z t—n )’

-P
6. The class CW; of colliding wave solutions

(27)

(28)

In Paper 11, Eq. (2.30), we identified a simple criterion
for a solution of the vacuum field equations to be designated
as a colliding wave solution. It is a necessary and sufficient
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condition that each of the numbers
k :=|E,(0,0)/2F(0,0) %, 29)
I:=|E,(0,0)/2F(0,0) |, (30)

equals 1. Here subscripts are used to denote partial deriva-
tives with respect to # and v, and the fields are evaluated at
u=v=0.

C. The F potential
1. Definition of the F potential

The F potential is a 2 X 2 matrix field that depends not
only upon the nonignorable space-time coordinates, but also
upon a complex parameter ¢ analogous to the “spectral pa-
rameter” of which others often speak. The F potential itself
plays the role assumed by Lax pairs in analyses of other
exactly soluble systems, and it is the generator of the infinite
hierarchy of complex potentials of Kinnersley.'> From our
perspective, however, the analytic properties of the F poten-
tial, regarded as a function of ¢, assume the greatest impor-
tance.

For a given H potential, the F potential is defined to be
any 2 X 2 matrix solution of the equations

dF(t) =T ()QF(r), 3D

F(0)=Q, (32)

F0)=H, (33)
where

C(t):=¢t[1-2t(z—p*)] " 'dH (34)

is a 2X 2 matrix of one-forms (which can be computed from
the H potential ), and where F(¢) denotes the partial deriva-
tive of F(¢) with respect to ¢. For fixed (z,0), F(t) is required
to be holomorphic in a neighborhood of t = 0. Moreover, we
require that F(¢) be chosen so that, for fixed (z,p), it is holo-
morphic on the ¢ plane minus two cuts that lie on the real axis
intervals £>} or 1< — 4, and join o to the branch points® at
t=1/[2(zF p)]. Even with this gauge restriction, note
that F(t) remains arbitrary up to multiplication on its right
by any space-time independent 2 X 2 matrix U(¢) that is an
entire function of ¢ and satisfies U(0) = and U(0) = 0.

It is important to have a clear understanding of the cuts
of F(¢). Since, in region IV of the space-times we shall con-
sider, z and p are given by Eqgs. (21), we conclude that

z+p=1—227% and z—p=2"—1 (35)

both lie in the interval [ — 1, + 1]. Therefore, both branch
points lie outside the interval ( — 1, + 1).
When |z| <p,

V[2z—p)I< =4, VI2z+p)]>+1 (36)

In particular, the origin lies within the gap between the two
branch points. We shall introduce a pair of cuts along the
real axis of the ¢ plane, one extending leftward to infinity
from the branch point at t = 1/[2(z — p)], and the other
extending rightward to infinity from the branch point at
t=1/[2(z+p)]. See Fig. 1.

When z > p, the branch point 1/[2(z + p)] lies at or to
the right of = + }, and the other branch point is further to
the right. The cuts are then chosen as shown in Fig. 2. When
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t plane

1 1
7 +3 0

FIG. 1. Cuts associated with #(z) and F(¢) when |z| <p.

z =p, the layout is similar except that the cut from 1/
[2(z —p)] to « reduces to the singlet set {0 }.

When z < p, the branch point 1/[2(z — p) ] lies at or to
the left of £ = — J, and the other branch point is further to
the left. The cuts are then as in Fig. 3. Whenz = — p, thecut
from 1/[2(z + p)] to oo is the singlet set {0 }.

2. The F potential of the Kasner metrics

In the case of the Kasner metrics, a solution of Eqs.
(31)~(33) may be constructed from the well-known F po-
tential of Minkowski space by using a general expression® for
the F potential corresponding to those space-times for which

t plane

1 1 1
+3 2z+0) 2z-0)

|
W

FIG. 2. Cuts associated with #(¢) and F(#) whenz> p.
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t plane

[
n o
-+
o
;’1
0}
} =
)
2
»)
Feyn

FIG. 3. Cuts associated with u(f) and F(¢) whenz< —p.

£;2 = 0in the line element (1). The result is given by
FX(n)

1 (_t(pZ/A)(l+n)/2 A +m2
_;{—6—)— __iA(l-n)/Z —"t(pz/A)“_")fz),
(37)
where
A@) =1 =2z) = (21p)?, (38)
A(t) i =4[1 -2z 4+ A(8)]. (39)

The field A(¢) plays a fundamental role in the general
theory of the F potential. For example, one can prove® thata
space-time-independent factor U(¢) which multiplies F(¢)
on its right can always be chosen so that

det F(t) = — 1/4(8),
[Fe)1*=[ - VAO I~ t(H+HHQ)F(),

which can readily be shown to hold for the F* given by Eq.
(37) and which are imposed as a matter of convention on all
F potentials. Note that this still leaves F(¢) arbitrary up to
multiplication by a U(¢) that, in addition to the properties
already given, has unit determinant and is real for real .

The field A(¢) has branch points at t = 1/[{2(zFp)].
We introduce the cuts defined in Sec. II C 1 and select that
branch of A (¢) for which A(0) = 1, whereupon F*(¢) is ho-
lomorphic in the cut ¢ plane and satisfies all stipulated equa-
tions. Observe that, for any point £, on the cuts that £,5% 1/
[2(zFp)] and #,# «, the limits of FX(z) as t—1,, either
from above or from below the cuts, exist and are finite.
Moreover, the branch points at 1/[2(z T p)] are of index
—}, and ¢ = oo is generally a pole or branch point whose
order or index, as the case may be, is # dependent. This type
of singularity structure is typical not only of the Kasner F
potentials, but also of the colliding wave F potentials that we
shall encounter later.
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llIl. A HOMOGENEOQUS HILBERT PROBLEM FOR
EFFECTING KINNERSLEY-CHITRE
TRANSFORMATIONS

In Paper 11 we introduced the Geroch group as the free
product of two SL(2,R) groups, one of which induced ra-
tional linear transformations of the E potential, and one of
which induced rational linear transformations of the & po-
tential. We shall in this section introduce a homogeneous
Hilbert problem, the solution of which permits one to effect
any given Kinnersley—Chitre transformation. As our first
application of the HHP approach, we shall reproduce the
two SL(2,R) groups of transformations we considered in
Paper II. Then we shall formulate and give the solution of
the HHP that arises when one considers a double-Harrison
transformation.

The realization of the Geroch group we shall use here is
the multiplicative group of all space-time-independent, 2 X 2
matrices #(¢) that (i) are real in the sense that u* = u,
where

ur(0): = [u(@*)]% (41)
(ii) have determinants equal to 1, and (iii) are each holo-
morphic in a neighborhood of « except perhaps at oo itself.
This group will be denoted by K[SL(2,R)]. We shall also
have occasion to use the group K[SL(2,C)], which is de-
fined in the same way except that the reality condition on
u(t) is dropped.

For any given u(¢) in K[SL(2,R)], consider the F po-
tential of some space-time that you would like to transform,
and restrict attention to those space-time points for which
u(t) is holomorphic everywhere on the cuts of F(#), except
perhaps at ¢ = . (By definition, every cut is understood to
include its end points.) Our homogeneous Hilbert problem
involves identifying a matrix field F ' (¢), holomorphic in the
same cut plane as F(¢), and a matrix field X_ (¢), holomor-
phic on both cuts of F(¢), and satisfying

F'(hu(F() ™' =X_(1), (42)
F'(0)=Q. (43)
One may establish® that F'(¢) is the F potential of a space-

time, and that H': = F'(0) is the H potential of that space-
time. The metric is computed using #': = — Re H"".

A. Example: Rational linear transformations of the £
potential

It is very easy to identify a u(¢) that generates rational
linear transformations of the E potential; namely, any z-inde-
pendent u(#). If we express such a # matrix in the form

u(?) = Q0 'wQ, (44)
where
a
w= (7 ?) ) (45)

and a8 — By = 1, then the solution of the HHP (42) is quite
obvious; namely,

X_()=uw,
F'(t) =wF(Hw".
It follows immediately that

(46)
(47)
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H’' = wHuwT, (48)
h' = whw” (49)

As we already pointed out in Paper II, the transformation
(49) induces a rational linear transformation,

E’'=i(aE + iB)/(YE + i6),
of the E potential.

(50)

B. Example: Rational linear transformations of the &
potential

Consider a u(#) of the form

a Bt

u(r) = (yt -t 6) ’
where aé — By = 1. By expanding each ¢-dependent matrix
in Eq. (42) in a neighborhood of ¢ = 0 one easily determines
the form of X_(¢) everywhere. This, of course, also deter-
mines F'(¢). The details of this calculation have been given
elsewhere.'” In particular, it has been shown that the trans-
formation (51) induces the rational linear transformation

&' =i(a& +iB)/ (y& +id) (52)
of the & potential.

(31)

C. Example: The double-Harrison transformation

When the so-called double-Harrison transformation'®
was applied for the first time'® to derive a colliding wave
solution from a Kasner metric, some of the subtleties asso-
ciated with the transformation were not well understood.
There seemed, in particular, to be a mysterious minus sign in
the transformed metric # . We now understand this phenom-
enon much better.

For the case F(¢) = FX(t), we should like to consider a
double-Harrison transformation’® of the form

F'Wu@)[F(H] ' =X_(1), (53)
u(t) — ejn(t)’ (54)
jt=1 (55)
Trj=0, (56)
7(t) =4[ (1 +26)/(1 —20)], (57)

where the cut for 7(¢) is chosen to be the straight line seg-
ment which joins its branch points + 1, and where we select
that branch for which 7(w ) = — in/2. Also, we restrict
(z,p) to values for which

1/[2(z—p)]# —}
and
V[2z+p)]# + 4

i.e., according to Eq. (35), u#0 and v+#0. The solution,
whose derivation will be given in Sec. III C 1, is as follows:

F'(1) = e OF (e, (58)
X_(2) =0, (59)
A4:=[(M+MNHQ)/[(M—-MDQ], (60)
M:=F(—}) yI+)HQIF(+ DI (61)

In particular, the transformed H potential is given by
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H = H + 24Q,

except for an inconsequential gauge transformation.

The catch is that #(¢) does not satisfy the reality condi-
tion. To understand this, note that, on the real axis to the
right of + } and to theleft of — 1, the imaginary part of 77(¢)
is — im/2. Therefore, the provisional u(¢) given by Eq. (54)
is imaginary! It is a member of K[SL(2,C)], but not of
K[SL(2,R)].

Nevertheless, we knew that this K[SL(2,C)] transfor-
mation did, except for the mysterious sign changein /', yield
the Nutku-Halil colliding wave solution when it was applied
to the isotropic Kasner metric.'® It turns out that what one
should really identify as a double-Harrison transformation is

(63)

(62)

u(t) = e"Vig,,

where j and 7 (¢) are as before, and

o_(l o>
7\ -1

is a Pauli spin matrix. The revised u#-matrix (63), unlike the
original one (54), does satisfy the reality condition. Further-
more, the following theorem explains both why the original
K[SL(2,C)] transformation worked and why there was a
change in sign of .

Theorem 1: Suppose u(¢) is any given member of
K[SL(2,C)], F(z) isthe Kasner F potential of Eq. (37), and
F’(t) is the solution of the HHP

F (Hu(t)F(r) "' =X_(1).

Then

F(t):= — [F't*")]*
and

X_(t):=X_(t*)*io,
satisfy the HHP

FO] —u*()ios1F(2) ' =X _(1).
The theorem follows easily from the relation
[FX(t*)]* =0 ,FX(t)o,,
which is implied by Eq. (37).
Identifying u(¢) with the expression in Eq. (63), we see

that — u*(1)io; turns out to be nothing but the expression in
Eq. (54). Moreover, if we define #: = % (0), then

(64)

H = —H* (65)
Thus, the metric is given by
h= —ReH= 4+ Re”. (66)

D. Derivation: The double-Harrison transformation

Our derivation will be divided into phases (A), (B) and
(C). Phases (A) and (B) will detail how we arrived at the
solution (58)—-(61) by a mixture of educated guessing and
deduction. Phase (C) will contain the actual proof that Eqs.
(58)-(61) constitute a solution of the HHP (53). In this
connection, there is a general theorem® that guarantees the
uniqueness of the solution if it exists.

(A) We shall first make an educated guess about the ¢
dependence of X_ (¢).
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From Eqs. (54)—(57) and the fact that (J +/)/2 are
projection matrices whose product is zero, it follows that

1 . 142t
u@)=—u
() 2(+J) 1o
1 1—2t
—U—j , 67
+2( 7) 1+ 2¢ (67)

whereupon the analytic properties required of the various
factors in the HHP (53) inform us that the only ¢-plane
singularities of X _ (¢) are branch points of index { or — } at
t = + 1. This suggests that perhaps

14 2¢ 1—2¢
A2 E)

1—2¢ 1+ 2t

where 4, and A, are r-independent matrix fields. Now,

u(0) = + I is implied by Eq. (67), and X_(0) = + 1 is

then implied by Eqs. (32) and the HHP (53). Therefore,

from Eq. (68),

A, +4,=1
It follows that there is a t-independent matrix field 4 such
that

X (n)=4, (68)

1 142t
X (H)=—UT+4
(n) 2( +4) 3
1 1—-2¢
— I ~4 . 69
+2( ) Ty (69)

A remains to be determined.

(B) We shall next grant that X_ (#) has the form (69),
and show that the HHP then implies that A4 is given by Eqgs.
(60) and (61), and that X _ (¢) and 5’ (¢) are given by Eqs.
(59) and (58), respectively.

Upon expressing the HHP (53) in the alternative form

F (1) =X_(OF(u(t)™, (70)
and substituting (67) and (69) into the above, we obtain
F') =T+ ADF)T+))

+id-AFOT—j)

o 142t
+iT+ DF (T —j) —
1—2¢
U —DF U+ 7
14+ 2¢
Multiplication of the above by (1 — 2¢) (1 + 21), followed
by setting ¢ =} or, alternatively, ¢t = — i, yields the equa-
tions
U+AFQHUT—-j)=UT-ADF(-DUT+j)=0 (72)
or, equivalently,
AF(DIUT —j) = — FDIU), (73)
AF(—DIT +j) =F(—= 3 +j). (74)

Note that any traceless 2 X 2 matrix multiplied by  is sym-
metric. Therefore, if M is defined as in Eq. (61),

MT= —FO)M —j)QFT(—1)). (75)
Upon multiplying Eq. (73) on the right by QF "( — ) and
Eq. (74) on the right by QF "(}), we obtain
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AMT= — M7, AM =M, (76)

which are equivalent to Eqgs. (73) and (74), respectively.
Now, Eqgs. (75) and (76) imply that

(M —MT")Q#O0.

Moreover, any antisymmetric 2 X 2 matrix times {2 is a mul-
tiple of the unit matrix. Hence Egs. (76) yield that expres-
sion for A given by Egs. (60) and (61).

Equations (76) also imply that the two eigenvalues of 4
are + 1. Therefore,

trd=0, A4%’=], (7

from which we see that X_ (?), as given by Eq. (69), is ex-
pressible in the neat form (59). The expression (58) for
F (1) then follows from Egs. (54), (59), and (70).

Finally, we complete this phase of the derivation by not-
ing that Eqgs. (32), (33), and (71) imply

X' =F"(0) =H+240 — 20 . (78)

For any given metric, the H potential is arbitrary up to addi-
tion of any constant matrix that is both imaginary and sym-
metric. Therefore, in the above equation, we can drop the
term — 2€)j with impunity. The result is that expression for
7" which is given by Eq. (62).

(C) We next prove that Eqgs. (58)—(61) constitute a
solution of the HHP (53).

First, note that the expressions (58) and (59) for % '(¢)
and X_ (¢) satisfy the HHP identically when substituted
into it. Second, X _ (¢) as given by Eq. (59) is clearly holo-
morphic on the cuts of F(¢), and &' (¢) as given by Eq. (58)
is clearly holomorphic at ¢ = 0 and satisfies ¥ '(0) = . To
complete the proof, it remains only to show that %' (z), as
given by Eq. (58), is holomorphic on the same cut plane as
F(¢). We shall employ Eq. (72), which is equivalent to Eq.
(58).

t-plane singularities of this expression lie on the cuts of F(¢).
That completes the proof.

As regards prior efforts on the material that we have
covered in Secs. III C and III C 1, the solution of a similar
but different HHP has been given by Hauser.?® Part of the
derivation in Sec. III Cis patterned after a derivation of that
solution due to Hauser and Ernst."’

IV. APPLICATION OF DOUBLE-HARRISON TO THE
KASNER METRICS

A. The solution for the output 4 potential

We begin by evaluating F*(z) att = + 1. It is conven-
ient to write

FX(t) = FX(1)S, (79)
where

5= (2"0/2 2—o "/2)' (30
Then

M=F§(—DM,[FE(+D]7 (81)
where

My =81(I+;)QST (82)

is a constant matrix, which may be parametrized as follows:

Moz_i_(—p—p’ 9+q ) (83)
2q\—q+q —p+p/’

where

p=cosv, g=sinv, p'=cosv, g =sinv. (84)

The values of F§(r) at t = 4+ } are best expressed in
terms of (x,y) coordinates, where

Consider the definitions (60) of 4 and (61) of M. Equa- z=xy, p=XY, X:=yl —x2, Y= J1 —y2 . (85)

tion (61) implies that M has rank equal to 1. Therefore, This we do by identifying
Ty — T — —

which imply Eqgs. (76), which, in tur‘n, imply Egs. (77). A= =x+y, (87)
Recall that Egs. (73) and (74) are equivalent to Egs. (76), )
which are, in turn, equivalent to Egs. (72). A(+D =10 +x)(1~y), (88)

Equations (59) and (77) imply that the expression (69) A= =1+x)(14+y), (89)
for X_ () holds. Substitution of (69) and (67) into Eq. 277 1) = 2(] — 1 90
(58) then yields the expression (72) for &' (¢). pz (+3 (=x)+), (%0)

Let us next apply Egs. (72) to the right side of the P/A(=H =2(1=x)(1—p). (o1)
expression (72) for ¥ '(t), whereupon it is seen that the only We then find that

]
1 —[A=x)A+»]"*+772  —i[(14+x)(1—p)]" 72
[Fg("'%)]T:_—“—'( . ; Y (1+n)/2 [ g ](l-—n)/z (92)
V2(x —p) if(1+x)(1—p)] —[(1—=x)(1+p)]
and
1_ 1__ (1+n)/2 i 1+x) 1+ (1 +n)/2
F{,‘(—-g):—L—( [f x)(1—=p)] o [( ( J’)]“_W2 . (93)
VZx+p) NIl +x) (1 +)] [(1—x)(1-))]
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1t is then simple to evaluate M using Eq. (81) and to com-
pute the output H potential using Eq. (62).
If one introduces the notation

_ n/2
T(nwv'): = -21-X[(p ~+-p’)(1 x)

14+x
n/2
+(p—-p’)(’—+—x) ]
1 —x
i , l_y)n/2
Yy =7
-{—2 [(q+q)(1+y
n/2
+(q~q'>(ﬁl) ] (94)
1—y

then the output H potential may be expressed in the follow-
ing form:

14n T(n + Z,V,‘V?)

Hnlmyy) = 95
nO) = T ©2
Hp(nyy')=p' ~n T =20 (96)
T(nyvy)
Hp(nvV') =i(l —n)z —2i
% uVT(ny,v) —vUT(ny'v)* (97)

T(nvyv')

As regards the above solution for the output H poten-
tial, recall that the points (#,0) and (0,v) in region IV were
necessarily avoided in the HHP (53). It is important to note
that, in spite of this avoidance, the final solution can be ana-
lytically continued in the (u,0) plane so that the extended
domain covers the points (#,0) and (0,v).

B. The metric components g,, and the E potential of the
solution

Using the identity
| T(nv ) > =Re[T(n — 1LV ¥)T(n + 1L, v)*],  (98)

one may express the metric components g, = Re 5, in
the following way:

— Al n ‘T(n + I’V’:V)iz

= (9%)
B T M
— al—n |T(n - 1,1/',1’) |2 100)
8n=p MIT(II,V,V')IZ (
Im[T(n — 1V v)T(n + 1,V ,v)*]
= — . 101
812 P T ) (101)

From these expressions it is clear, furthermore, that the
complex E potential,

E:= (p+i813)/82 (102)

is given by
T(n+ 1,v,v)
E(nyy') =p" — | 103)
¢ )=p T'(n—1vw) ¢

C. The computationof g, (i.e.,of N),4,and B

The field equations which govern g, are

2ul, =1 —p|E,/2F|?, (104)

2, =1—p|E,/2F |, (105)
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where

20

e = P8y - (106)

The solution may be constructed from E, which was given in
Eq. (103). The result may be expressed as

ST =N/UV, (107)

N =p"?|T(n,v)|?, (108)
or, if one prefers,

E=A/B, (109)

N =Re(4B*), (110)

A=plr+ V=4 Ty L 10w), (111)

B=pl =D =Ty _ 140, (112)

It should be noted that the resulting three-parameter
family of solutions of the vacuum Einstein equations belongs
to the set CW, that we introduced in Paper II. This follows
from the fact that the constants k and / defined by Egs. (29)
and (30) both evaluate to 1.

V. PERSPECTIVES

In this paper we have exploited a double-Harrison trans-
formation to generate from the F potential of the Kasner
metrics a three-parameter generalization of the two-param-
eter family of colliding wave solutions discovered by Ferrari,
Ibafiez, and Bruni. It should be noted that the solution (58 )~
(61) of the associated HHP (53)—(57) holds even when
F #F¥, However, Theorem 1, which was used in order to
cope with the fact that 1 () did not satisfy the reality condi-
tion, must be replaced by the following more generally appli-
cable theorem.

Theorem 2: Let F’ be the solution of the HHP

F'eMig F~'=X_,

and %' be the solution of the HHP
FlelTF1=X_,

where j': == ¢, jo,. Then
F'= -0 F oy, X_=ioX_.

The derivation of new colliding wave solutions through
the application of the double-Harrison transformation to
other input F potentials will be the subject of a future paper.
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On the collision of planar impulsive gravitational waves
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Exact continuous solutions to the Einstein field equations are determined under the
assumption that the subspaces of space-time spanned by the variables X* (4 = 1,2) admit the
three-dimensional group of motions of a two-plane, and the Ricci tensor R, (4,B = 1,2)
vanishes. The space-time is assumed to contain two colliding planar impulsive gravitational
waves. Each wave may be followed by a distribution of null dust. It is shown that the Cauchy
data on a spacelike three-surface does not lead to a unique solution of the Einstein field
equations unless additional requirements are imposed on the stress-energy tensor in the region

of interaction of the waves.

I. INTRODUCTION

Chandrasekhar and Xanthopolous have shown that
there is an ambiguity in the evolution of a space-time con-
taining two colliding-plane impulsive gravitational waves
whose leading edges are followed by distributions of null
dust. This result follows from their two papers'? in which
they report two different exact solutions of the Einstein field
equations in space-times admitting two commuting space-
like Killing vectors in which two such gravitational waves
collide. In the first paper the region of interaction of the
waves is shown to contain a perfect fluid with pressure equal
to the energy density. In the second one this region is shown
to be filled with a mixture of two noninteracting null dusts
moving in opposite directions.

It is purpose of this paper to discuss plane-symmetric
space-times containing planar colliding impulsive gravita-
tional waves. That is, space-times admitting three spacelike
Killing vectors that generate the group of motions of a two-
dimensional plane will be treated. In such a space-time, co-
ordinates may be introduced (cf. Ref. 3) in which the line
element contains only two functions of two coordinates. The
Einstein field equations are simpler than those solved in
Refs. 1 and 2, and classes of solutions of these equations are
readily obtained. The nature of the ambiguity in the evolu-
tion of such a space-time containing two colliding planar
waves with or without trailing distributions of null dust can
be determined.

The discussion given below will be modeled after that
given in Refs. 1 and 2. Namely, we shall discuss solutions of
the Einstein field equations in the region of interaction of the
impulsive planar gravitational waves and extend these solu-
tions to the regions of space-time prior to the instant of colli-
sion by requiring that the metric tensor be continuous across
the null hypersurfaces describing the boundary between the
various regions. The derivatives of the metric tensor need
not be continuous and the curvature tensors of the space-
times discussed will be distribution valued. The formalism
developed in Ref. 4 will be used in the sequel.

It has been pointed out in Ref. 3 that coordinates in a
plane-symmetric space-time may be chosen so that the line
element may be written as
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ds* =g, dx'dx/ —g,, dx*dx®, (LD
where i,j = 0,3, 4,B = (1,2),

gy = e‘”’hj :e‘u(éij - 25?5?), 84p = €8 45. (1.2)

Equation (1.1) is equivalent to

ds* = e* du dv — e*(dx* + dy*) , (1.3)
with

u==t—2z, v=t+z. (1.4)

The functions w and £ depend on only the variables  and u.
The nonvanishing components of the Ricci tensor are given
by

Ruu =H + %/tz,u —"p',uw,u 1 (1.58)
R,=p,+p pu,+o,, (1.5b)
Ry =pn+3, —p,0,, (1.5¢)

RAB = 2gABe_w(#,uu +p,u#,v) = 2e_w(e“).uv6AB .
(1.5d)

The scalar curvature

R= 4e_w(2:u,uv + %‘L,u:u,v + w,uv) (16)

and the nonvanishing components of the Einstein tensor

Gus =R — 18R

are
G..=R.,, (1.7a)
Gow=— (o +Hut) > (1.76)
G, =R, , (1.7¢)
Gip= —8"R..84p > (1.7d)

where we have used the notation

d y
_9¥ _ 9 _d¥
fllll auz s fuv au al) ’ fl)l) a 2

The indices # and v are related to indices a (¢ = 0,3,1.2) by
the equations

V,=V, X%, V,=V,X%.
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It may be shown that the nonvanishing components of
the Reimann curvature tensor are

Rypcp =€ “phult,. (84p85c — 84c&pp) > (1.8a)
Rospy =4R848 (1.8b)
Rosp =3(Ry, —©,,)845 » (1.8¢)
R,4p, =3R,,845 » (1.8d)
Ry = 350 4y - (1.8¢)

H.Rup=0ANDy 1, #0
It follows from these conditions and Eqs. (1.5d) that
p=14+U)+ V), (2.1)

where U(u) and V(v) are arbitrary nonconstant functions of
their arguments. Let

0=0Q—lu+In(U'V')—In(4B), (2.2)

where the prime denotes the derivative of a function with
respect to its argument and

A=U'(0), B=V'(0). (2.3)
The line element given by Eq. (1.3) is then given by
ds’ = +dUdV e /AB(1 + U+ V)'/?
— (1 + U+ V)(dx*+dy?), (2.4)

where the sign of the first term is to be chosen so that the
coefficient of dU dV is positive.
It is no restriction to set

U+ V=Au+ Bv. (2.5)
In addition we may take
Au+Bv= + k(v+u), 2.6)

where k = + |AB |'/?, the sign of u is the same as the sign of
AB and the sign of k is the sign of 4 when 4B is positive and
the sign of B when 4B is negative.

Equation (2.4) then becomes

dS?=e"dudv/(1 + Au + Bv)V/?
— (1 4+ Au + Bv) (dx* + dy*), (2.7)

where there are four nonequivalent choices for 4u + Bv giv-
en by Eq. (2.6) (only two if we admit the transformation
U~ —U, V> — V).

It follows from Eqgs. (2.1) and (2.6) that Egs. (1.5a)-
(1.5¢) become

(1+Au+ Bv)R,, = —AQ,, (2.8a)
R,=Q,, (2.8b)

(14+A4u+ Bv)R,, = —BQ2, . (2.8¢)
The integrability conditions for these equations are
—R,, =((1+A4u +Bv)4 ~'R,,),
=((1+A4u+Bv)B 'R,), . (2.9)

These equations are equivalent to the Bianchi identities.
When they are satisfied we have

Q= —f (1+Au + Bv)(4 'R, du+B 'R, dv).
(2.10)
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The line integral in this equation may be taken along an
arbitrary curve in the u-v plane joining an arbitrary point
(£,m) to the point (u,v).

In the subsequent discussion in this section we shall be
mainly concerned with the region of the #-v plane where >0
and v3>>0. The line integral in equation will be evaluated on
the curve consisting of the interval of the v (u) axis from
(0,0) to (0,v) {(#,0)] and the line parallel to the u (v) axis
joining (O,v) [(,0)] to (u,v).

We may also write

Q= + In(a(u)B(v)), (2.11)
where
Alna(u) =J- (1+A4&)R,, (£,0)dE, (2.12a)
0
BInf(v) = f (1+ Bp)R,, (Om)dy, (2.12b)
0
¢=J- j R, dudv. (2.12¢)
0 0
Equation (2.7) may then be written as
ds’ = a(u)B(v)e® du dv/(1 + Au + Bv)'/?
— (14 Au + Bv) (dx> + dy?) . (2.13)

Note that the line element given by Eq. (2.7) [or
(2.13)] is completely determined in the region u >0, v>0
when R, is given as a function of these variables in this
region and R, (#,0) (u>0) and R, (0,v) (v>0) are
known.

If Q(u,) is a C? function of « and v in the region >0,
v>0, Eq. (2.7) determines the line element of space-time and
Eqgs. (2.8) determine the Ricci tensor in this region. Note
that when Q) («,v) is required to be continuous across ¥ = 0
(v=20),thenQ, (2 ,) is continuous across this null hyper-
surface.

IIl. PARTICULAR SOLUTIONS
Case (a) When

RABzRuu=Rvu=0’ (3-1)
it follows from Eq. (2.9) that
R,=9,,=0. 3.2)

That is, when Egs. (3.1) hold, the space-time must satisfy
the Einstein vacuum field equations. Equations (2.8) then
imply that Q is a constant which may be taken to be zero.
Equations (2.6) and (2.7) then give two nonequivalent met-
rics that satisfy the vacuum field equations. When the plus
sign in the coefficient of « is used in Eq. (2.6), the metric is
one of the Kasner vacuum solutions given in Ref. 3. When
the minus sign is used, it becomes the stationary plane-sym-
metric vacuum solution given in that reference. The metrics
given by Eqs. (2.6) and (2.7) are also given by Dray and
’t Hooft® and said by them to be “sometimes referred to as
Robinson’s nullicle.”

Case (b): R.3 =R,, = Q,, = 0. The only nonvanish-
ing components of the Ricci tensor are

R,=—¢ and R, = —¢, (3.3)

and the Einstein tensor is given by
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— G =€l 1 +€n,n,, (3.4)
where

ly=u, and n,=v,, (3.5)
with

g8l 1, =g%n,ng =0.
Hence

LplP=10,1°P=0, nglf=ng,n"=0,

where the semicolon denotes the covariant derivative.
The Bianchi identities
G¥Py =

then imply that
(e®) 1% + (1) 0P =0.

Since /* and n® are linearly independent we must have
(6% = (%), =0.

That is, the source of a gravitational field given by Eq. (3.4)
is that of two noninteracting null fiuids. For such a source
the line element is given by Egs. (2.7) and (2.10). It is also
given by Eq. (2.13) with ® = 0, and « and 8 may be deter-
mined from the values of () on the  and v axes. The latter is
the line element used by Dray and ’t Hooft® in their discus-
sion of colliding planar shells of matter, i.e., colliding impul-
sive gravitational waves.

Case (c):- Tt is a consequence of Eqgs. (2.9) that if
R,y =0and

Ruuva - (Ruv)2 =0,
i.e., R,z is of rank 1 so that

Ry=—71,75, (3.6)
then there exists a function o(u,v) such that
Ty =0, (3.7

In other words, if Eqs. (2.9) and (3.6) hold, then the stress-
energy tensor that describes the source of the gravitational
field is that due to the gradient of a massless scalar field or
equivalently of a perfect fluid with pressure equal to energy
density. The planar space-times satisfying the Einstein field
equations for such a source were discussed by Tabensky and
Taub.® The proof that Eq. (3.7) follows from Egs. (3.6) and
(2.9) is immediate, since if we substitute for R, and R,
from Eq. (3.6) into (2.9) we obtain

2(1 + Au + Bv)r,, = 2(1 + Au + Bv)7,,

= (A1, + Br,) . (3.8)
It follows from these equations that
Tu,u = Tv.u
and hence Eq. (3.7) obtains
Equation (3.8) then becomes
2(14+A4u+ Bv)o,, = — (4o, + Bo ). (3.9)

For every solution of this partial differential equation for o
there is a space-time whose source is given by the stress-
energy tensor determined by the gradient of o (i.e., a perfect
fluid with energy density equal to pressure). The line ele-
ment of this space-time is given by Eq. (2.7).

692 J. Math. Phys., Vol. 28, No. 3, March 1988

The line element used in Ref, 6 may be obtained from
that given in Eq. (2.7) with plus signs used in Eq. (2.6) by
the simple transformation

u=u—2k)", v=0—(2k)",

followed by a rescaling of the coordinates. Then Eq. (3.9)
becomes

2u+wvyo,= —(0, +0,). (3.10)

Solutions of this equations are determined from the val-
ues of o on the null hypersurfaces # = 0 and v = 0. Given
such a solution we may determine Q(u,v) from Eq. (2.10)
or (2.11) by using the equations

Ry=—0,04.

Note that the particular solutions discussed above may
be characterized as follows: case (a), Q2 =0; case (b),
2, =00,7#0,and 2, £0; and case (c), Q2 given by Eq.
(2.10) or (2.11) where

Ryp=—0,0p4

3.11)

with ¢ given as a solution of Eq. (3.9). Different solutions
may be obtained from different specifications of the function
Q(u,v) via different solutions of the Bianchi identities, Eqgs.
{2.9), and the field equations, (2.8).

IV.R,;=0AND sz sz, =0

These conditions imply that the functions U(u), V(v)
of Eq. (2.1) are such that either one or both are constant. In
case u is a constant it follows from Eqgs. (1.5) that the only
nonvanishing component of the Ricci tensor is R,,, when
@ ,, #0. In this case the Einstein tensor is of the form

Gop =Gup &, 58;3 = —g.8“R,, 5, 53;3 .

That is, the Einstein tensor has no nonvanishing timelike
proper value and hence cannot be equated to a physically
plausible stress-energy tensor.

Thus for physical reasons we must set w ,, = 0 when
#,, = p, = 0. In this case the Riemannian curvature tensor
vanishes and the space-time is flat.

The situation that obtains when i , = 0 may be derived
from that which holds when p, = O by replacing the vari-
able vand ¥(v) by u and U(u), respectively. Whenu , =0,
U(u) is a constant and with no loss of generality, we may
take it to vanish. Equation (2.1) becomes

p=In{l +¥V()}. 4.1)
If we now define
w=0—lu+In(V'/B), 4.2)

the line element given by Eq. (1.3) becomes

ds*= +edVdu/B(1+ MV — (1 + Mdx*+dy*) .
(4.3)

It is no restriction to set
V=2~8v,
and Eq. (4.3) becomes

ds’> = e du dv/(1 + Bv)'?> — (1 + Bv) (dx* + dy?) .
(4.5)

Thus when g, =0 we may assume that the line element

(4.4)
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obtained from (2.6) by setting 4 = 0 holds. It further fol-
lows from (4.1), (4.4), and (4.5) that

R, =0, (4.6a)
Ry=Q., (4.6b)
(14 Bv)R,, = — BQ, (4.6¢)
[Egs. (2.8) with 4 = 0]. Hence we must have
((1+Bv)R,)., = — BR,, (4.7)

as an integrability condition (Bianchi identity) of Egs.
(4.6b) and (4.6¢). It then follows that if R,, = 0 we must
have R,, = 0. That is, the Ricci tensor vanishes and the Rie-
mannian curvature tensor also vanishes. Thus such a space
time is flat.

Equation (4.6c) may be integrated to give

0= —f (1+ Bn)R,, dn+1Inf(u).
0

It is no restriction to take f(u) = 1, for by the transforma-
tion

17=ff(u)du,

the term f(u#)du in the line element (4.5) (with the bars
omitted) becomes d#. Thus we have as the line element of
the space-time the expression

ds? = e dudv/(1 + Bv)V? — (1 + By) (dx? + dy?) ,
(4.8)

with

B = —f (1+Bn)R,, dny. (4.9)
0

When Q, =0 and thus R,, =0 in addition to
R, = R,, =0, the Einstein tensor of the space-time is

Gaﬁ = ananﬁ ’

where n, is the null vector defined by the second of Egs.
(3.5). That is, the stress-energy tensor of such a space-time
is that of a null fluid with energy density proportional to
— R,,, and with four-velocity n*.

The Bianchi identities
G "’3#9 =0

ensure that
(r°R,,).. =0;

that is, R, is conserved under the motion of the null fluid.

As was pointed out earlier, when Q =0, then R,, =0,
in addition to the assumptions made above, the space-time is
flat and the line element (4.9) becomes

ds® =du dv/(1 + Bv)"'? — (1 4 Bv) (dx* + dy?) ,
(4.10)

or

ds®> =di dv — (1 + Bv/2)*(dx> + dy?) ,
when # = u and

1+ Bv=(1+ Bv/2)>.

When u, =0 we may use the results of Sec. IT with
B =0 and find that R,, = 0. In addition, equations similar
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to Egs. (4.6), (4.8), and (4.9) must hold. That is
ds* = e dudv/(1 + Au)'"*> — (1 + Au) (dx* + dy*) ,

(4.11)
—AQ =f (1 +A4E)R,, dE . (4.12)
0
Further, we must have
—AR,, =((1 +4u)R,,}, , (4.13)

the equations obtained from Eq. (2.9) when B = 0. The ana-
logs to Eq. (4.6) are

(1+Aw)R,, = —AQ,, (4.14a)
R,=Q,, (4.14b)
R, =0. (4.14c)

When R, =R,, = R, =0, then R,, =0, and as fol-
lows from Eqgs. (1.8) the Riemann curvature tensor vanish-
es. That is, the space-time is flat. When u, =R,

=R, =0, the only possible nonvanishing component of
the Ricci tensor is R,,,, and hence the Einstein tensor is given
by

G =R,115,

where /, is the null vector defined by the first of Eqs. (3.5).
That is, the source of the gravitational field is a null fluid. In
addition we must have

(R,,1®), =0.

V. EXTENSION OF SOLUTIONS

In this section we shall assume that in a region of space-
time we may introduce coordinates u, v, x, y which are such
that in region I, where ¥ >0 and v > 0O, the line element is
given by Egs. (2.6) and (2.7), where ) (u,v) is 2a known C?
function of # and v. Thatis, R,z =0andR,,, R,,,and R,
are determined by Eqs. (2.8). We shall then extend such a
solution across the null hypersurfaces ¥ =0 and v = 0 by
assuming that the metric tensor is continuous across these
hypersurfaces but has discontinuous derivatives across
them. Such space-times were discussed in Ref. 4 and were
shown to have distribution-valued curvature tensors, i.e.,
curvature tensors that contain Dirac delta functions whose
coefficients depended on the values of the discontinuities of
the first derivatives of the metric tensor.

The method of that paper enables one to determine the
distribution-valued Ricci and Riemann curvature tensors of
the resulting space-time. These tensors may also be calculat-
ed by using the equations of Sec. I with

p=p’=I(l+ o () + %)), (5.1a)
w=0"=0"—j”, (5.1b)
where
o (a) =Aub(u) , (5.1¢c)
% (v) = Bvo(v), (5.1d)

Q% = (Q'— Q" — Q™ 4 QV)6(1)6(v)

+6(w) (2" — Q%) + 6(w) (2™ - o) + 0,
(5.1e)

with
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QY =0(0,0) =0, (5.1f)
and 6(¢) is defined by the equations
1, ¢>0,
0(4) =14 ¢=0, (5.1g)
0, ¢<0

Also 9(¢$) may be taken to be the Heaviside function
that is unity for positive and zero values of the argument and
otherwise zero. Equations (5.1a) and (5.1b) define y and @
in terms of their values in region I by replacing the variables
u and v by uf(u) and v8(v), respectively (cf. Penrose’).

Thus in region I (where 4 >0, v> 0),

u=p"=In(1 +Au + Bv), (5.2a)

o=0"=0"up) —ju'. (5.2b)

In region II (where u>0,v<0)

p=p"=In(l + 4u) (5.3a)

o=o"=0" - " = Q(u,0) - . (5.3b)

In region 11 (where ¥ <0, v>0),

p=p"=In(1+ A4v), (5.4a)

=M= _ wm =Q0p) — y‘m , (5.4b)
and in region IV (where u <0, v <0),

FIV:_wIV:ﬂlV:O. (5.5)

On the hypersurface 12 = 0, it follows from Eq. (5.1e)
that

QF =)™ 4 (1 — e, (5.6a)
andonv =0,
Q2 =0(u)Q" 4+ (1 — G(w))Q . (5.6b)

Since we are taking 2(0,0) = 0, Egs. (5.6a) and (5.6b)
contain only the first terms in each equation irrespective of
whether 8(¢) is the Heaviside function or is defined by Eq.
(5.2).

It follows from Eq. (5.1a)that

(1 + o (u) + B W))uP, = 40(u) , (5.72)
(1+ o (u) + B(W)W”, = BOW®), (5.70)
(14 o (u) + BW)Vu",.

=(1+ o (u) + B ())A8(u) —4°0*(uw),  (5.7¢)
(1+ o (u) + BW)u®,,

=(1+ & (u) + & (v))BS(v) — B*6*(v),  (5.7d)
1+ o () + B W)u®,, = —ABO)O(w),  (5.7¢)
where §(u) is the Dirac delta function.

From Eq. (5.1e) we have

Q2 = 0(w) (6(w)Q, + (1 — ()N, , . (5.8a)

Q2 = 6) (8()Q, + (1 — 6N, (5.8b)

05, = 0w, . (5.8¢)

On substituting Eqgs. (5.1) into Eqgs. (1.5) one
1+ o (u) + B (1)),

= A6(u) — A0%(u) (6N QY + (1 — 6())QY),
(5.9a)
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Qm) = ﬂ,’uve(u)e(v) s
1+ o (u) + B ()@,

= B5(v) — BO*(v) (B(u) QY + (1 — 6(w))Q™ ),
(5.9¢)

(5.9b)

wherethe @, are the distribution-valued components of the
Ricci tensor. It follows from the results in Ref. 4 that R/,
(J = LILIILIV), the components of the Ricci tensor in re-
gion J, are given by Q(w,v) with (#,v) in region J.

Hence from Eqgs. (5.9) we have

(1+A4u+ Bv)R., = —4Q! , (5.10a)
(1+4w)RY, = —40",, (5.10b)
R™ _ =RY,_ =0, (5.10c)

R, =0',, (5.11a)

R", =R"™,=R",=0, (5.11b)
(14 4u+Bv)RL, = —BQ!,, (5.12a)
(14+B)R™M = — Ba™ (5.12b)
RY, =RV _=0. (5.12¢)
Note that

hm R ltm =R Huu (5'133)
-0

and
limR', =R™ . (5.13b)

-0

It further follows from Egs. (5.9) that on u =0,

(1+ Z)Q,., =A45(u), (5.14a)
andonv =0,
(1+ o (0))Q,, = Bs(v) . (5.14b)

From the discussion given in Ref. 4 it may be concluded that
the singular hypersurfaces # = 0 and v = 0 are planar shells
of null matter whose stress-energy tensors are given by

—KTag = A1+ B )L, (5.15a)
for u = 0, and
— KT =B(l + o (1)) 'n,ng , (5.15b)

for v = 0, where « is the Einstein gravitational constant (cf.
Appendix 2 of Ref. 5). Requiring that the energy density of
the shells be positive forces,

A<0, B<O.
In view of Eq. (2.6) we may take

A=B= —k. (5.16)
There is an essential singularity in region I, even when
Q(u,p,) = 0, along the spacelike hypersurface X:

k(u+v)=1. (5.17)

Thus given a function 2(%,v) in region I*, region 1
bounded by the hypersurface =, we may extend the space-
time with metric tensor (2.7) from this region across the
boundaries ¥ = 0 and v = 0 to regions II, II1, and IV. The
resulting space-time has the metric tensor
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_ exp (Q°)du dv
{1 — k(uB(u) + vO(0))}?
— {1 — k(uB(u) + v0))}dx> +dy*),

where QP is given by Eq. (5.1e).

The space-time contains two colliding planar shells of
matter, the hypersurfaces # = 0 and v = 0, and the compo-
nents of its Ricci tensor contain delta functions with support
on these hypersurfaces. These null hypersurfaces may be in-
terpreted as planar shells of null matter’ or as the leading
edges of planar impulsive gravitational waves.” This latter
interpretation is that used by Penrose’ especially when
Q! = 0. In that case all components of the Ricci tensor van-
ish everywhere except on the hypersurfaces u =0 and
v = O—the wave fronts—and all regions but region I* are
flat. In the latter region, the region of interaction of the col-
liding waves (planar shells of matter), the metric describes
the stationary plane-symmetric vacuum solution given in
Ref. 3 and discussed in Ref. 5. We shall interpret the region
I* as the region of interaction of the impulsive gravitational
waves with wave fronts ¥ = 0 and v = O in all cases irrespec-
tive of the value of Q".

ds*

VI. CONCLUSIONS

As has been pointed out above, given Q' =0 the line
element (5.21) describes the evolution of a space-time in
which two planar gravitational waves with wave fronts
u = 0and v = 0, colliding in two surfaces # = v = 0, interact
in the region I* to produce a Kasner plane-symmetric vacu-
um solution of the Einstein field equations. However, if we
are given that two planar impulsive gravitational waves with
wave fronts u = 0 and v = 0 propagate in a flat space-time
and collide at # = v = 0, the nature of the region I* of space-
time is not uniquely determined. The ambiguity in the out-
come of such a collision results from the fact that, from the
data given above and Egs. (5.10b), (5.12b), and (5.13), one
can only conclude that Q'(w,w) is such that
0'(u,0) = Q1(0,v) = 0 but otherwise arbitrary.

When Q2.,, = Oand 02!, Q) #0, the nature of region I* is
described by case (b) of Sec. III, and the wave fronts ¥ = 0
and v = 0 are followed by distributions of null dust. If, how-
ever, one assumes that in addition to 02!, = 0, the regions II
and III are vacuous (the assumption made throughout Ref.
5), then it follows from Eqs. (5.13) and the requirement that
0(0,0) =0 that Q' =0.

When Q',, = — 0,0, #0inside region I*, where o'is a
nonconstant solution of Eq. (3.9), the nature of this region is
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described by case (c) of Sec. III. If, in addition, one requires
that regions II and III be vacuous equations, (5.15) imply
that ois constant on # = Q0 and v = 0. Then Eq. (3.9) in turn
implies that o is constant throughout region I bounded by =.
Thus the metric for case (c) cannot be extended to regions II
and IIT unless the leading edges of the wave fronts ¥ = 0 and
v = 0 are followed by distributions of null dust.

Suppose that regions II and III of a planar space-time
are occupied by two planar impulsive gravitational waves
with wave fronts u = 0 and v = 0 each followed by a distri-
bution of null dust, and that these waves collide at z =0,
v =0. The field equations (5.10)-(5.12) and Egs. (5.13),
together with the condition €(0,0) =0, only determine
0 (%,0) and Q'(0,v), and Q' (u,v) is arbitrary for ¥ > 0 and
v>0.

If, however, one requires that R |, = 0in addition to the
above requirements in regions I, II1, and IV, then ' (u,v) is
uniquely determined because of Eqgs. (5.13). If, instead of
imposing this condition on R .5, one requires that R [ ; be of
rank 1 with R!,; = 0, then Q' (u,») is again uniquely deter-
mined from Eqgs. (3.11), (3.9), and (5.13).

Thus the evolution of a planar space-time in which two
planar impulsive gravitational waves collide is not uniquely
determined by the Einstein field equations after the collision.
That is, solutions of the generalized Einstein field equa-
tions—equations in which the curvature tensor is distribu-
tion valued—are not unique if only the initial values of the
metric tensor and its derivatives are prescribed on a space-
like hypersurface. In other words, in such a case the Cauchy
problem does not have a unique solution.

For planar symmetric space-times in which two planar
impulsive gravitational waves collide, uniqueness can be re-
stored by imposing various conditions on the Ricci tensor
(the stress-energy tensor) in the region of interaction of the
waves. Different requirements on R '_; is determined from
the valuesof R _; and R™ 5 on the singular hypersurfaces
u = 0 and v = 0, respectively.
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Multiplication formulas of orthogonal polynomials of boson field operators:
‘Derivation based on the generalized phase-space method
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The products of several orthogonal polynomials of boson field operators, the quantum
mechanical version of multiple Wiener integrals, are expressed as linear combinations of the
polynomials. The expression is obtained by making use of the correspondence rules of boson

operators and complex numbers.

I. INTRODUCTION

A broad class of stochastic processes and random fields
are decomposed into direct sums of orthogonal polynomials
of a Gaussian white noise. This is called the Wiener-1t6 de-
composition'™ or, more familiarly in physics, the Wiener—
Hermite expansion.>® This classical result affords a quan-
tum mechanical interpretation*® by introducing annihila-
tion and creation operators (a(?), a* (£))(teR 9y for a boson
free field in the Fock representation. The nth degree Wick
products of the form

8n = :Q(II)Q(tz) v Q(t,,):, tl’tz’""tnERd’
(1.1)
of commuting operators
Q) =a(t) +a'(1), R, (1.2)

acting on the vacuum state |0}, generate n-particle subspace
{g.10)}. In the case of d = 1, this Fock structure on the
canonical commutation relation is only represented by the
Wiener-It6 decomposition of square integrable random
variables. The Wiener-Hermite expansion refers to the
cases of d>1 with the same statement.>®

In view of the nonlinear problems in the Wick polyno-
mial expansions of field operators, attention was naturally
directed to the multiplication formulas of Wick polynomi-
als. Jaffe” gave a general formula for products of an arbitrary
number of g,,’s of the above type (1.1) with (1.2). The no-
tion of Wick products itself was extended by Segal'® to free
fields in (possibly) non-Fock states with similar multiplica-
tion formulas. The results were generalized, in a context of
quantum stochastic differential equations, by Nakazawa'!
to g,.’s formed with noncommuting operators,

Q1) = E(Da(t) + £¥(Da'(1), teR”,

depending on a complex function &.

This paper presents multiplication formulas that ex-
press products of g,’s as their linear combinations for the
Fock case. The subject is in the domain of Appendix A of
Jaffe,’ but our generalization is the extension to the case
(1.3). This is again in the domain of Nakazawa,!! yet our
result subsumes (3.9) of Ref. 11 for two g,,’s as a special
case. The main contribution of the present analysis will be
the clarification of interrelations of the subject with the gen-
eralized phase-space method of Agarwal and Wolf.!? Our
method of derivation seems to be valuable because of its be-
ing lucid and systematic, thus facilitating practical calcula-
tions. This will be seen by an example whose result would

(1.3)
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have otherwise been difficult to obtain,

Starting from the multiplication formulas for functions
of c-numbers, '? we obtain those for functions of g-numbers
{boson operators) with the aid of the correspondence rules
between the two kinds of functions. Section II begins with
the case of one degree of freedom, which is essential to our
approach. As a by-product, formulas for the products of two
and three Hermite polynomials are readily reproduced. We
then proceed to finitely many degrees of freedom in Sec. 111,
and extension to boson fields will be carried out in Sec. IV
using these results. Remarks will follow in Sec. V, giving a
powerful application of the obtained three-term formula.

Il. ONE DEGREE OF FREEDOM

Let @, a' be boson annihilation and creation operators
obeying a commutation relation

[a,a’] =1. @.n
Let |a) denote the coherent state'® defined by

|a) = expl(aa’ — a*a)|0), 2.2)
which is an eigenstate of the annihilation operator q,

ala) =ala) . (2.3)

Let us introduce a linear map .7, transforming functions of
complex variables a, a* to those of 2, @’ by

T F(a,a*) = :Fla,a"):. (2.4)

Here : - : denotes the Wick product arranging a, a' in the
normal order without using the commutation relation (2.1).
In the normal order, the annihilation operator a is put on the
right-hand side of the creation operator a'. Note a simple
relation,

T ({a|F(a,a")|a)) = F(a,a’) . 2.5

This is established as follows: rewrite F(a,a’ ) in the normal
order using (2.1), where the relation (2.5) clearly holds be-
cause of (2.3).

Let F\,F,,...,F; be possibly noncommuting functions of
a, a*. A multiplication formula for (a|F,F, - - - F;|a) is
given by Agarwal and Wolf'? from the viewpoint of the gen-
eralized phase-space method:

(@|F\F, - - - Fila) = ﬁjffe;;p( 3? )

11 *
j=2i=1 da; da}

I

X IIl (ay|Filay)

@y = a,c.C. ? (26)
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where a, = a,c.c. indicates a; =, ="' =a; =« and
a¥=at=-"=af=a*

For a fixed complex &, we define Wick polynomials g, ’s
by

g.(£) = {l (n=0), Q.7

((a+E*aH™  (n>1).

First, let us derive a multiplication formula for a prod-
uct of two Wick polynomials. An application of (2.6) to
8:(£)g, (§) witha, = a, a, = B yields

(a|g:gn|a)
2

ad
= enp 3 el @) BB |omaec - 2B)

Using the property [Eq. (2.3)] of the coherent state and the
definition of the Wick product : - :, we note

{algla) = (ba + E*a*), k=Im. 2.9)

Substituting (2.9) into (2.8) and expanding the exponential
function of 3%/da 3B *, we obtain

32 )(é‘a—’—g‘a*)l
Jdadp*

(algignla) = exp(

X (EB+E*B*)™

B = a,c.c.

= (92 i
— 1 -1 * %\
PIRCY (aaaﬂ*)(§a+§ @)

X (EB+E*B*)™

B = acc.

IAm

= z A(Lm;i) }é‘ }”(é’a +§ta*)l+m—zi
=0

iAm

= AUmiE
i=0

X {a|:(fa + £*ah)'* " "),
(2.10)
where
A(lm;iy = 1imV/d(1 — Dl (m — D!, (2.11)
and the symbol / A m represents a minimum of / and m. The
operation of 7~ on (2.10) yields the multiplication formula

IAm .
868 (&) = 3 AUmDIEV8, m_2(£),
i=0

with the aid of the property (2.5).

Multiplication formulas for the product of I Wick poly-
nomials are derived similarly. However, we will discuss only
the case ] = 3:

8(6)8n (£)g, (£) = 3 B(mni, jk)|E |2+ +0

i, hk

(2.12)

XBloymabn—20i+j+k) ). (2.13)

Here,
B(l,m,n;i, j.k)
I'm!n!
T AN — i —plm —j— k)W — k— D!
and the summation in (2.13) is carried out over the range

, (2.14)
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0<i+j<l, 0<j+k<m, O<k+i<n, O<ijk.

(2.15)

Derivation of (2.13) is as follows. The formula (2.6) in
the present case becomes

(aiglgmgn ‘a>

82 82 82 )
da dp * +6a37*+8/967/“

X (algi|e) B8, 18) 718, 7)== .-

Expanding the exponential function as

32 i 32 7 52 k
(55 (mare) )
2,‘1 D\ dy*/ \da 9B * /) \3B I*

we have

= exp(

(@|gi8n8ala) = 3 B(lm,n, jk)|& [20+I+0

i, hk
x(é-a +§¢a*)l+m+n—2(i+j+ k) .

Thus the operation of .7 and the use of (2.5) result in Eq.
(2.13).

The above results immediately give multiplication for-
mulas for the products of two and three Hermite polynomi-
als. For

a*=iz‘- -2 (2.16)

the Hermite polynomial H, (x), defined by

2 dn x2
H,(x)=(-1" i) (-—), )
@ = (=D ep(T ) exp( 2], @1n)
is expressed as
H, (x)=g,(1). (2.18)

The relation (2.18) is shown by induction; the case
n = 0,1 is obvious. Suppose (2.18) holds for n = k. Then

(g +a)rh =a%(a+ a4+ :(a +aHka

X d X d
= (‘? - 'E)Hk(x) +Hk(x)(7+*a)

dH, (x)

=xH -
xH; (x) o

(2.19)

which is equal to H, , , (x) since

de(x)
dx
H,, (x)=xH (x)—kH,_,(x}).

= ka_l(x),

The multiplication formula (2.12) is now reduced to the
well-known formula

iAm

H()H, (x)= Y AUmi)H,  ,_2(x),

i=0

(2.20)
and (2.13) to the formula
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H,(x)H,, (x)H,(x)

= Z BUmmi, jk)VH, | 1y 4y _2iisjs o (X)), (221)

i, .k
where summation ranges over (2.15).

IH. MANY DEGREES OF FREEDOM

The results in Sec. II are now straightforwardly ex-
tended to many degrees of freedom. Let g =(a(1),
a(2),...a()), a' = (a' (1),a" (2),....a’ (J)) be boson anni-
hilation and creation operators obeying the commutation
relations

[a(s),a' ()] =6, ,

[a(s),a(t)] = [a'(5),a’ ()] =0, s:I=(1,2,....0).
(3.1)

In this section all quantities with underlines such as g repre-
sent J-dimensional complex vectors; we write, for example,
a = (a(1),a(2),...a(J)). By |a) we denote a direct product
of the coherent states |a(?)), of #th boson operators
(a(2),a' (2)). Let us extend the linear map .7 of (2.4) in such
a way so as to transform the functions of the complex vari-
ables @, @* to those of g, a' by

T F(a.a*) =:F(aa"):. (3.2)
Here : - : denotes the Wick product making all the annihila-
tion operators a(t) appear on the right-hand side of the cre-

ation operators a' () without using the commutation rela-
tions (3.1). Again, a relation

T ({a|F(a,a")|a)) = F(a,a")

holds.

Let F,,F,,....F; be possibly noncommuting functions of
a, a'. Let us start with a multiplication formula for
(a|F,F, - - - F;|a) given by an extension of (2.6)'*:

I j—1
(@|lF\F, - - - Frlgy = T] ] Alang)

j=2i=1

(3.3)

X T {@«lFelaw)

k=1

a,=acc *

(3.4)
Here the differential operator A(a,() is defined by

J
A(a.B) =CXP( Yy l(g,é;S)), (3.5)
s=1
with
(92
AlaBis) = (3.6)

da(s) P *(s)’
In (3.4), the expression g, =a.cc. means @, =@,
="'=Ql=gandgl=£="'= ?:Q*.

For teJ, define

Q(&a;t) =E(Da(t) + E*(a'(n), (3.7
and consider the Wick polynomials
8. (8162 Cnstisla * 1)
1 (n=0),
- [:Q(gl,g;zl)Q(gz,g;m-~Q<gn,g;r,.)= (n>1>(.3 N
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A multiplication formula for g,g,, now becomes
InNm (1)

8:18m = 2 2 (ﬂ)_lalg1+m—2i >
i=0

with

(3.9)

i
6, = H1 8(top 1t o0 Vo0t (Lo V1™ 00y (o)
p=

(3.10)
and g,.8....8, are written explicitly as
& =8(&8 Enhity ), (3.11)
8m = &m (M2 st (L3772 ) (3.12)

8iym—2 =gl+m—2i(§1"'[§p]"'§l"71"'[770]

ST N SRR .[tp]...tlt; "'[t:,]"'t;n) .
(3.13)
Here (p(1),0(2),....0(i)) and (o(1),0(2),...,0(i)} are
taken from (1,2,...,/) and (1,2,...,m), respectively, and the
summation = is carried out over all such I/!mY/
{(J = ¥(m — )1} combinations. The symbol &(-,) is
Kronecker’s delta, and [£, ], [7, ], [#,], and [¢ ] indicate
the exclusions of £,1),-s&pci1 s Moty 39Tty » Locty srbotiy s
and £ ..., ,(;y, TESPECtively.
Let us derive (3.9) by using (3.4) with /=2 and
a, = a, a, = . Expanding the exponential operator A, we
obtain

(2lgignml2) = AlaB)(alg|a) (B18mIB)|s- ace

« J

=2

i=0 §5,5,..,5=

! ﬂi(gé;sp)
1 p=1

X LG g gcc. s (3.14)
where
1
m =[] e.at), (3.15)
x=1
IL= ][ Qu,Bt;) . (3.16)
y=1
The operation of A(a,B;s, ) transforms (3.14) into
INm J 1 2) i
> 1(’1')_ > o, H1 Sotor (o) 16(8,p5t0 ()
i=0 5,5,.5= p=
3 i
XY s [T 75 (200 )85t 600 ) | p= e
p=1
IAm (e}
= z (11.)“2 6,11,I11, B=ace. (3.17)
i=0

Here the summation = is carried out over all /Y/
(I — i)! choices of p(1),0(2),...,p(i) from {1,2,...,7}, and =¥
is done over all m!/(m — i)! choices of o(1),0(2),...,0(i)
from {1,2,...,m}. The factors II,,I1, are defined by omitting
x=p(1),p(2),..,p(J) and y = ¢(1),0(2),...,0(i) in (3.15)
and (3.16), respectively. In the last expression of (3.17),

I-141-[5 B=acc = <2Igl+ m—2i |Q) ’
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which follows from the property of the coherent state and
the definition of g, ’s (3.8). By operating 7 on (3.17) and
using the property (3.3), we readily obtain (3.9).

Here we remark that the relation (3.9) implies the or-
thogonality of Wick polynomials g, in the sense

since (0|g, |0) = 0if n£0.

A multiplication formula for the product of the three
polynomials g;, g,,., and

gn =&n (§1§2 gn) "t;’ “ ")

is derived similarly:

(3.18)

(3.19)

8i18m8n = Zk (k1) 7'290,0,0, 8 1 s n - 2itj+ )
L4
(3.20)

Here the summation with respect to i, j,k is carried out
over the range (2.15), and the summation =% is done
over all mnl/{(l—i—)m—j—k)(n—k—i}
combinations of choosing (p(1),0(2),..00i +J)),
{o(1),0(2),....,0(j + k)), and (7(1),7(2),...,7(k + i}} from

)

(2|8:18m8m |2

= 2 (k! E

i gk 500 spS] e8] Sy sk P

(1,2,...,0), (1,2,...,m), and (1,2,...,n), respectively. The sym-
bols 6,, 63, and 6, are defined by

H 5(tf(k+P)’ (292 ){,‘ Tk + p) ('f(k-u’) )gp(p) ( P(P) ),
P_

H 8(toiir ot o Yeptir o Uptin 0 Moy (o)) 5

Oy = H Nt oivnot v Matian Baiien)ETn (Ern)
r=1

3.21)

and the argument of g, , ,, , »_ 214 j+ &y 18 €xplicitly written
as

gl ..[gp]...é-l”l...[na]...ﬂmgl...[grl...;n;tl...[tp]
"I,t;“'[t;]"'t;,,l;""[t:.']"'t::) .

where [£,1, [9,]), [§,), [4],[t.], and [t7] exclude
gp(l) ""’gp(i-i—j) ’ 770(1) "-'9770(;+ ky» é}m ’"~s§r(k+ e
Ly solptiapr Loyseol ogiv iy, @A E7Gy et Yy 5, TE
spectively.

The derivation of (3.20) is as follows. First, use (3.4)
with/=3andg, =@, a,=F,andg; = 7. Then,

A@BA@PABD Q) B 18, 18) (1180 D) |- p-ace

H Alays,) I'[ AlaBssy) [[ ABYSHILLIL |y C g gee.

= 3 (k) 290,0,0, 11|, 5o ge -

L hk

Here I1,,I1, are given by (3.15) and (3.16), and II; by

II3 = H Q(gz)z;t;’) .

z=1

(3.22)

The factors IIg, II,, and II; are given by omitting
x=p(1),..0(i + ), y=0(1),..0(j+k), and
z=7(1),...,7(k + i) in (3.15), (3.16), and (3.22), respec-
tively. Again the operation of 7 and the use of relations

1—161-171'18 y=B=acc — (Q‘gl+m+n—2(i+j+ k) |.G.)

and (3.3) yield (3.20).

V. ORTHOGONAL POLYNOMIAL FUNCTIONALS
Let(a(2),a’ (1)) (#1€R?) be boson field operators satisfy-
ing
[as).a'(n] =68(t—3),
[a(s),a(t)] = [a'(s),a' ()] =0, sreR?. (4.1)

Let & (), 7, (), &: (1) eL,(R ) (i = 1,2,...) be the space of
square integrable complex functions on R?. The purpose of
this section is to derive the multiplication formulas for or-
thogonal functionals defined by

én(§l§2 e gn)

=f d,- f dt, g, (ly - Eustity 1), (42)
Rd Rd
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and their linear combination G, [see Eq. (4.12)]. In (4.2),
g, is defined by

8. (6162 Castity 1)
_ {1 (n=0),
T QL) Q(6aasty) ¢ - - Qast,):  (n>1),
(4.3)
with
Qat) =&(Na(t) +5*(na'(n), (4.4)

analogous to (3.7) and (3.8). The discussion in Sec. Ill is
formally extended to the present case; as is usually done, we
regard, in (3.8), £,,¢5,.--.4» as the infinite-dimensional vec-
tors 1,655,546, and t,,t,,...,t,, as continuous variables. Then
we obtain the multiplication formulas (3.9) and (3.20) with
the replacement of Kronecker’s delta by the delta function.
A multlphcatlon formula for G,G now reads

(ﬂ) -t Hl oty Motm VG m—2i s

P

> INm

ZE

with “
G, =éz(§1§2"'§1) , (4.6)
ém = 6,,,("71772' Mm) s 4.7
6M-m—zi
R él+m—z.’(§1"'[fp]"'fl"h”'["?a]""'Im) .
(4.8)
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Here ( p(1),p(2),...,0(i)) and (0(1),0(2),...,a(i)) are taken
from (1,2,...,/) and (1,2,...,m), respectively, and the summa-
tion 2 is carried out over all such /!'m!/{(I — H)!(m — D!}
combinations. The terms [£, ] and [, ] indicate the exclu-
sion of £,1)5 €p2ysebpcy AN NoctysMoc2y o9 Moiy » TESPECH
tively. The inner product (-,*) in L, (R?) is defined by

<§iv77j> = J- §.-(I)77}"(t) dt. (4.9)
R

Since 5,, (&1L, +£,) is invariant under the permutation of
{1,2,...,n}, it is naturally extended to £, where it has the form

(= 3 nr{E e}, (4.10)
Here . i: Thle symmetrizing operator defined by
LG8}

=(nh)~! Y lry® 8L (= L,2,...),

(4.11)

with 7 running over all permutations of {1,2,...,n}. We de-
fine G, (§) by

W -»
G.(§) = Y r.G. (51"

w=1

£ (4.12)

for £ of (4.10), and similarly G; (§), G,,, () for &, 77 given by

U

E= Y a,F{E £}, (4.13)
u=1
| 4

=3 B,L {9 (4.14)
v=1

A multiplication formula for G, (§)G,, () is now writ-
ten in a form similar to (2.20),
IANm

G, ()G, () = z A(I’m;i)GI+M—2i([§’77;i]) ,
= (4.15)
where [§,7;7] is defined as
[&.mii]
Ly Ls S Sas [ ¢80
e m <=0~ p=1
X Y{§§‘23+1)§§'8)17L”8.+,)77,3”8,,.)} (4.16)

In (4.16), A and u run over all permutations of {1,2,...,/} and
{1,2,...,m}, respectively, and the coefficient A(/,m;i) in
(4.15) is defined in (2.11). Nakazawa!! writes (4.15) in a
more compact form,

IAm
G, (6)G,, ()= Z Gy m—2u(&iim), 4.17)
i=1
by introducing the i contraction £:i:n'* given by
gim = A(Lm;i) [§,m50] . (4.18)

The formula (4.15) is derived as follows: we operate
(n-'z, (m}) _‘_)2# to (4.5) and rearrange it using the in-
variance of G, G,,, G, ,,_,; under the permutations of
their arguments. This rearranged formula and the definition
of G;, G,,, Gi .. 2, and [£,m;i] immediately yield (4.15).
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A similar argument can be used to derive a multiplica-
tion formula for the three functionals G, (£), G,, (17), and
G,(5) as

G,(£)G,(1)G, (&)

= Y BUmni, jK)G)  mn2a4i+ b0 [Endsijk 1)
ik
’ (4.19)

Here the summation is over the range (2.15) and

[§n§'ijk]
; z E 21 Zl zla Bo¥©:9:0,

X y{§/1<i+j+l)"'

1

ful) 77,u(j+k+ 1)

X N § R4 6 W (4.20)

with
= fLemen, @2
o= r_[ EL ) (422)
6,= H <77l(4[2)j+r)’ f»'(ur)) (4.23)

The summations in (4.20) w.r.t. A,u,v are carried out over
all permutations of {1,2,...,/}, {1,2,...,m}, {1,2,...,n}, respec-
tively.

V. REMARKS

The identity of the structure of expectation values of
Wiener-Hermite functionals and Wick products of boson
Fock fields was realized early by Imamura ez al.> Any (vec-
torial or tensorial) Gaussian white noise on t€R® may be
constructed linearly on a scalar Gaussian white noise f(s),
s€R, with ¢ also depending linearly on s. The Wiener—1t6
decomposition®* of square integrable random variables as-
sociated with f(s) is known*"%!* to give a representation of
Fock structures of free fields on s, with annihilation and cre-
ation operators possibly defined by**!°

a) =L S gL 0
2 8(s) 2 of(s)

(5.1)
together with vacuum expectation values realized as expec-
tations w.r.t. the probability measure induced by f. These
facts imply that Wiener-Hermite functionals or multiple
Wiener integrals are special facets of orthogonal polynomi-
als of commuting operators for real £ {*”’s in (4.10), yet the
whole structure is embraced in the original multiple Wiener
integrals of It6> and Wiener.?

Let us introduce a suggestive notation for (4.12), valid
for real { of (4.10),

G,,(;):f dt1-~-J- dt,
R R4

X Et ety VY (Eyetn) s (5.2)
H, (tyont,) =8, (L1, Lty (5.3)
H. M. Ito 700



We also use an abbreviated notation for (5.2) and (5.3),
G,(&)=¢01,2,..,n)H, (1,2,...,n) , (54)
where the integration over R? is implied by repeated indices

EL  DH (1., ) X9V, com’YH,, (1',...,m")

IAm
= 3 AUmD) LE (L (L= D,1%,# (Vs (m — 1% ) H il (D= 0,15 (m — ),
i=0

46!

-

19,29, .,n") that stand for ¢{”,¢{",...,t{". The formulas
(4.15) and (4.19) for real &, 7, and { (or, for commuting
operators) are now written simply as follows:

(5.5)

D H (L D XY omYH (V.. m’) X E(1",..,n" YH, (17,...,n")

= 3 BUmnEjK)FE (L (I — i = 1% 15, (U (m — = )15, %10, )

i, jk

X E(1" (= ke — 0)",15,. K O1%,.i%)]

XHi min—2isjs ol —i=D1 0 (m—j—k),1",..,(n—k—0D").

Here .% indicates the symmetrization of the unrepeated ar-
guments, and the summation in (5.6) ranges over (2.15).

We now consider a non-Gaussian random variable with
real K, and Kj:

X=K,(1)H (1) + K5(123)H,(123) . .7

We calculate the kernels, L,, L, of X3, which are of signifi-
cance in stochastic problems,

X3 =L (1)H (1) + L;(123)H,(123)
+ higher order terms.

Repeated applications of (5.5) will give the desired result,'s
but the procedure is extremely troublesome. It is far more
practical to use our (5.6), the result being

L,(1) =3(Y+62)K,(1)
+ 18K,(1pg) K, (p)K,(q)
+ 108K, (1pg)K;(pgr) K, (r)
+ 324K,(1pq) K;(prs)K;(qrs) ,
Ly(123) = K, (1)K, (2)K,(3) + 3(Y + 62)K,(123)
+ 182{K,(1)K;(23p)K,(p)}
+ 547{K,(1)K;(2pq)K;(3pq) }
+ 108.7{K;(12p)K;(3pg) K, ()}
+ 216K;(1pq) K;(2gr) K;(3pr)
+ 3247{K,(12p)K;(3¢r) K5(pgr)},
Y=K,(DK,(1), Z=K,(123)K,(123).

(5.9)

(5.10)
(5.11)
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(5.8) .

(5.6)

!
The rhs of (5.10) clarifies that the factor 126 in the expres-
sion of L;(123) in Ref. 16 should correctly be read as 216.
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The paper starts the program of rewriting quantum electrodynamics in terms of the manifestly
covariant and covariantly computed effective action. A general method for obtaining nonlocal
terms in the effective action is proposed and the term responsible for the one-loop magnetic
moment of the electron is worked out. In contrast to the usual calculation based on Green’s
functions, the present calculation nowhere encounters the infrared divergences (including
renormalization and restriction to the physical mass shell). Comparison with the method of

Green’s functions shows the inadequacy of the latter.

I. INTRODUCTION

All effects of a given quantum field theory are contained
in its effective action and there should be a straightforward
way to compute relevant terms in the effective action with-
out recourse to the standard technique of Green’s functions,
perturbation theory, etc. This is especially important for
gauge theories because in this case the Green’s functions are
inadequate objects whereas the effective action is a manifest-
ly covariant functional and there should be manifestly covar-
iant methods for its computation. In addition, the effective
action technique, when sufficiently developed, should save
much computational work because it deals only with dia-
grams without external lines, and this reduces considerably
the number of diagrams contributing to a given effect.

In the present paper we start the program of rewriting
quantum electrodynamics in terms of the manifestly covar-
iant (and covariantly computed) effective action. The effect
of QED that seems most attractive from this point of view is
the anomalous magnetic moment of the electron. This is be-
cause, first, the magnetic moment has a clear interpretation
in terms of the effective action and, second, already the pres-
ent-day experimental data require its computation with
four-loop accuracy. '™ If the effective action techniques have
any computational advantages, it is here that they must
prove their worth.

One more reason why the problem of the anomalous
magnetic moment looks tempting is that apparently, for this
problem, one needs only the local term in the effective La-
grangian, of the form

WrYFELY, (L.1)
and, therefore, one may hope that the elaborate Schwinger—
DeWitt technique™® will be applicable. This simplicity is,
however, illusory and, on closer examination, the problem
(even to lowest order) requires a qualitative improvement of
the existing covariant methods for the calculation of the ef-
fective action. Indeed, if using the Schwinger—DeWitt tech-
nique one expands the one-loop effective action of QED in
inverse powers of the electron mass, the coefficient of the
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term (1.1) will prove to be exactly zero. In fact, other terms
of this local expansion, containing derivatives of ¢,

(/mYYy*y’F ¥y, (1/m*) "y’ F Y%, ... (1.2)
all contribute and, upon using the mass-shell equation for ¢,
all take the form (1.1). To be more correct, for the electron
magnetic moment we need the term in the effective action,
which is quadratic in ¢ and linear in F,,, and while F,,, may
be regarded as constant, i is arbitrary. This term [whichisa
sum of all terms (1.2) ] is nonlocal. However, when the cor-
responding effective equation for ¢ is solved iteratively, by
expanding in powers of the fine-structure constant, then at
each iteration order the quadratic in the ¢ term of the renor-
malized effective action takes the local form

Wik — _ jdxt}(v—{-m—i-ig;—zf;-?“yvl’w)'//

+ O(3F) + O(F?) + 0() (1.3)

where g is the gyromagnetic ratio, O(JF) denotes terms with
derivatives of F,,, O(F?) terms higher order in F,,, and
O{e*") terms of nth and higher orders in the fine-structure
constant.

Thus, at least in the framework of the usual effective
action (as distinct from the unigue effective action,’ see the
discussion in the concluding section), the anomalous mag-
netic moment is a nonlocal effect. In the present paper we
propose a covariant method for computing nonlocal terms in
the effective action and work out the relevant term in the
one-loop effective action of QED [Eq. (5.8)]. At the heart
of the method lies a Gaussian integral with noncommuting
sources. Its calculation is discussed in the Appendix. (An-
other approach to the effective action in quantum electrody-
namics, which also leads to integrals with noncommuting
parameters, is proposed in Ref. 8.)

In the language of the Green’s functions, our final result
corresponds to the calculation of the one-loop mass operator
and the three-point vertex with the electron lines off shell.
However, the reward for covariance is that we nowhere (in-
cluding the renormalization and restriction to the physical

v
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mass shell) encounter the infrared divergences and nowhere
need to introduce the photon mass. The comparison with the
textbook calculation, carried out in the concluding section,
shows clearly the inadequacy of the Green’s function meth-
od.

Il. DIAGONALIZATION OF THE QUANTUM
LAGRANGIAN

We start with the QED Lagrangian in a covariant
(mean field®) gauge

L= — iFqu”V_t_b[yﬂ(aﬂ _ieAu) +mI]¢

— }(39,A* —3,(A"))?, 2.1

where
F, = BFA,, —d.A,, 2.2)
Y +rrYt =21 ug¥=2w, (2.3)

and g*" is the positive-definite metric of flat 2w-dimensional
space. [In QED the use of mean-field gauges is not crucial.
The loop part of the effective action for (2.1) coincides with
that for the usual Lorentz gauge, which is covariant by itself.
The addition containing {A) affects only the tree term of the
effective action making it covariant.] The parameter @ will
be used to regularize ultraviolet divergences in proper-time
integrals.
Next we introduce the mean fields

A,; = (A#>, Y= <¢>» 17’= <"T’) ’ (24)
and define
a,=A,—4,, 1=Y—¢ F=Ub-9. (25

Thea,,n,7 will be regarded as independent integration vari-
ables in the functional integral. By expanding the Lagran-
gian in powers of the quantum fields we obtain (the term
Z |, linear in the quantum fields, always cancels in the equa-
tion for the effective action, see, e.g., Ref. 7)

L=Ly+ L1+ L+ L5, 2.6)

Lo= — %FMVF‘”_,Z[W(@, —ied,) +ml ¢,
2.7)

F, =d,A,-3d.A4,, (2.8)

L,=4a,(g"8%a, —7[y*(d, —ied,) +ml ]y
+ iea, Yy + ieauﬂzj/"r; , (2.9)

Ly = lea, 7Yy . (2.10)

Let us introduce the notation for the Dirac operator in
an external field and its (Euclidean) Green’s function,

e@=;/‘(6#—ieAu)+mI, (2.11)
DI "= ' =], (2.12)
D(x) = — f Gy, (2.13)

where all operators are understood as acting to the right on a
spinor.

A convenient diagrammatic technique for the effective
action in QED emerges if we diagonalize the Lagrangian of
quantum fields by making the shift
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100 =500 — e [ GEIPYDIa, Gy, (214a)

7)) =EQ) —iefa# (PG xp)dx, (2.14b)

where now £ and £ will be the independent variables in the
functional integral. The Jacobian of the replacement (2.14)
equals unity. In terms of the new set of quantum fields
a, ,§,E we obtain

&= 4a,0"a, — EDE, (2.15)
Ly =iea,Ey'é — €a,Ep*D 'Y,

—Ea, "D " 'y¥a,

—iea, Yy D ~la, V"D " 'y*ya, , (2.16)

where Q" is the following vector-field operator:
Q*8(x,p) =g 9°6(xp) + EP(xX)PG(x )Y P (»)

+ P Y Gy x) P P(x) . (2.17)

Its Green’s function plays the role of the photon propagator
in the resultant diagrammatic technique.
For the one-loop effective action we need only .7 ,:

Wone-loop [A’!b"_p]
=TrIn(Z6(x,p)) — 3 Tr n(Q**8(x,p)) . (2.18)

The mean fields 1, ¢ enter W onetoop through the operator
Q*# given by (2.17). By expanding (2.18) in powers of ¥,y
we obtain

Wone-loop [A’¢"z]
=TrIn(Z68(x,p)) — } Trn(g"* 3%5(x,p))
— 3 Tr(M*, (x.p)) + O ()7, (2.19)
where
M*, (xy) = — EYX)PCEN VYD) (—8,,/3})

— (—8.1/32)EPWIV'Gyx) P P(x) .
(2.20)

Thus the term quadratic in ¥ is
W oo = — 4 THM™, (x)).

This expression is graphically shown in Fig. 1.

(2.21)

i{ll. THE PROPAGATORS

If the effective action is to be expanded in powers of #, ¥,
then the photon propagator in the diagrammatic technique
will become the free Green’s function

_ g”—va(x,y) =f dr e_a(x,y)/Z'rg’w , (31)
(V]

a2 (477)°

- T~
2 - \\
e &« e

FIG. 1. The ¢4 contribution to the one-loop effective action. The left blot is
¥, the right blot is ¢, the broken line is the free photon propagator
( — &,,/0%)8(x,p), the full line is the electron propagator G(x,y) in an
external (mean) electromagnetic field, and each vertex is 9.
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where o(x,y) is the world function,’
3.2)

For our purposes, the mean electromagnetic field F,,,,
unlike #, may be regarded as constant. This means that the
effective action will be expanded in powers of F,, and its
derivatives. Therefore, for the calculation of the electron pro-
pagator in an external field G(x,y), one may apply the
Schwinger-DeWitt technique.*® Bearing in mind renormal-
ization, we shall work with accuracy O(F?) although in the
present paper all quantities will be needed only with accura-
cy O(F?) + O(dF).

Thus we introduce the covariant derivative V,, which
acts on a spinor as

o= }o,0% o0,=d,0(xy).

V.= (9, —ied, )¢ (3.3a)
and on a conjugate spinor as
V.¥=(3, +ied, ). (3.3b)

Matrices in the space of spinors will be denoted by letters
with a hat. From (3.3a) and (3.3b), the action of the covar-
iant derivative on a matrix is

v.X=9,X. (3.3¢)

The quantity P ,.v» Which figures in the general formalism®

(V.Y, V9,00 =R,.9, (3.4)
is in the present case

R, = —ieF,I. (3.5)

By using the squaring procedure one obtains
G(xy) = — (¥*V, —mI)(H —m*) 7 '8(x,p) , (3.6)
H=g"V,V, +P, (37

where we have reduced the squared operator to the canoni-
cal form® with

P=yyy R, = — Ge/DF, 1"y . (3.8)
Next one writes
—(H—mzl)_‘=J dse el | (3.9)
0
HS(x,p) = o= oI N g () (3.10)
(47TS)(" ,.Z’o

where &, (x,p) are the DeWitt coefficients™® which in the
present case behave like spinors at the point x and conjugate
spinors at the point y. Thus

G(x,y) = fw _ds_e—smze— (1/45)g,,0"0"
o (4ms)”
a, "8 X, ) had N
o| - et | .60,
2s =
(3.11)

where

b, (xp) = (#V, — mDa, (x,p) — 40,78, ,  (X,p)
(3.12)

and o, = dZo(x,p) is a vector at the point x and a scalar at
the point y. The two-point functions (3.12) should now be
expanded in the covariant Taylor series in powers of o* (Ref.
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6) with coefficients at the point x. These coefficients are built
of the coincidence limits of 4, (x,y) and their covariant de-
rivatives, which are tabulated in Ref. 6 in a universal form.

Let us represent the Green’s function (3.11) in the form

G(xy) = K(x,p)ao(x,p) (3.13)

by factoring out the zeroth-order DeWitt coefficient
@o(x,y). The @y(x,p) is the parallel displacement propagator
along the geodesic,>® whose explicit form is never needed in
loop calculations (we shall see below how this comes about,
see also Ref. 6). For K (x,y) one may write down the expan-
sion in ¢” to the given accuracy

K(x,y) =f __dLe—smze—(l/"s)gﬂva“gV
o (4ms)?

X(Zo() + Z,(0) + Z,(0))

+ O(F?) + 0(3F) , (3.14)

A A e
where Z,(0), Z,(0), and Z,(0) are polynomials in o of
zeroth, first, and second order in F,,,, respectively. All that
remains is to use the table of universal coincidence limits in

Ref. 6 to obtain

Zo(0) = —mI— (1/25)y"0, , (3.15)
Z,(0) = (iem/2)F,,y*y"s
+ (ie/2)F,, (8] + 3 var“ v, (3.16)

Z,(0) = (&m/4) [J(Fy"V")? + F,, F* |5
+ (/DY N Eu VYV 8 + HEu 1) F
+ ﬁF#VF”VIgBa - %F(BvFa)‘ 1 ]Sa.a
+ (¢m/12)F,, F, *Iso"0®

+ (€2/24)F,, Fy. "y, 0°0%" . (3.17)

IV. CALCULATION OF THE NONLOCAL EFFECTIVE
ACTION

From (2.21), (2.20), and (3.1) we have

W:Z’,'fe_,wp =e? I dx f dr
o (4m7)”

X f dy e =TI (x) Y G (x,p) Y, P (D) .
4.1
Here {dx may be regarded as an “external” integral making
the effective action of the effective Lagrangian, and fdy as a

loop integral. The general procedure® is now to make the
replacement of variables in the loop integral

Yoot =g"(x)do(xy)

and use the expansion (3.13), (3.15) for the Green’s func-
tion G(x,y). In the absence of gravity, the Jacobian of the
replacement (4.2) is

do*
ayv
and one obtains

(4.2)

=1 (4.3)
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dsdr

one toop = € f Jj (Ams)°(4mT)° ¢

f( 1-[ daﬁ) — [(s+ 7)/4s7)g,, 040"

X PP Zol0) + Z.\(o)

+ O(Fz) + O(aF) ]Va&o(x,Y)¢(Y) ’
(4.4)

where use has been made of the fact that d,(x,y) commutes
withy,. [InQED, 4,(x,y) is proportional to the unit matrix,

dy(x,y) = Iexp(ief A4, dx“)
C

where the contour C is the geodesic connecting y with x and
directed from y to x.]

In the framework of the Schwinger-DeWitt technique
one would now expand also ¢(y) in the covariant Taylor
series®
Go(x )Py = 3 (—n'lz—

n=0

ot - 0V, -V, ()

(4.5)

[it is here that the 4,(x,y) completes its job and leaves the
stage] and in this way reduce the loop integral to the Gaus-
sian integral over o*, However, this is just what we cannot do
in the present case because a/l terms of the expansion (4.5)
contribute to the electron magnetic moment. Therefore we
represent the expansion (4.5) in the form

J' J‘J‘ dsdr
4m)“(s+1)°

one Ioop

—S'"’J(x)y”[ —ml+ —T—y,,(V” +ie 2
S+ T s T

Bo(xX YY) =e” “Trp(x) (4.6)

and in this form substitute it in (4.4). As a result the loop
integral reduces to Gaussian integrals with noncommuting
sources (this method, originally used for the present calcula-
tion, was generalized in Refs. 10 and 11 where a nonlocal
expansion in powers of a universal set of curvatures is ob-
tained for the generic one-loop effective action:)

1 f( H daﬁ)aﬂl - an - (1/4u)8;4¢0’“7 — 0"V,
(4mu)® ,

[VaiVs]l = —ieF g, u=sr/(s+7). 4.7)

The calculation of these integrals is discussed in the Appen-
dix. Since the polynomials Z,(o) and Z,(0), entering (4.4)
and given by the expressions (3.15) and (3.16), are linear in
o*, we need only the first two Gaussian moments, for which
we obtain

1 J( 12-""[ daﬂ)e— (/480" ~ Vg
(4mu)® =1

=" +O(F?) + 0(3P),

(4.8)

(e
(4mu)® 1

= — 2u(g" + ieuF*")V,e""" + O(F?) + O(3F) .

4.9)
After the explicit expressions (3.15) and (3.16) have

been used and the Gaussian integral over ¢ done with the
aid of (4.8) and (4.9), we obtain

F“ﬁvﬂ) fer Fuﬁ?’“?ﬂs

- mmﬂ)vi]yve‘""‘“”"a"“:p(x) + O(F?) + O(3F) , (4.10)

where all operators act in the indicated order to the right on the spinor #(x).
V. EXPLICIT FORM OF THE EFFECTIVE ACTION AND THE ANOMALOUS MAGNETIC MOMENT

It is convenient to express the exponentiated operator in (4.10) in terms of the squared Dirac operator (3.7),

e’ = (14 ujeocF)e” + O(F?) + O(F) , (5.1)

H=V V*— leoF, (5.2)
where

oF=0"F,,, o= (i/2)[v7]. (5.3)
In the remaining terms of (4.10) one may use the operator identity

4iy, F*V, = (oF) ¥V, — ¥V, (oF) + O(JF) , (5.4)

which guarantees that the covariant derivatives will act on ¢ or ¢ only in the Dirac combination 7V, (and this is true for
higher loop orders as well).

The proper-time integrals over s and 7 remain to be computed. For this purpose we make the standard replacement of
variables

a(s,7)

0l < 0,
* a(4,2)

s=Az, t=A(1-2), 0<z<1,

=4, (5.5)

which brings expression (4.10) to the form
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one-loop

fdxgb(x)f dz w—[2(2 w)mz

—m(l +2)+2Q-0)(P¥V, + mD)(1 —z) - 2(¥V, + mI)(1 —2z)
—2(2—w)m}e(oF)AZ* —2m je(oF)AZ* (1 —z)

—{P*V, +ml, JeoF}iz(1 — 2)(2 — 2) e~ #" ~ ! =2Hly(x) 4+ O(F?) + O(JF)

where { , } denotes the anticommutator.

(5.6)

The integrals over the parameters are elementary if the integration over A is done first. The only ultraviolet divergent

integral is of the form

” d/l e—/lz[m’—(l—z)H]
o /1&)—1

(5.7)

and is calculated at @ — 2 by the usual trick of integration by parts (see, e.g., Ref. 6). Note that, for small F,,, the coefficient of
A in the exponent of (5.7) is negative definite. There is, therefore, no problem with convergence of the proper-time integrals at
the upper limit, which in massless theories is inherent in the local Schwinger-DeWitt technique (see the discussion in Refs. 7

and 10).

After the proper-time integrals have been computed, in the limit @ —2 we obtain the final explicit expression for the

effective action:

WP oop = o )zfdx¢(x)[ (— 5%;)—+3lnm2+3C—4
—3lndr+ ’"Z;H + ”‘3;”(2 - mZ_H)ln mz’”_zH)
+ @V, +m = L +inm 4 C—2—lndr— ’"Z;H+ '”Z;H(2+ mZI;H)In m2m—2H)
T S G e e e B
+ [yﬂv,, +m,#apl(z(1 + ”’21; H)
_(1+ ”’ZI;H)Z(H mZI;H)ln mzm_zH)+0(2-—a))]¢(x)+O(F2)+0(8F), (5.8)

where C is the Euler constant. The renormalization in (5.8)
boils down to deleting the terms

dez?z(x)[m(— —§—+3lnm2
2—w

e
(4m)?
+3C—4—31n41r)

+ PV, +m) = ——+ I
2—w

+C—2—In 47)]¢(x) = =W s (5.9)
proportional to the terms of the classical action
W, = —fdx P(x) PV, + m)g(x) (5.10)

[see Eq. (2.7)]. The renormalized effective action is

WP=WE AW+ Whe +0(®) . (5.11)
If the effective equations for ¥ and
W (7Y, + m)¢(x) + O(e*) =0 (5.12a)
—— m X e = .
5Y(x) #

® =P(X)(HV, —m) +O0(e*) =0  (5.12b)

Sy(x) # '
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r
are solved by iteration and the solution is inserted back into
the action, then, since we have

m'—H= — (¥"V, —m)(1"V, +m), (5.13)

it follows that all nonlocal terms in (5.8) vanish. Note that
all logarithms are suppressed and no infrared divergences
arise. Thus we obtain

Wl'lé'ﬁ l mass shell

=—|a v ¢ )
fx'/’(x)(’” +m+(417')22m oF

X¥(x) + O(F?) + O(dF) + O(e*) , (5.14)
with Schwinger’s value
(g —2)/2=¢e%/87 + 0(e*) (5.15)

for the anomalous magnetic moment.

VI. DISCUSSION

The reader has of course noticed that the present calcu-
lation is reminiscent of Schwinger’s calculation in Ref. 12
(but pushed to its logical extreme) and differs drastically
from the usual textbook calculation. An important differ-
ence is that neither in computing the effective action nor in
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conducting the renormalization nor in restricting the result
to the physical mass shell did we encounter the infrared di-
vergences. In particular, the spinor-field renormalization
constant is

(Z;'-1

2
= zf——)—z(z; ——lnmz—C+2+ln41r)+0(e")
T —w

(6.1)

from (5.9) and is infrared finite. [The Ward identity
Z, = Z, is, of course, trivially satisfied in (5.9) because the
,counterterm is covariant. ]

To carry out the comparison with the method of Green’s
functions, let us expand the renormalized effective action
(5.11) in powers of the electromagnetic potential 4, and
keep only terms linear in 4, . The result can be written in the
form

Wi = —fdxr_/}[¢9+m—ieA+2R(¢9)

—ieATg (D) ]+ 0(-+*) (6.2)

in terms of the renormalized mass operator 3 (#) and ver-
tex function ' (#) [AT g (&) is the notation for the contrac-
tion of the vertex function with 4, (x)]. The 2 (4) and
Tz (#) can be read off from (5.8)-(5.11).

Expression (5.14) is obtained by using, in the quantum
terms, the mass-shell equation (5.12):

(@+m—ied)p+ 0(?) =0 (6.3)

and similarly for #. The expansion in 4 . is then equivalent to
the expansion of 2, (d) and T, (&) at the pointd = — m:

fdx P(x)[ — iedTx ()¢

=J-dxt_ﬁ[ —ieAT g (—m) ¢ + 0(4?) + O(e*),

(6.4)
f dx V[ (D) ]9
=fdx Y[Sr(—m) + 2 ( —m)ied |¢
+0(4?) + 0(e*) . (6.5)

But they cannot be expanded! If, nevertheless, we do expand,
the result will be infrared divergent:

3x(—m)=0, (6.6)

i (—m) = (/(4m)*)(2 — 4 In(m*/0)), (6.7)

— ieAT g ( — m) = [e*/(4m)*][(e/2m)aF
—(2—4In(m?/0))ied]. (6.8)

Fortunately, the contributions of Green’s functions have no
meaning separately. The noncovariant infrared-divergent
pieces add together to yield the finite covariant result

Sp(—m) + 23 (—m)ied
— ieAT , ( — m) = [é*/(47)*](e/2m)oF . (6.9)

However, what is done in textbooks is not even this. For
Green’s functions, the restriction to the physical mass shell
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(6.3) cannot be formulated consistently [note the term with
3% in (6.5)], and, instead of (6.3), the free equation

@+m)y=0 (6.10)

is used. With this mass-shell equation the quantum correc-
tions to the Dirac operator take the form

Sr(—m) —ieAT g (—m), (6.11)

the contribution from X} is absent, and the infrared diver-
gence of the vertex function remains uncompensated. The
textbook procedure is then to redefine the counterterm,

(Z 2— t— l)textbook

=(Z;7'=1) + [¥/(4m)?](2 — 4 In(m?/0))
(6.12)

and correspondingly the mass operator, vertex function, and
effective action

Sp(d) Itextbook =3 —(@+m)

2
X —~—{(2 — 4 In(m?/0))

(4m)?
=3¢ (d) —Zp(—m)(@+m), (6.13)
2
ATR () | cxivoox =AT R (9) — A (—4‘;7 (2 — 4 In(m*/0)),
(6.14)
W%¢|textbook
v e m? _

(6.15)

thereby making these good quantities explicitly infrared di-
vergent off shelll At this price, the quantum corrections to
the Dirac operator, when restricted to (6.10), take the re-
quired form. Note that the structure of the coefficient
In(m?/0) in (6.15) clearly indicates that a piece of a nonlo-
cal term has been erroneously included in the counter term.

Equation (6.10) may be understood as a leading ap-
proximation in expanding the solution of the effective equa-
tionsin 4,, . To be more correct, the leading approximation is
then

@+m+Z (=0, (6.16)

but condition (6.6) is satisfied, and one may think that
(6.10) is the only solution of (6.16). It is in this case that the
quantum corrections are of the form (6.11). However, for
perturbation theory, the correct expansion is an expansion in
the charge, and this leads to (6.9) not (6.11). Physically,
too, one considers either the problem of an electron in a
constant external field or the scattering problem. In the for-
mer case the electron field never satisfies Eq. (6.10), while in
the latter case the electron is free in the in and out states (if
such states exist), but at any rate the external field cannot be
regarded as constant in time.

To return to more interesting matters, an important
question is whether the iterative solution (in e?) is the only
solution of the effective equation for ¢ (for F,,, constant and
small). If it is, then the nonlocality of the corresponding
term in the effective action is just an off-shell artifact. In the
present paper we did not consider the modification ”-'* of the
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effective action, which guarantees its gauge independence
and parametrization independence. It would be interesting
to see if this modification can change the situation off shell,
discussed above. An even more unsatisfactory feature of the
off-shell result (5.8) is the presence of the term with the
anticommutator. For the iterative solution, this term vanish-
es in the effective action but does not vanish in the effective
equations. This is precisely the kind of problem which the
unique effective action deals with.’
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APPENDIX: THE GAUSSIAN INTEGRAL WITH
NONCOMMUTING SOURCES

The Gaussian moments (4.7) can be obtained by differ-
entiating the integral

1 J ﬁ doﬁ)e - (l/4u)g,,vo“o“eo"(ea — V)
(4mu)® =1
(A1)

with respect to the numerical parameters €,. Here V,, are,
generally, abstract operators whose commutator is known,

[V.V.] =2, (A2)

In general, calculation of the integral (A1) is an out-
standing problem, but for our present purposes we do not
need much. We shall confine ourselves to the approximation
where

J(g) =

and keep only terms linear in @W (with flat-space g,,, ).

The operator exponential function in (A1) is defined by
its power series expansion which may be integrated term by
term:

L
(4mu)®

He) = § ~e=V 6=V,

n=20 F&:

<J (I

(2u)*

(2k)!

o0

=1+ 3

k=1

ga."'azk(s _v)a' (E—- v)

ay *

(A4)

Here g*'" " “** is the completely symmetric tensor defined by
the recursion relations
LT e N L 1"‘azk, ga,algaza,' — 52' .

@y Tlg X
g =>g"%
i
(A5)

=2
Next, in each term of the sum (A4), the multipliers should
be commuted in such a way as to form the operator (V, V%)~
Using (A3) we find that up to terms 0(.@2) the result has
the same form as in the case of commuting sources,

0

J(g) = z

k=0

k A
2 (e =¥, (e = V)] + O
+ 0V, 2])
= V=N L 0(P?) 4 O([V,.R]) . (A6)

The differentiation of (A6) with respect to £, again en-
counters the problem of noncommutativity. We proceed by
using the power series expansion of (A6):

+n(n—1D[(e—=V)(e—V)(e=V)*|((e = V) (e = V)" %}

(AT)

[va"@,uv] =o (A3)
]
9 -V e—W" I I u
a -9 —[(e—-V -y
de,, ) de,, JZ; n![(£ (e =91
= i u_:{Zn(e—V)"((é‘—v)a(b'—v)a)"—l
n=0 n!
+0(Z) + OV, 2)) .
Since

[(e=V), (e =V)" (e~ V)¥]

= 23" —V), +O([V,Z]), (A8)
the final result is
a eu(s—-V)a(e-V)“
c?e,‘
= 2u(g" — uR*) (e — V), V7"
+ O + OV, 2]) . (A9)

Thus the first Gaussian moment is already modified with the
commutator term. Repeated use of (A9) makes it possible to
obtain Gaussian moments of any order.
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Of concern is a rigorous Thomas—Fermi theory of electron densities for spin-polarized
quantum-mechanical systems. The number N,, N, of spin-up and spin-down electrons are
specified in advance, and one seeks to minimize the energy functional E(p,,p, )

= c\fre(p; (X)°7 + p, (x)*P)dx + 28w S0 [p(X)p()/|x — y|1dx dy + Sg: V(x)p(x)dx,
where c,, ¢, are given positive constants, p, and p, are non-negative functions, p =p, +p, is
the total electron density, fg:p, (x)dx = N,, fg:p, (x)dx = N, and Vis a given potential.
These results are analogous to the classical rigorous (spin-unpolarized) Thomas—Fermi theory
developed by Lieb and Simon [Phys. Rev. Lett. 33, 681 (1973)] and by Bénilan and Brezis

(“The Thomas—-Fermi problem,” in preparation).

I. INTRODUCTION

Consider a quantum-mechanical system having N elec-
trons with Z; protons at anucleusina fixed location R; in R3,
for j=1,..,M. In Thomas-Fermi theory one studies the
ground-state electron density for such a system. An N elec-
tron density is a non-negative integrable function p on R?
satisfying

L p(odx = [pll, = N.

The ground-state density p, is the N electron density that
minimizes the total energy of the system, when viewed as a
functional of the density. The ground-state density satisfies
the property implied by its name, i.e., if A is any Borel set in
R3, then §, p,(x)dx is the expected number of electrons to be
found in A at any instant of time (when the system is in its
ground state).

The simplest expression for the energy as a functional of
the density goes back to Thomas' and Fermi? in the early
days of quantum mechanics (1927). The resulting Thomas—
Fermi (ground-state) energy and density have certain nice
properties. For instance, a scaling argument shows that the
energy is exact as Z =3M , Z, — o (cf. Ref. 3). Thomas-
Fermi theory is useful in calculating properties that depend
on the “average electron,” such as total, kinetic, and ex-
change energies. On the other hand, the theory is less effec-
tive for calculating properties depending on valence shell
electrons such as molecular bonding energies.

Thomas—Fermi theory is traditionally a spin-unpolar-
ized theory in which half of the electrons are spin up and half
are spin down. A spin-polarized theory is one in which there
is an excess of spin-up (or spin-down) electrons. Several
physicists and chemists working in density-functional theor-
ies have discovered that spin-polarized theories can lead to
better approximations of molecular bonding energies, kinet-
ic energies, and other numbers of interest. (Compare, e.g.,
Ref. 4.)

In high magnetic fields, at high temperatures, and in
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certain other circumstances, the ground state of the system is
known experimentally to be spin polarized. It is not unusual
to see the electron configuration for a nitrogen atom in its
ground state depicted as

2p 111
2s 1l
1s 14.

The 1s and 2s orbitals are filled with one spin-up electron and
one spin-down electron, while the three 2p orbitals contain a
single spin-up electron apiece. Gadiyak and Lozovik® and
Pathak,® in his unpublished thesis, have obtained results in
formal spin-polarized Thomas—Fermi theory, but not in a
rigorous mathematical context. Lieb and Simon [Ref. 3(b),
p- 34] indicated the possibility that their rigorous spin-unpo-
larized theory could be extended to the spin-polarized case.

Our purpose here is to put spin-polarized Thomas—Fer-
mi theory on a rigorous mathematical foundation. Many
simplifying assumptions are present in our model. We treat
the usual Thomas-Fermi model but we specify both the
member of spin-up and spin-down electrons in advance.
(Thus temperature, exchange terms, gradient expansions,
and relativistic corrections are ignored.) Nevertheless, even
in this simple case, two new mathematical complications
arise. First of all, the Euler-Lagrange equation for our mini-
mization problem reduces to a system of nonlinear elliptic
partial differential equations rather than a single equation.
Second, in spin-unpolarized Thomas-Fermi theory the
monotonicity properties of the relationship between the
chemical potential and the electron number leads easily to
certain conclusions. In the spin-unpolarized case, the func-
tion alluded to above maps a subset of R into R. However,
the analog of this function in the spin-polarized case maps a
subset of the plane R? into R? Herein lies a key difference in
the analysis of the spin-polarized and spin-unpolarized uses.
The key steps are more difficult in the spin-polarized case,
and, in particular, it is harder to determine the range of this
function.
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This paper is organized as follows. In Sec. IT we formu-
late and discuss the minimization problem for the ground-
state densities and the corresponding Euler—Lagrange prob-
lem. In Sec. III we explain how to find the ground-state
densities by solving partial differential equations. The tech-
nical section, Sec. IV, is devoted to proofs. Novel results on
compact support for a maximal system of electrons are ob-
tained. In Sec. V it is shown that a (generalized) atom has
radially nonincreasing ground-state densities for both the
spin-up and spin-down electrons.

il. THE MINIMIZATION PROBLEM

Consider a system with ¥, electrons of the spin-up var-
iety and N, spin-down electrons. We emphasize that N, and
N, are specified in advance. Let N =N, + N, be the total
number of electrons for the system. Let p, and p, be the
corresponding densities. From now on we replace the sub-
scripts 1, | by 1, 2 for typographical convenience. Thus, for
any Borel set A in R?, §,p, (x)dx is the expected number of
electrons with spin 7 in A (at any instant of time), and

J' p:(x)dx =N,
RJ
fori=1,2. Let
L' ={peL '(R?): p>0},

L', [N]={peL'+: Jmp(x)dx=N}.

Consider the energy functional & defined by
& (p1p2)

= f Vo) +J(p))(x)dx + f V(x)p(x)dx

ff PX)p(y) LXPD) 4 gy, )
2 JeJe |x—y

Here p = p, + p, is the total electron density, and & is de-
fined on the largest subsetof L ', X L' such thateach term
on the right-hand side of (1) makes sense. We now describe
the three integral terms in (1).

The kinetic energy term involves a convex function J:
[0,00) - [0, 0 ) satisfying

JO)Y=J'(0)=0, J">0, J>0 on(0,x). (I)

The usual Thomas—Fermi kinetic energy approximation, in
atomic units with 4 = 1, for the spin-polarized case is given
by

J(r) = g(6r7)°rP,

This is derived formally in Refs. 5 and 6 and incorporates the
Fermi statistics of the electrons.

The second term in (1) represents the electron-nuclear
attraction and is the only term in (1) that corresponds exact-
ly to its wave function analog. For a discussion connecting
wave function theory with Thomas-Fermi theory, see Ref.
7. In order to allow the potential ¥ to be as general as possi-
ble we make at this point only the minimal assumption

VeL | . (R?*) and V<O on a set of positive measure.

(V)
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This (V) is a necessary condition for the existence of a
Thomas—Fermi ground-state density in both the spin-polar-
ized and usual (or spin-unpolarized) theories (cf. Ref. 8).
The most important special cases are the molecular Coulomb
potential

Vix)y= - Y ——— (2)
= x =Ry

and the atomic Coulomb potential
V(ix)= —Z/|x|. (3)

Here Z and Z, are given positive numbers.

The final term in the definition of the energy functional
& corresponds to classical electron—electron repulsion. The
customary choice of the constant c,, is 1; the Fermi-Amaldi®
choice of ¢,, = (N — 1)/N vanishes when there is only one
electron and hence no ¢lectron~¢lectron repulsion, and c,, is
approximately 1 for large N. As we shall see later, negative
ions do not exist in spin-polarized Thomas—Fermi theory
(with ¢,, = 1), but singly negative ions exist under the Fer-
mi—-Amaldi hypothesis.

The problem of finding the ground-state energy and
densities in spin-polarized Thomas—Fermi theory is stated as
follows.

Minimization problem: Assume (J), (V), with & given
by (1). Find (5,,0,)€¥Z (N},N,) such that

g(f’vf’z) = min{g(ﬂvpz)‘ (Pupz)ee@(NpNz)}s 4)
where

D (N,N,) = {(Pvpz)‘ p.eL
Vp.eL '(R?),
(x3) =p(x)p(¥)|x — y| 7 'eL {(R*XR?),
for i=1,2}.

Here N, and N, are given positive numbers.

Recall that p = p, + p, is the total electron density. One
can easily show that the functional & on the convex set
& (N,,N,) is strictly convex. Thus, if a minimizing (p,,0,)
exists, it is unique. But the domain & (N,,N,) of the minimi-
zation problem incorporates the constraints p;>0 and

Srep; (x)dx = N, for i = 1,2. The integral constraints sug-
gest the introduction of Lagrange multlphers Ay A, and the
minimization of the functional

E(pp,) =& (pps) + Z A; (j p;(x)dx —N,«) .
R3

i=1

v [N, Jlpoel

We proceed formally, ignoring the constraints p; >0.
The Euler-Lagrange equations take the form

3E _ _ dE _ _
(Pl’Pz) = (Pppz) = 0.
9, ap;

The computation of dE /dp, is analogous to that in the spin-
unpolarized case (cf. Refs. 7, 8, 10), but there is an extra
complication in the electron—electron repulsion term. De-
fine the convolution operator Bby B = (47|-|) "', ie,

B == | ok -y .
Itis well-known from Newtonian potential theory that B is
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the inverse of the negative Laplacian acting on functions on
R3, i.e., B=(— A)~'. The electron-electron repulsion
term thus becomes

2me,, f pBp dx
RJ

= 2me,, LJ[PlBPI + 2p,Bp, + p>Bp,]dx,

since B is (formally) self-adjoint. Consequently,

9 27c,, f pBp dx] = 2wc,. [2Bp; + 2Bp, ]
apz R

= 4wc,, Bp,

and similarly

9 [21Tcn f pBp dx] = 4rc,. Bp.
dp,
This leads us to the Euler-Lagrange problem associated
with the minimization problem [cf. (4)]; a precise state-
ment follows.

Euler-Lagrange problem: Assume (J), (V), and let

D(N,Ny) =LY [N]XLY, [N,].

Find (5,,p,41,4,)€Z (N,N,) X R? such that, a.e.,
J'(B) + V+ kBB, +p,) +A4,€4 (p),
J'(By) + V+ kBB, + p,) + A4,€0 (p,),

where k = 47c,, and for i = 1,2,

S5 — [{0}, on {x: p,(x)>0},
P = [0,:0), on {x: p;(x) =0}.

The Lagrange multipliers 4,, A4, are the electronegativi-
ties, while their negative — A, — A, are the chemical poten-
tials. The notation ge& (p;) combines an equation (on [p;
> 0]) together with an inequality (on [p, =0]). The in-
equalities arise as a consequence of the constraint that the
densities are non-negative. Since the domain of admissible
densities (p,,0,) is larger in the Euler—Lagrange problem
than in the minimization problem, we expect solutions of
latter to satisfy the former, but not necessarily conversely.
The precise relationship between the two problems is as fol-
lows.

Theorem 1: Assume (J), (V). If (p,,p,) solves the mini-
mization problem, then there exists a unique pair
(A,,4,)€R? such that (5,,,,4,,4,) solves the Euler-La-
grange problem. Conversely let (p,0,4,,4,) solve the
Euler-Lagrange problem. If there is a real constant M such
that

x—J*(M — V(x)),eL'(R?),
then (p,,p,) solves the minimization problem.

Here a, = max{a,0}, and J * is the convex conjugate
function (or conjugate of J) defined by, for >0,

J*(t) = sup{ts — J(s): s>0}.

In particular, if J(s) = cs® for some pe(1, ) and ¢ >0, then
J*(t) = (cp)?% 1 for >0, where p~' 4+ g~ ! = 1. The as-
sumption that J*((M — V), ) is integrable ensures that
inf & (p1,02) > — .

Theorem 1 is proved by making obvious modifications

(5)
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of the proof given in Ref. 10, which is the spin-unpolarized
case. The ideas were sketched earlier by Brezis,® and the full
details were given in Ref. 10. a
We remark that letting |x| — o in (5) shows that 4, >0,
A,>0 provided that ¥(x) —0 as |x| — o, either in the usual
sense or in a weak sense [e.g., VeWeak L?(x: |x|>R) for
some R >0, p < . These spaces will be defined in the next
section]. In this case, in the statement of Theorem 1, we may
replace (4,,4,)€eR?> by (4,,4,)€[0,0)> Furthermore,
N,>N,, N, = N, turn out to be equivalent to, respectively,
A>A,, A, =A,, and in the latter case (i.e., N, = N,) we
have the usual (spin-unpolarized) Thomas-Fermi theory.

lIl. SOLUTION OF THE EULER-LAGRANGE PROBLEM
VIA NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL
EQUATIONS

Set
u;= — iV —kBp,,
for i = 1,2 and define I':[0,0 ) = [0, 0 ) by
(J")7Y(s), for s€(0,),
T =
() {o, for se( — o0,0]. (6)

The Euler-Lagrange problem (5) (which consists of two
equations and two inequalities) reduces to

J’(p,-)eu,- + uj _/li + ﬁ(ﬁ,),
for i = 1,2 and j#i (with je{1,2}). Applying T yields the
system of two equations

pi=T(u; +u, —A,). (7)
Since we require that p,eL ', [N, ], integrating (7) yields

f T, (x) + 1, (x) — A,)dx = N,, (8)
RS

for i, je{1,2} with i#j. Applying — A to u, and using (7)
and (8) leads to a coupled system of elliptic equations. This
version of the spin-polarized Thomas—Fermi problem can be
stated precisely as follows.

Nonlinear elliptic problem (first version) Find u,,
u,cWeak L *(R?) and (1,,4,)€R? such that

—Auy + kU (uy + u, — Ay) = 1AV,

9
— Au, + kT (u; + u, — A,) = 1AV, ®)
in the sense of distributions, and
N, = JJ C{u(x) + u,(x) — A,)dx,
x (10)

N, =f T(u,(x) 4+ uy(x) — A,)dx.
R3

In studying the nonlinear elliptic problem we shall make
a stronger assumption on ¥V, namely, that (V) holds and
AVe# (R®) + L '(R?), i.e., AV is the sum of a finite signed
measure and an integrable function. The results that follow
are especially clean when AV is non-negative.

The spaces Weak L?(R>) are the weak L” spaces or
Marcinkiewicz spaces. A measurable function fon R3 is in
Weak L?(R?) iff ||| f]||, < o0, where

J. A. Goldstein and G. Ruiz Rieder 711



£ 11, =inf[1<: j | o) JPdx<K [ [ dx]”",

for all bounded Borel sets ACR3] ;

herep < o andp™! + ¢! = 1. Some basic facts concerning

these spaces are collected in the following lemma.!!

Lemma 1 (cf. Ref. 10): (i) Let 1<r<p< . Then
Weak L?(R*)CL [, (R®) with continuous injection; and
ucWeak L ?(R?) implies |u|'€Weak L ”"(R?).

(ii) The function x — |x| ~ * belongs to Weak L **(R?),
for0<a <3.

(iii) If EeWeak L?(R*), 1 <p < w0, andfeL !(R?), then
E +fcWeak L?(R*) and

HIE A1 <IE NN Sl

(iv) Write “g( o0 ) = 0” iff for all €0 there is a Borel set
A, in R® of finite measure such that |g(x) | < efor all x¢4. . If
geWeak L?(R®), 1 <p< oo, then “g( o) = 0.

Coupled systems of nonlinear elliptic equations are in
general difficult to handle. Our particular system has the
apparent additional complications caused by the necessity of
working in a spaces of densities [in L ' (R®) ] and by the pres-
ence of bounded signed measures that arise from AV. [Re-
call that — A(|x]|™") = 4n,, where &, is the Dirac point
mass at the origin in R?.] However, our system of equations
is greatly simplified by the introduction of a new variable.

Let

w=u1+u2.

Then the pair of equations (9) can be added to give the single
equation

2
—dw+ T T(w—4,) =AV. (11)

i=1
This suggests an alternate version of our partial differential
equation (PDE) problem.
Nonlinear elliptic problem (second version): Find
weWeak L 3(R?) and (1,,4,)eR*suchthat (11) holdsin the
sense of distributions and

N, =j Mw(x) —A;)dx, i=1,2.
RJ

The two versions of the nonlinear elliptic problem are
equivalent. The second is simpler in that it only involves one
PDE, and the densities can be found directly from p,

=T (w — A4,). Of course, u; can be found by solving

— Au'. = f;
[see (9)], where f; = JAV — kT"(w — A;) is known once w
is known.

Prior to solving the Euler-Lagrange problem by means
of the nonlinear elliptic problem (second version), we make
additional assumptions on J and V.

Hypothesis 1: Let (V) and (J) hold. Suppose further
that “¥V(« ) = 07, 0<AVeL *(R?), and

f T (clx|™Ndx = o, (12)

|| > 1
for some ¢ > 0.
Hypothesis 2: Let (V) and (J) hold. Suppose further
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that “V(e)=0", 0<AVe# (R?), (12) holds, and
x—T(|x|™") is integrable in a neighborhood of x = 0.

Recall that T is defined by (6). Note that either Hy-
pothesis 1 or Hypothesis 2 implies 0 < fg: AV < 0.

Lemma 2: Assume either Hypothesis 1 or Hypothesis 2.
Then the nonlinear elliptic problem (either version) is
equivalent to the Euler-Lagrange problem.

Proof: The equivalence of the first version of the nonlin-
ear elliptic problem and the Euler-Lagrange problem is es-
sentially the same as in the spin-unpolarized case.>'° Any
solution of the first version of the nonlinear elliptic problem
gives a solution of the second version when we set
w = u, + u,. Conversely, passing from the second version to
the first involves solving

— Au; = AV —kT'(w — 4,)

as was discussed following the statement of the second ver-
sion of the nonlinear elliptic problem. O

We now solve the second version of the nonlinear ellip-
tic problem and thereby obtain the desired solution of the
Euler-Lagrange problem (and the minimization problem as
well in many cases).

Theorem 2: Assume either Hypothesis 1 or Hypothesis
2. Let

Ny=—1 | ar.
47c,, Jwre

Then (recall N =N, + N,) the Euler-Lagrange problem
has a unique solution whenever 0 < N<N, and no solution
when N> N, If ¥(x) >0 as |x| - o0 and if 0 < N < N,, then
the solution densities p,, p, have compact support. More-
over, if N;>N,, then g, has compact support, even if
N =N,

This theorem will be proved in the next section. First
some remarks are in order.

According to Theorem 2, N = N, is the maximum num-
ber of electrons our quantum-mechanical system can have
(in spin-polarized Thomas—Fermi theory), and this ¥ is de-
termined by ¥ and c,, via (13). If ¥ is the molecular Cou-
lomb potential (2), then

1 M
— | AV = Z65g =2,
47 Jns 2 R

j=1

(13)

where Z = 3, Z, is the total number of protons in the mol-
ecule. The same is true for atoms. Thus for N = N,, (13)

gives
N=c;'Z

When ¢,, = 1, it follows that N<Z, and therefore no nega-
tive ions exist (in this theory). However, in the Fermi-
Amaldi case of ¢,, = (N — 1)/N, the maximum value of N
satisfies (13), i.e,,

N=NN-1)"1Z,

or N =Z 4 1. Thus singly negative ions exist (but not dou-
bly negative ions). On the other hand, in Thomas—Fermi
theory, neither N nor Z need be integral.

ForJ(r) =cr?for r>0withe>0and 1 <p < w0, condi-
tion (12) is equivalent to p>4. If AVe.# (R?) rather than
L (R?), then (12) plus the final condition of Hypothesis 2 is
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equivalent top > 4. When ¥Vis the molecular Coulomb poten-
tial (2), then the condition in the converse of Theorem 1
holds iff p > 3. Thus when p >}, we can solve the minimiza-
tion problem. However, for § < p<3, we have a solution of the
Euler-Lagrange problem but no solution of the minimiza-
tion problem [since in this case inf & (p,0,) = — «].Itis
worth emphasizing that the physical case of p = § falls com-
fortably into the acceptable range for both problems.

IV. PROOF OF THEOREM 2

First fix (1,,4,)€[0, « )?. Without loss of generality we
may assume A,>4,. For £€R set

2
B(&) =Y kL(£—4))
i=t
with T defined by (6) and, as before, k = 4mc,,. We then
solve, for A = (4,,4,),

—Awy +B(wy) =f, B(w,)el '(RY), (15)

for f= AV together with the condition that “w; (0 ) =0".
The following result of Benilan ez al.'! is the right tool for
this problem.

Proposition 1: Let B: R— R be continuous, nondecreas-
ing, and satisfy S(0) = 0.

(i) If feL '(R3), then (15) has a unique weak solution
w; in Weak L 3(R3).

(ii) If x> B( + |x|™") is integrable in a neighborhood
of the origin, then for every fe.# (R*), problem (15) has a
unique solution w, in Weak L *(R?).

Lemma 3: The function 8: R— [0, ) defined by (14) is
continuous, nondecreasing, and satisfies 5(0) = 0.

This lemma follows easily from the hypotheses (J) on J,
the definition of T, and the fact that 4,,4,>0. 0

Thus for each fixed A = (4,,4,), Proposition 1 (i)
[resp. Proposition 1 (ii)] guarantees the existence of a
unique solution w, in Weak L >(R?) of (11) under the as-
sumption Hypothesis 1 [resp. Hypothesis 2].

In both cases, B(w, )eL '(R?).

Fori=1,2 set

(14)

N;(4) =J Tw, (x) — A,)dx,
R}

N(A) = Ny(4) + N (4).

Proposition 2: The function N(+): [0,00)%2—[0,0)? is
continuous. For i, je{1,2} with i#j, N,;(4,,4,) is a nonin-
creasing function of 4; and a nondecreasing function of 4.
Both N,(A) and N,(A) are strictly decreasing on lines of
slope 1 that pass through the positive A, axis [i.e., if 1, <g,,
A, <ty and p, —pu, =A, — 4, then N,(41)>N,(u) and
N,(4) > N,(u)]. Moreover, N,(0,4,) >0, N,(0,4,) >0, for
all 1,>0; and N(A,,4,) < N(0,4,) whenever 4,>0, A,>0.
Finally, for i{1,2}, lim, _ , N;(4,4;) =0.

In proving this result we may, without loss of generality,
restrict ourselves to the infinite triangle {(1,,4,)€[0, )%
A,>A,} rather than the quarter plane (4,,4,)€[0, )2

Proof: The proof will be broken into several pieces.

Monotonicity: Let A = (A1,4,) and p = (u,,u,) be in
[0,00 )? and satisfy 4, <, and 4, — A,<p, — 1. Set

(16)
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, =w, —a,
fora = A,u. Then @, , by Proposition 1 and Lemma 3, is the
unique solution of
_Awa +ﬂa(wa +al)=AK “lT)a(oo)—}-al:O”,
(17,)

where A, is given by (14) for @ = A,u. Subtracting (17,)
from (17,,) yields

—A(I‘I)'u —w,{) +By(w# +#1) —B;,(L~U,1 +A’l) =0.

Multiply this equation by (&, — i, ) ,; using (14) and inte-
grating over the ball B, = {})‘ceR"‘: Ix| <R} gives

[ -aw, -mo@ -m).
Br

k[ D@ + T @, + 1 —p)
Bg
— (@) — D@, + 4, — ) | (@, — ;) 4 =0.
(18)
Let
E = {xeR% @, (x) >, (x)}.

Since (w, —w;), =0on R3\E, the integrals in (18) may
be taken over ENBy rather than Bg. Also, on E, I'(i,)
—I(0;)>0 and T (@, +p, —p,) —T(@, +4,—A4,)
>0 since T is a nondecreasing function. It follows that, by
the divergence theorem,

0>J — A(W, — ;) (D, — ;)
ENBg
= —J [é-(ib —LT),I)](lTi —i0,), dS
Enose LOr #

+J IV(ITJ# —LT)A)|2
ENBg

1 d . .
2 Jenas, Or (0 = 10205

+ |V(@, — ;)] (19)

ENBg

But, by Fubini’s theorem,

R+ k a
— (W, — ;)% dSd
J; Lskms ar (0, = 02)5 ’

= [(®, — ;)% (R+k)

IBRNE
— (@, — ;)% R ]dS-0,
as R—ow for each keR since A, <y, and “@,(e0)

+ a, = 0” for @ = A,u. Thus setting R— o in (19) allows
us to deduce

0>f [V(w, — w, )2
E

Consequently E is a Lebesgue null set and &, <, a.e.
(whenever A, <u, and A, — A,<u, — u,). It follows that

C(w, —p)<T(w; —4,) ae, (20)
whence

N ()N (A). (21))
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A similar argument establishes

Nz(,“)(Nz('{) (212)
provided A, <p, and A, — A,>p, — p,. In particular, it fol-
lows that N,(A4,,4,) is nonincreasing in 4, and N,(4,,4,) is
nonincreasing in A, on the sets specified.

Now suppose 4, <, and A, = u,. Then

—Aw, + k['(w, —p,) + kT (w, —4,) = AV,

-_ Awl + kr(w/l —“/11) '+' kr(w/l "‘12) - AI/.
Subtracting the former from latter gives
—A(wy —w,) +kC(w; —4,) +kC'(w, —py)

— kT(w; — A;) + kC(w, —4,;) =0.
Multiply by (w; — w, ) ,, integrate over By, and use (20)
to obtain

f —A(w; —w, ) (w; —w, ),
Bg

+kf (C(w; —Az) — T(w, — 1)) (w, — w,) , <O.
- (22)
Let
F={xeR* w; (x)>w, (x)}.

Both integrals in (22) may be taken over FNB rather than
B, since the integrands vanish on R*\ F. Also, on F,

F(w, —4)>C(w, —4,)

since I is nondecreasing. Thus
J —Aw; —w,)(w; —w,) <0
FNBg

As in our previous calculation, we use the divergence
theorem, let R — «, and employ “(w; —w, ) () =0 to
conclude that

J;lV(w,l —w,)|>=0.

Thus F'is a Lebesgue null set and w; <w,, a.e. Hence
C(w, —A4)<C(w, —4,)

and so
N (AN ().

The very same argument shows that A, =u,, 4, <y,
implies N, (1)<N,(1). Thus N, (4,,4,) is nonincreasing in
A, and nondecreasing in 4; for j#i.

Suppose now that 4,>4,>0 and set u,=A4,—A4,,
4, = 0. Then the points A = (4,,4,) and z = (O,u,) lieona
line of slope 1 that intersects the positive vertical (or 4,)
axis. The preceding arguments show N, (4,,4,) <N,(0,u,)
and N;(A1,4,) <N, (0u,).

We have verified the monotonicity assertions in their
weak form. The strict monotonicity results will be proved
presently.

Continuity: Fix A,>0. Let {17}, be a sequence in
[0,00) withA 714,,andletA " = (4 {,4,). By the monotoni-
city of w,. — A7, w,. converges to a function v almost
everywhere and in the sense of distributions. But vis clearly a
distributional solution of the same equation as w,
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[4 = (4;,4,)] and veweak L *(R?). Thus by uniqueness,
v=uw,. The preceding argument implies I'(w,, — A7)
<I(w; — 4,); hence by Lebesgue’s monotone convergence
theorem, N;(4 ") - N,(A).

Now suppose 4 714,. Again we have w,.—w; and
'w,.—A%1)-T(w,; —A,). An application of Lebesgue’s
dominated convergence theorem then gives N,;(47")
- N, (A). It follows that N,(A4,,4,) is continuous in 4,. In
both cases, i.e.,, as A | approaches 4, from either side, w, .
-w; holds, and so w, .. —A,—w,; — 4,. Applying I" and
integrating shows that N,(4,,4,) is continuous in 4,. An
analogous argument with A, fixed shows that ¥, (4,,4,) and
N,(A,,4,) are continuous in 4,.

We next show that
lim N;(4) =0,
A~ o0

fori=1,2.Since — Aw,; <AV and w,,VeWeak L *(R%), (a
suitable version of) the maximum principle gives w; < — V
ae. (cf. Ref 11). Consequently, I'(w, —A,)<(—V
— A;). Using the fact that “¥( ) = 0” and the definition
of T, it follows that I'( — V' — 4,) -0 as 4, —» 0. Applying
the dominated convergence theorem gives the desired result.
Recall our assumption that A,>4,. Then N,(4,,4,) -0
as A, o0, even if A, is fixed. But our condition that 4,34,
was inessential and made for convenience only. Thus
N,(4,4,)—0as A, o, whether or not 4,>A4,; in particu-
lar, A, can be fixed in this argument.
Strict monotonicity: Assume A,3A4,,0 <A, <, A, <ty
A, —A,=p, —u, and N;(A) =N,;(u), for i=1,2. As-
sume further that N,(A4) > 0. We seek a contradiction. The
inequalities (20), (21) then become equalities, so — Aw,
= — Aw,, “w,(w) =0”, “w; () =07. It follows that
w; = w, a.e. Since

N,(A)>N,(4) >0,
the sets
Qi = {x€R3: l"(w,l (x) - /11) > 0}

have positive Lebesgue measure. But I is strictly increasing
on (0, ), whence

L(w, (x) — ;) = T(w; (x) — 1))

forxeQ; iffw, (x) —u,; = w,; (x) —4,;. Thusy, = 4,,acon-
tradiction. Thus both ¥, (z) = N,(4) and N,(u) = N,(A4)
cannot hold.

So we suppose N,(A)>N,(¢) and N,(A1) =N,(u),
and we seek a contradiction. [ The case of N,(4) = N, (u),
N,(A) > N,(u) is similar.] Since N,(1) = N,(u) we must
have w; — 4, =w, —u, ae. Then w, =w, +4, —u,

=w, +4, —u;, whencew,; —A, =w, —u, a.e. But then
C(w,; —A4) =T(w, —uy) a.e., which implies
N, (4) = N,(u), a contradiction.
Next we show that

Nz(/{lao) >0, Nl(o»/lz) >0,

for 0<A,, 4, < «. As the two proofs are essentially the same,
we show the latter. Let w,; be the solution of (15) and
“w; () =07, where A = (0,4,). Assume N,(0,4,) =0;
we seek a contradiction. Then
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Blw;) =kl (w,;) + kI'(w; —4,) =0 ae,

whence w, <0 a.e. But —A(w; + V) =0, “w, () =07,
“¥( o) = 0”. By the maximum principle it follows that w,
= — Va.e. Thus V>0 a.e., which contradicts assumption
(V) [which states that {xeR3: ¥(x) <0} has positive mea-
sure].

This completes the proof of Proposition 2. ]

Lemma 4: Let Ny = N(0,4,) where 4,0 is fixed. Then
(13) holds, and N, is independent of A,.

Proof: We give the proof for the case that AVeL '(R?).
[The more general case of AVe.# (R*) requires only minor
modifications.] By Proposition 1 (i), w;eWeak L3(R?)
and Aw,eL '(R*), where w, is the solution of (15) and
“w; (o) =07 for A = (0,4,). It follows that

w, = (4mr|x|) " '*( — Aw,)

(cf. the appendix in Ref. 11). Consequently w, is asymptotic
to ¢/|x| as |x| - o0, where ¢ = (47) g ( — Aw, ). As-
sume fpAw,; <0, or, equivalently, ¢>0. Then I'(w,)
€L '(R?), which implies T'(c|x| ') is integrable outside
some ball; this contradicts (12).

It follows that g Aw, >0, and so

Blw,)> f AV
R? R?

Therefore it only remains to show that fp:B(w, )< fg:AV.
Recall that (g ( — Aw, ) (sgn w; ), >0 [since — Aisaccre-
tive on L '(R?)]. Multiplying — Aw, + B(w;) = AV by
(sgn w, ) ,, integrating over R, and noting that 8(w;, ) =0
whenever w; <0, we obtain

f}ﬂ(w,l (x))dx = J;;B(wi (x))(sgn(w; (x))) , dx

<j AV | AV
[wa>0} R

by our assumption that AV 0. |

View N=(N,N,) as a map from the triangle
To=1{(A,,4;): 0<A,<4, < w0} to [0, )% The monotoni-
city properties of Proposition 2 (and the proof of Proposi-
tion 2) show that N is injective on 7,,. We next show that the
image of T, under N is the triangle 7', pictured in Fig. 1.

Lemma 5: The image of T, under N is the triangle
T, = {(N,N,): 0<N,<N,, N, + N,<N,}.

Proof: First we prove that the interior of T is in the
range of T,. We do this by contradiction. To that end sup-
pose thereis a point N* = (N ¥,N #) in the interior of T, and
in the boundary of the image of N. Choose a sequence {N"}

FIG. 1. The image of T, under N.
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in the range of N that converges to N* as n — co. Since N* is
in the interior of T, it follows that N¥ >0, N¥> N¥, and
Nt + N% <N, Choose A "in T, such that N(4 ") = N " for
each n> 1. Choose a subsequence of {4 "}, which we denote
by {A"=(A},4A2)}, such that A7 —»A ¥¢[0,00], A ¥ A ¥
€[0,0],and A ¥>A *. If 1 ¥ <A ¥ < 0, we obtain a contra-
diction from the continuity of N (by Proposition 2). If 4 ¥
=0 and A ¥ < o, then Lemma 4 implies N¥ + N} = N,,
which is again a contradiction. Next, A ¥ = A ¥€[0, ) cor-
responds to spin-unpolarized Thomas-Fermi theory in
which case N¥ = N ¥, again a contradiction. Finally, if 4 ¥
= o, then by (16), N¥ = 0. Thus all cases have been han-
dled, and we have obtained a contradiction. Thus the image
of N contains the interior of T',.

The line segment {(N,,N,)eT,: N, = N,} is the image
under N of { (A ,,4,)€T: A, = A,} by standard spin-unpolar-
ized Thomas—Fermi theory. The line segment {(N,,N,)eT:
N, + N,=N,} is the image under N of {(4,4,)eT,:
A, =0} by Lemma 4 and Proposition 2. The line segment
{(N,,N,)eT;: N,=0} is the image of {(1,4,)eTy:
A, = oo } under the (extension by continuity of the) map N.
Lemma 5 now follows. O

We can now complete the proof of Theorem 2. Most of it
follows from Proposition 2 and Lemmas 4 and 5. Next we
show that if ¥(x) —»0as |x| — «0,and 0 < N, + N, < N, then
the solution densities p, and p, have compact support. Note
that O<N,+ N,<N, iff A4,>0, 4,>0, where N,

=N,;(A;,4,) =N;(4), for i=12. However,
—A(w; + <0 and “w;(w0) =07, “VF(x)=0",
whence w; < — V a.e. by the maximum principle. Thus w,
—A;< — V—A4,,andsince ¥(x) —»0as |x| - o, there exists
an R >0 such that w, (x) —4,<0 for a.e. x with |x|>R.
This implies that

pi(x) =T(w;(x) —4,)=0

for a.e. x with |x| > R and i = 1,2. Thus g, and p, have com-
pact support. Finally we note that when N, + N, = N,,
N,>N, iff A, = 0<A,. Again invoking the maximum prin-
ciple we see that w; < — V and so w, —A,< -V -4,
(a.e.). The argument of the preceding paragraph shows that
P, has compact support.

The proof is finally complete. a

The last assertion of Theorem 2 helps to justify the fig-
ure in the Introduction depicting the electronic configura-
tion of a neutal nitrogen atom (c,, = 1). The density 5, of
spin-down electrons has compact support while the density
P is supported on R>. Thus the spin-down electrons are
more tightly bound to the nucleus.

V. MONOTONICITY OF ATOMIC DENSITIES

Let us now consider a generalized atom with Z protons
fixed at the origin. We shall show that if AV is a radial de-
creasing function, then the unique solution densities (p,,0,)
of the Euler-Lagrange problem are also radial decreasing
functions whenever 0 < NXN,. The uniqueness of the solu-
tion readily implies that both must be radial functions. The
problem is thus to show that p, and p, are decreasing. Our
result to this effect (Theorem 3 below) is based upon the
following result of Gallouét and Morel.'?
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Proposition 3: Let B: R — R be a continuous nondecreas-
ing function which is increasing on (0,0 ) and satisfies
B(0) =0.

(i) Let f&L ' (R?) and let u be the unique solution of

—Au+B(u) =/,
“u(w0) =0”, B(u)eL '(R?).

If f is radially nonincreasing (resp. decreasing), then u is
radially nonincreasing (resp. decreasing).

(ii) Assume further that x—B( + |x|~") is integrable
on a neighborhood of the origin in R3. If f= a8, + g for
some @3>0 and geL '(R*), where g is radially nonincreasing
(resp. decreasing), then the unique solution « of (23) is also
radially nonincreasing (resp. decreasing).

Theorem 3; Assume Hypothesis 1 and suppose AVis a
radially nonincreasing (resp. increasing) function. Then for
all 0 < NN, the solution densities p,,0, are radially nonin-
creasing (resp. decreasing) on the sets where they are posi-
tive. Furthermore, if Hypothesis 1 is replaced by Hypothesis
2, the same conclusions hold when AV = a8, + g, where a is
a non-negative constant and geL '(R?) is radially nonin-
creasing (resp. decreasing).

Prooft Assume Hypothesis 1. Then given positive
numbers N,, N, with N, + N,<N,, there exists 4 = (1,,4,)
in [0, 0 )% such that the unique densities p,,0, that solve the
Euler-Lagrange problem are given by

pi=T(w;, +4;), i=12,
where w, is the unique solution of

—Aw; +B(w,) = AV,

“wi(0) =07, Bw,)el '(R?),

where f(w,; ) = kT(w,; — A,) + k[ (w; — A4,) [see (14)].
Lemma 3 shows that /3 satisfies the hypotheses of Proposi-
tion 3. Since AV'is radially nonincreasing, so is w, by Propo-
sition 3 (i). The strictly increasing assertion of Proposition 3
(1) implies that p, is radially decreasing whenever it is posi-

(23)
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tive. When Hypothesis 2 holds, the above argument goes
through by appealing to Proposition 3 (ii). O

ACKNOWLEDGMENTS

We are very grateful to Mel Levy, Rajeev Pathak, and
John Perdew for their patient explanations and generous
help in our efforts to understand spin-polarized Thomas—
Fermi theory.

The first named author gratefully acknowledges the
partial support of NSF Grant No. DMS-8620148. The sec-
ond named author gratefully acknowledges the partial sup-
port of the Louisiana Education Quality Support Fund,
Contract No. 86-LBR-016-04.

'L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).

2E. Fermi, Rend. Acad. Naz. 6, 602 (1927).

3(a) E. H. Lieb and B. Simon, Phys. Rev. Lett. 33, 681 (1973); (b) Adv.
Math. 23, 22 (1977); (c) E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).
*G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979); O. Gunnars-
son, B. I. Lundqvist, and J. W. Wilkins, Phys. Rev. B 10, 1319 (1974); S.
Nordholm, J. Chem. Phys. 86, 363 (1987); J. P. Perdew, M. Levy, and G.
S. Painter, “Chemical bond as a test of density-gradient expansions for

kinetic and exchange energies,” to appear.

3G. V. Gadiyak and Yu. E. Lozovik, J. Phys. B 13, 1531 (1980).

SR. Pathak, Ph.D. thesis, University of Poona, 1982.

J. A. Goldstein and G. R. Rieder, in Differential Equations in Banach
Spaces, edited by A. Favini and E. Obrecht (Springer, Berlin, 1986), p.
110.

8Ph. Bénilan and H. Brezis, “The Thomas—Fermi problem,” in prepara-
tion; H. Brezis, in Contemporary Developments in Continuum Mechanics
and Partial Differential Equations, edited by G. M. dela Penhaand L. A.
Medeiros (North-Holland, Amsterdam, 1978), p. 81; H. Brezis, in Vari-
ational Inequalities and Complementarity Problems: Theory and Applica-
tions, edited by R. W. Cottle, F. Giannessi, and J. L. Lions (Wiley, New
York, 1980), p. 53.

E. Fermi and E. Amaldi, Mem. Accad. Ital. 6, 119 (1934).

G, R. Rieder, Ph.D. thesis, Tulane University, 1986; and an article to
appear.

''Ph. Bénilan, H. Brezis, and M. G. Crandall, Ann. Scuola Norm. Sup. Pisa
2, 523 (1975).

12 Th, Galiouét and J.-M. Morel, Nonlin. Anal. TMA 7, 971 (1983).

J. A. Goldstein and G. Ruiz Rieder 716



Moment problem formulation of the simplified ideal magnetohydrodynamics

ballooning equation

Carlos R. Handy, Daniel Bessis,® and Robert M. Williams
Department of Physics, Atlanta University, Atlanta, Georgia 30314

(Received 16 September 1986; accepted for publication 4 November 1987)

A fundamentally new method for determining the eigenvalues of linear differential operators is
presented. The method involves the application of moment analysis and affords a fast and
precise numerical algorithm for eigenvalue computation, particularly in the intermediate and
strong coupling regimes. The most remarkable feature of this approach is that it provides
exponentially converging lower and upper bounds to the eigenvalues. The effectiveness of this
method is demonstrated by applying it to an important magnetohydrodynamics problem
recently studied by Paris, Auby, and Dagazian [J. Math. Phys. 27, 2188 (1986)]. Through the
very precise lower and upper bounds obtained, this approach gives full support to their

analysis.

. INTRODUCTION

In a recent work, Paris, Auby, and Dagazian' presented
a thorough analysis of the simplified ideal magnetohydro-
dynamics (MHD) ballooning equation given below, based
on the earlier work by Antonsen, Ferreira, and Ramos*:

d dy]
=~ la 2y 22
dx [( +X)a’x

(1.1)

2
—[/1+7/2(1+x2)— lixz]y=0«

We will analyze this A-eigenvalue equation through a funda-
mentally new approach utilizing a moments equation deriv-
able from Eq. (1.1), together with non-negativity properties
of the solutions to Eq. (1.1). In this manner we are able to
transform the above system into a true moment problem.>
Through the use of well-known theorems arising from the
traditional “moment problem,” it will be seen that a highly
effective, simple, and precise numerical algorithm for deter-
mining the A-eigenvalues can be realized. This type of analy-
sis has appeared elsewhere*’; however, the special nature of
the present MHD system requires some unprecedented re-
formulations quite different from those to be found in the
cited references.

There are three principal reasons for applying our mo-
ment formulaton to Eq. (1.1). First, since our method yields
very narrow lower and upper bounds to the eigenvalues, we
can unequivocably confirm the results of Paris, Auby, and
Dagazian. Second, this approach is simple and readily im-
plementable numerically. Third, few researchers are aware
of the generality of this technique. Its dissemination in the
context of a physically important problem motivates this

work in part.
For simplicity we limit our presentation to the genera-
tion of the two lowest A( = — A — ])-eigenvalues.

* On leave of absence from Service de Physique Theorique, CEN-Saclay,
France.
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Il. A SPECIAL TRANSFORMATION

Although Eq. (1.1) is nonsingular along the x axis, it
has regular singular points in the complex-x plane at
x = +1i. In addition, Eq. (1.1) is defined on the interval
(@a= — «,b= + x).Attheend points, the physical solu-
tion must exhibit “rapid” decrease to zero. In general, on the
basis of accumulated empirical data,*”’ the implementation
of a moments analysis appears to be numerically more effec-
tive in a representation space in which the number of non-
end-point singular points is reduced or completely eliminat-
ed. Thus, with respect to Eq. (1.1), consider the
transformation

z=x/(1+x*)'? (2.1)

or
x=z/(1-2%)"2 (2.2)

Note that the transformation is invertible and that end
points map onto end points. Using
a4 _ (1 _22_)3/21

dx dz’
one can transform the original MHD problem to

3 d’y 2 dy
(1-2%) i z(1—2%) e
- A0 =2+ -’ (1 -2%)*]p=0. (2.3)
Clearly, the new problem is defined on the interval
(a= — 1,b = + 1).Irregular singular points appear at the
end points @ = — 1 and b = 1 (while the singular points at
+ i have been mapped to + i ). As will be seen below,
because the physical solution decreases to zero “rapidly” at
the transformed end points, the new irregular singular points
atz = + 1 will not affect the exponential convergence of the
moments problem analysis.
A simple asymptotic analysis of Eq. (1.1) shows us that
the physical solutions must behave as
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exp( —y|x]), ¥>0,
y(x) |x|jw {|x| ~ 12 I7AF T y=0. (2.4)
Accordingly,
exp[ — ¥|z|/(1 —2)"?], ¥>0,
y@) lzl_:-l (1 — )4z WNTATZ y=0. (2.5)

Note that from the asymptotic relations, no positive solution
can exist for 4 < — 1.
J

m(p+4)={[ -2 4+2A+(p+3)Bp+10)Im(p +2)
+ A=V +2—(p+1DBp+5Im(p)+p(p—1m(p—2)}(p+5)2—p?1""

No end point contributions from y( 4 1), y'( + 1) appear
because y(z)’s end point behavior insures that expressions of
the form z°(1 — z*)9y(z) and 2°(1 — 22)%'(z) (¢>1) van-
ishatz = 4 1. Note that this holds for all 4* values, includ-
ingy =0

Ill. MAKING USE OF THE POSITIVITY PROPERTIES OF
THE SOLUTIONS TO THE SCHRODINGER EQUATION

In the work of Paris, Auby, and Dagazian,' it is shown
how Eq. (1.1) and Eq. (2.3) can be transformed into a
Schrédinger equation system given by

_d Wy
dc?
where

x =sinh (£), W(£) = (cosh'/2 £)y(x),

9(§) = ¥* cosh’ § — (u? — Psech’® ¢,
and A= —A — 1 It is known that for such systems, the
lowest A-eigenvalue corresponds to a positive (¥ > 0) solu-
tion.* Accordingly, one also has y,(z) = Sy(z) > 0. In addi-
tion, because of parity invariance, the next “excited” state
(or next higher A-eigenvalue) must correspond to a solution
with only one zero situated at the origin, y,(z) = zS,(2).
Because of parity invariance, it also follows S; (z) (i=0,1)
are symmetric in z. This latter observation leads to further

simplification of Eq. (2.7). Through a change of variables,
one has

(3.1)

+g(O)¥ =AY,

1
my(2p ) = J dz 7°S,(2), (3.2)
—1
1
=f dw w*Sy(w'’?) /w"?, ¢ =w.
0
= uy( p). (3.3)

Note that for the above, all the odd-order moments are zero.
For the first excited state we have
1

dz 2%+ '285,(2)

-1

m((2p+1)= (3.4)
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The moments of the physical solutions, m (p), must exist
and be finite.

1
m( p) =J. dz 2y(z). (2.6)
—1

A recursion relation for these moments follows from Eq.
(2.3). In particular, upon multiplying Eq. (2.3) by z* and
integrating by parts over the domain ( — 1,1), one finds for

all 7,

2.7
{
1
=J- dw ww''*S, (w''?)
(o]
=u,( p). (3.5)
Again, note that the even-order moments are zero for

m,(p).
In terms of the u,( p), { = 0,1, the moment recursion
relation for the “ground” and “first” excited states becomes

-2+ A
i 2 =[[ . .
“PED =4 2p+3+0)(6p+ 10430

+{—i—rz+ﬂ2
— 2+ 1+i)(6p+5+30)

]u,-(p+1)
]u,-(p)

+2p(2p — 1+ 2D)u,; (p — 1)]

(3.6)

u;(0) =1. 3.7
Equation (3.7) follows from the arbitrariness of normaliza-
tion and S, (z)’s positivity. Note that the #-moments are mo-
ments of positive function measures (So/w'/2,w'/%S,).

It will be noted that Eq. (3.6) defines a finite difference
equation. Once u,(1) and A are specified (for fixed u?y*
values), all the moments are determined. This is called a ““1-
missing moment problem.”* Thus for a 1-missing moment
problem, u;(1) is not known as a function of A. However,
unlike other systems we have examined*~’ for particular
choices of u?, Eq. (3.6) actually defines a 0-missing moment
problem (where only A needs to be determined).

Consider the u? values for which the denominator in Eq.
(3.6) can vanish. Letu = 2¢ + 5 + i, for some integer g and
a chosen value for i (O or 1). It is known that S; (w'/?) exists
and has finite nonzero moments. Thus we must have that the
numerator expression for u;(q+2) be zero. Hence if
Mn=2q+5+i then

O=[—2>+A+ (2 +3+i)(6g+ 10 +3)]u,(g+ 1)
+[—A -V +u’— Qg+ 1+i)(6g+5+30D)]
Xu;(q) +29(29 — 1+ 20)u; (g —1).

Only if the above is satisfied will we have
O<u,;(2qg + i) < ! Thus an additional constraint on the

X[(2p 45+ —u?17,
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moments is defined. For given A, u,(1) is fixed, and the
problem becomes a O-missing moment problem up to mo-
ment order #; (g + 1)!

As an example, let 4 = 5 (¢ = 0,i =0). Then

u(l) = (A + 9> —20)/(4 —20). (3.8)
A second application of the above philosophy leads to an
important result. From Eq. (3.8) we see that if a ground
state is to exist for A = 20, then the finiteness and positivity
ofu(1) require A + > — 20 = 0, or * = 0. This is the same
result quoted by Paris, Auby, and Dagazian.' It should be
noted that this is a special case of the general eigenvalue
sequence for y* =0,

A=@p—-—my(p—m-—1), (3.9)
where m is a non-negative integer (notice A> — } always).

The complete solution in the 3 = 0 case is known (i.e., Refs.
1 and 2) since, for ¥* = 0, the relevant equation can be re-
duced to a form of the hypergeometric equation.

V. RELEVANT THEOREMS

Handy and Bessis® have shown that use of the Hambur-
ger moment theorem,” specified below, leads to a rapid algo-
rithm for calculating eigenvalues. Because the system in
question, Eq. (2.3), is defined on a finite interval, the results
in Ref. 4 need to be appropriately generalized.

We state the Hamburger moment theorem?: The neces-
sary and the sufficient conditions for a given set of moments
u( p), p>0, to be the moments of a non-negative function
measure, f(x), defined on ( — w0, + ), are

J
u(0) u(l) u(n)
D,[u( p)] =Det u(.l) u(2) u(n+1) >0, forall n>0. (4.1)
u(n) u(n+1) u(2n)

The above are called Hankel-Hadamard determinants.

If a function f (w) is defined on a finite interval [a,b], then the necessary and sufficient conditions for it to be non-negative

on [a,b] are obtainable as follows. Let f. (w) be defined so that

fo(w) =

fw), if wela,b].

The necessary and sufficient conditions for £, (w) to be non-
negative on ( — o, ), and zero on the complement of
[a,b], are that the functions f.(w), (w— a)f. (w), and
(b —w)fi (w) all be non-negative for we( — o, + o).
This is immediately clear. Thus we can say that the neces-
sary and sufficient conditions for f(w) to be non-negative on
[a,b] are

b
(u( p) = f dw w"f(w)),

D, [u(p)]>0, D,[u(p+1)—au(p)]>0,
and (4.3)
D, [bu(p) —u(p+1)]1>0, foralln>0.

V. DESCRIPTION OF THE ALGORITHM

All the basic components of the general moments ap-
proach have been defined. Thus, for either the ground or first
excited state (i = 0,1, respectively), one chooses fixed values
for 4* and #*. From moment recursion relations in Eq. (3.6)
one can readily generate the first P moments, u(p)
(1<p<P). They will be polynomial functions of A and
u; (1) = u. Accordingly, the Hankel-Hadamard determi-
nants in Eq. (4.3) will also become polynomials in 4 and u.
Note that from the w-integrations in Eq. (3.2) and Eq.
(3.4), the appropriate choices for the @ and b parameters are
a =0and b = 1. Thus we have
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arbitrary, for wef[a, b ], so long asj dx x°f, (x) exists,

(4.2)
[
(n+1—8p,)
D,[u;(p))= 3 CHRD, (5.1)
k=0
n+1
D,[u;(p+1)]= i‘, C{ Ak, (5.2)
k=0

n+1
D,[u(p) —u(p+D]= Y CRM  (53)
k=0

The specific numerical algorithm proceeds as follows.
An arbitrary A interval is specified [a,8]. A sufficiently nar-
row partitioning is defined. At each A point the polynomial
determinants defined above are determined. That is, the C
coefficients are numerically determined. The location of the
real u roots are determined. In this manner one can assess if
any u-space subregions exist satisfying the Hankel-Hada-
mard inequalities of Eq. (4.3) (only those determinants in-
volving moments of order at most P are considered). If such
u-space subregions exist, then the associated A-partition
point is a possible physical value. If no u-space subregions
exist, then for that specific A-partition value one can say that
it is not a possible physical value. In this manner both lower
and upper bounds to 4, ;... are determined. The results are
given in the various tables.

VI. CONCLUSION

We have presented a simple and numerically effective
technique for eigenvalue determination of linear differential
systems. Our results confirm the analysis of Paris, Auby, and
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TABLE I. Bounds for the ground state eigenvalue.

TABLE IIL Bounds for the first excited state eigenvalue.

Max. order Max. order
of moments Lower A Upper 4 of moments Lower A Upper A
u? ¥ used, P bound bound uw v used, P bound bound
0 50 3 - 58.2 —56.9 0 50 3 — 750 —71.1
4 - 57.90 —57.27 7 — 72,90 —72.84
5 — 57.84 —57.71 9 — 72.858 — 72.854
6 —37.831 = 37792 0 s 12 — 1321 —13.18
! — 57.805 — 37797 17 —13.2043 — 132027
8 —57.800 3 — 57.797 8 ) :
9 —57.8000 —57.798 1 0 1 15 — 5.46 —532
o s 9 —7.942 ~7.923 - PN o
12 — 79295 — 79264 ’ ’
15 —17.9293 —7.9285 0 0.5 15 —4.2 —33
18 —7.929 18 —7.92902 24 —3.92 —3.88
0 1 12 —2.73 —2.65 1 50 3 — 740 — 700
18 — 2.660 —2.652 7 —72.06 —72.01
24 — 2.654 48 —2.65385 9 —72.017 — 72013
28 — 265436 —2.65398 1 5 13 12,542 12,530
0 0.5 12 —20 —-17 17 — 125414 — 125400
18 — 1.87 ~ 183 1 1 10 ~55 -4
24 — 1.848 — 1.839 18 —4.86 482
22 —4.836 — 4.827
1 0.5 15 —38 - 34
24 —346 — 343

Dagazian' for those specific 4%, ¥* values quoted in the ta-
bles. These suggest that the overall analysis of Paris, Auby,
and Dagazian is reliable. Our approach yields unequivocal
narrow bounds for A ... As noted elsewhere,*” a mo-
ments analysis is specially designed to handle intermediate
and strong coupling problems, This is readily apparent from
Tables I-1IL. The larger 7 is, the faster is the rate of conver-
gence of our bounds. Also note that in our method, which
parameters are fixed and which varied is inconsequential.
We have adopted the point of view of Paris, Auby, and Daga-
zian in treating A as the undetermined parameter. We could
have just as easily switched things around and kept 4 fixed,
while varying 2. .

TABLE II. Bounds for the ground state eigenvalue.

Max. order
of moments Lower 4 Upper 4
“w ¥ used, P bound bound
1 50 3 —-57.3 — 559
7 — 56.87 — 56.85
9 —56.859 2 —56.856 8
1 5 10 —7.08 —7.06
15 — 7.070 — 7.068
18 — 7.069 4 — 7.069 2
i 1 10 —2.1 — 1.8
12 — 1.94 — 1.87
i5 — 1.893 — 1.875
20 — 1.880 — 1.876
24 —1.8778 —1.8775
1 0.5 5 —24 6.2
10 — 1.4 —0.6
15 —1.16 — 1.09
20 — 1.116 — 1102
24 — L107 — L104
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During the space of time since the original communica-
tion of this work, important developments have transpired
which further the implementation of the Hankel-Hadamard
moments approach. In particular, it is possible to develop an
equivalent linear formulation of the nonlinear Hankel-Ha-
damard theory.®® This linearization allows us to use linear
programming methods to solve missing moment problems of
any order. Such methods can be used in the present case.
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ERRATUM

Erratum: The diffraction of waves by a penetrable ribbon [J. Math. Phys.

4, 65 (1963)]
C. YehandC. 8. Kim

Electrical Engineering Department, University of California at Los Angeles, California 90024

(Received 9 December 1987; accepted for publication 16 December 1987)

The problem of the scattering of electromagnetic waves
by an elliptical dielectric cylinder was formulated and solved
in the original paper. Numerical examples were also present-
ed there. Recently, we discovered a typographical error in

FIG. 2. Polar diagrams for waves (|H; |) scattered by a dielectric ribbon
with k3¢* = 10. The incident electric vector is polarized in the axial direc-
tion. (Arrows indicate the direction of incident waves.)
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FIG. 4. Polar diagrams for waves (|E|) scattered by a dielectric ribbon
with k 247 == 10. The incident magnetic vector is polarized in the axial direc-
tion. (Arrows indicate the direction of incident waves.)

the computer program affecting the presented numerical re-
sults. The purpose of this erratum is to provide the corrected
numerical results. They are shown in Figs. 2-5 and in
Table 1.
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FIG. 3. Polar diagrams for waves ({H; |} scattered by a dielectric ribbon
with k2¢% = 1.0. The incident electric vector is polarized in the axial direc-
tion. (Arrows indicate the direction of incident waves.)
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FIG. 5. Polar diagrams for waves (|E,|) scattered by a dielectric ribbon
with k347 = 1.0. The incident magnetic vector is polarized in the axial di-
rection. (Arrows indicate the direction of incident waves.)
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TABLE I The rate of convergence for &, = 0.2, k,g = (10)'/?, and 8 = 90".

AZn A2n+|
n m=2 m=3 m=4 m=2 m=3 m=4
0 —0.151 —0.167 —0.166 —0.254 —0.261 —0.261
+ 0.328i +0.333i +0.333i + 0.318i + 0.326i + 0.326
1 +0.137x107! +0.678x 107! +0.675x107! +0.400x 10~ +0.408x 10! +0.408 % 10~!
+0.212i + 0.126/ +0.127§ —0.142%10" Y —0.205%107Y —0.205x10" '
2 —0.107x 1072 —0.105x 1072 —0.307x1073 —0.307x 1073
—0.109%107 Y —0.111 %107 —0.261x1073% —0.265X 1073
3 +0.330x103 +0.443x10™°
+0271% 1074 +0.791x 1077
B2n+2 BZn+l
n m=2 m=3 m=4 m=2 m=3 m=4
0 —0.405x1073 —0.405x 1073 —0.405x1073 —0.375%10"2 —0.375x1072 —0.375x 1072
+0.192x107 % +0.192x 107 +0.192x107" +0.593x107 Y 405941074 +0.594 107"
1 +0.152x107¢ +0.153x107¢ +0.153x10~* +0.373%1073 +0.375%1073 +0.375x 1073
—0.440X 1073 —0.469x1073; —0.469% 1073 —0.216Xx 1072 —0.255x107% —0.255%107%
2 —0421x1077 —0421x1077 —0.365x10° —0.365% 1073
—0.172X107% —0.175X107% —0.427%x107% —0.438x 1074
3 +0.266x10~'° +0.534x 107
—0.105x 1078 —0.571x1077%
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