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N atural ~eneralizations. of the quatemion algebra called quatemionlike algebras (ql algebras) 
are c~nsl~ered. The nO~lOn of a Lie algebra induced by a ql algebra is introduced and a 
c1asstfica~lOn of such LIe algebras is presented. It is shown that local Lie groups defined by Lie 
algebras lOduced b~ ql algebras exhaust, with accuracy to local isomorphisms, all local Lie 
groups endowed wIth some simple composition laws of their local parameters. 

I. INTRODUCTION 

It is well known l that the group SO(3;R) [SO(2,I;R)] 
is locally isomorphic to the local Lie group2.3 (R 3,rp), where 
rp is a mapping of some sufficiently small open neighborhood 
UCR 3 x R 3 of the point 0eR 3 X R 3 intoR 3 defined as fol-
lows: 

, x;+i+~jkX.y 
rp: U3 (x,y) -+zER 3, z' = J k, (1.1) 

1 +glmxym 

i,j, ... = 1,2,3; x = (X I,X2,X3), Y = (yi,y2,y), z 
= (Zl; ~)ER 3, ~jk is the totally antisymmetric Levi-Ci­

vita . symbol in three dimensions; the matrix (g;j) 

: = d~ag( - 1, - 1, - 1) [for SO(2, l;R), (gjj) 
: = dlag ( 1,1, - 1)] enables one to lower the indices 
i,j, ... according to the rule x;: =gjjxi, y;: =gijyj

; the sum­
mational convention applies. 

The composition law (1.1) is very attractive because of 
its simplicity. Therefore the natural question arises whether 
the formula (1.1) is "rigid," or whether, by changing ~jk 
and gij into more general real or complex objects, assuming 
also that x, y, z are elements of R n or en , respectively, with a 
suitable n, one can find the composition laws for some other 
local Lie groups. In the present paper we answer this ques­
tion. 

In Sec. II we consider the associative algebras which 
generalize the quatemion algebra in a natural manner and 
due to this fact we call them quatemionlike algebras, or, 
briefly, ql algebras. In particular they contain the quatemion 
algebra and the generalized quatemion algebra.4 ,5 

If Q is an (n + 1 )-dimensional ql algebra (n;;;' 1) over F 
( = R or C), then, as we shall see in Sec. II, there exists a 
unique decomposition Q = Feo EB V, where eo is the unity of 
Q and V is an n-dimensional vector subspace of Q such that 
for each vector VE V, vveFeo. Then, for any V,WE V their com­
mutator [v,w]: = vw - wv belongs to V. Thus the pair 
( V[ . , . ]) is an n-dimensional Lie algebra over F which we 
call a Lie algebra induced by Q and denote by QL . It appears 
that the local Lie group defined by QL is locally isomorphic 
to some local Lie group with composition law being the 
modification of the formula (1.1) as it has been described 
above. To establish this isomorphism we define some n-di­
mensional Lie group H Q which is a suitable subset of Q and 

aJ On leave of absence from the University of Warsaw, Warsaw, Poland. 

~e show that the Lie algebra of HQ can be identified with 
QL' We find a local coordinate system in a neighborhood of 
the identity of H Q such that the composition law expressed 
in terms of this local coordinate system is just the appropri­
ate modification of ( 1.1 ). In this way one finds a mapping 
from the class of all nonisomorphic ql algebras onto the class 
of all locally nonisomorphic local Lie groups the composi­
tion laws of which are some definite modifications of the law 
( 1.1 ) . We will prove also that for ql algebras of dimension 
n + 1 > 2 this mapping is 1: 1. The local coordinate system 
we have just spoken about enables us to write down in a 
concise form the Baker-Campbell-Hausdorff series 1.2.5.6 for 
the elements of any QL algebra. Our formula is an obvious 
generalization of the analogous formulas given for the Lie 
algebras SO(3;R) and SO(2,1;R).1.6.7 Moreover, it can be 
found that if Q is the quatemion algebra, then the group H Q 

appears to be the group of alI quatemions of norm 1 and one 
has the well-known isomorphismHQ =SU(2). 

In Sec. III the classification of Lie algebras induced by 
ql algebras is given. Thus, of course, the classification of 
local Lie groups endowed with the composition laws being 
simple modifications of (1.1) is also given. We study real 
and complex algebras separately. Employing the results of 
Bianchi,S Behr et al.,9 Ellis and MacCallum,t° MacCal­
lum,II,12 Mubarakzyanov,13 Morozov,14 and Patera et 
al. 15,16 we list all real Lie algebras of dimension 2<n<6 in­
duced by real ql algebras. 

Concluding remarks close our paper. 

11_ QUATERNIONLIKE ALGEBRAS, INDUCED LIE 
ALGEBRAS, AND LOCAL LIE GROUPS 

Let Q be an (n + 1 )-dimensional (n> 1) algebra with 
unity eo over F ( = R or C) for which there exists a decom­
position 

Q=FeoEB V, (2.1 ) 

where V is an n-dimensional vector subspace of Q such that 
for each vector VE V, vveFeo. 

We have the following. 
Proposition 2. I: The decomposition (2.1) is unique. 
Proof: Let Q = Feo EB VI' We will show that VI = V. In-

deed, if VI is any nonzero vector in VI' then, by (2.1), 
VI = aeo + V with aeF and 0;:;1: VE V. From the assumption we 
have vlvleFeo and vveFeo. Hence it follows that av = 0, and 
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in consequence, as v¥O, a = O. It means that VIEV. If VI = 0, 
then, of course, VIE V. Thus one finds that VI C V. Analo­
gously we prove the inclusion VC VI' Finally VI = V. • 

Let el, ... ,en be a basis of V. Then 

eiej = !Kijeo + !Ckijek , (2.2) 

where small Latin indices i,j, k (as well as I, m,p, ... in our 
further considerations) are assumed to run through 1, ... ,n 
and Kij , Ck ijEF; the summational convention applies. [The 
factors! and ~ in (2.2) are taken for further convenience. ] 

We intend to establish that 

C k
ij = - C\ . (2.3) 

We first prove the following. 
Proposition 2.2: If the vectors V,WEV, then vw + wvEFeo' 
Proof: By the definition of Vone infers that 

(v + w)(v + w) = vv + ww + vw + wvEFeo , 

vvEFeo and wwEFeo' Hence, our assertion holds. • 
Utilizing Proposition 2.2 one can easily verify (2.3). In­

deed, from Eq. (2.2) and Proposition 2.2 we get 

eiej +ejei =!(Kij +Kji)eO+!(C\ +Ckji)ekEFeO' 

Thus Ck ij + C~i = 0 and (2.3) holds. 
Now the question arises under what assumptions the 

algebra Q appears to be associative. We give an answer to this 
question by establishing three theorems which are funda­
mental for our further purposes. 

Theorem 2.1: Here Q is an associative algebra iff 

Cjmcmki = Kjkt'/i - Kij/jlk , 

Ki/Cjk = KlkClij . 

Proof: Clearly Q is an associative algebra iff 

(2.4) 

(2.5) 

(eiej )ek = ei (ejek) (2.6) 

for arbitrary i,j,k = 1, ... ,n. Employing Eqs. (2.2) and (2.3) 
one can easily find that the requirement (2.6) is fulfilled iff 
the equations 

- Climcmkj - Clkmcmji = Kij/jlk - Kjk/jli (2.7) 

and (2.5) hold. Executing the antisymmetrization [ijk] in 
(2.7) one obtains the Jacobi identity 

cm[ijClkJm = O. (2.8) 

Using (2.3) and (2.8) to the left-hand side of (2.7) we get 
(2.4). This completes the proof. • 

If n = 1 then Eqs. (2.4) and (2.5) are satisfied for every 
K 11 (we have of course C \ I = 0). Hence for n = 1 the alge­
bra Q is associative for an arbitrary K Il . Ifn > 1, then Kij is 
defined in terms of C jk' In fact we have the following. 

Theorem 2.2: If n > 1, then Eq. (2.4) necessitates the 
following formula: 

Kij = Kji = [lI(n - 1) ]Cmi/Cjm . (2.9) 

Proof: It is a straightforward matter to show that Eq. 
(2.4) yields (2.8) and then, by (2.3), also (2.7). Contract­
ing (2.7) with respect to the indices 1 and k, and then with 
respect to 1 and i one gets 

- c1imcmlj - Cllmcmji = nKij - Kji , 

- Cllmcmkj - Clkmcmjl = K kj - nKjk . 
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(2.10) 

(2.11 ) 

Changing the index k -+ i in formula (2.11) and adding the 
result to (2.10), employing also (2.3), we obtain (n + 1) 
X (Kij - Kji ) = O. Thus 

Kij =Kji . (2.12) 

Contracting Eq. (2.4) with respect to the indices 1 and k, 
utilizing (2.12) and (2.3), one gets (2.9). • 

Our analysis of the conditions under which Q is an asso­
ciative algebra is closed by the following theorem. 

Theorem 2.3: For n¥3, Eqs. (2.4) and (2.5) yield the 
following formula: 

Ki/Cjk = O. (2.13) 

Proof: For n = 1, Eq. (2.13) holds. If n ¥ 1, then con­
tracting (2.4) with cj Ip' using also (2.3), (2.5), and (2.9), 
we have (n - 3) Kpm cm ki = O. Thus the theorem holds .• 

The most distinguished example of our algebras is the 
quaternion algebra which is realized when n = 3 and C\j 
= 2€kij (~Kij = - 4/ji j ). Then taking n = 3 and C\ 
= 2ak €kij (~Kij = - 4ai/j~; of course, there is no summa­

tion over i or k) with a3 = lone constructs the so-called 
generalized quaternion algebra (see van der Waerden,4 §93, 
Jacobson,5 Sec. X, §7). The cited examples make it reason­
able to call our algebras quaternionlike algebras. Thus we 
arrive at the definition. 

Definition 2.1: A quaternionlike algebra (ql algebra) is 
an associative algebra Q with unity admitting the decompo­
sition (2.1). 

If Q is an (n + I) -dimensional ql algebra over F and 
Q = Feo ff7 V is the decomposition (2.1), then the pair 
(V,[',]), where 

[.,.]: V X V3 (v,w)f--*[v,w]: = vw - WVEV, 

is an n-dimensional Lie algebra over F which we call a Lie 
algebra induced by Q and we denote it by QL . From (2.2) it 
!"?llows that the numbers Ck 

ij are the structure constants of 
QL with respect to the basis el, ... ,en. Then from (2.9) one 
finds that the numbers (n - 1) Kij constitute the compo­
nents of the Killing tensor of QL (Refs. 2 and 5) with respect 
to the basis el, ... ,en. 

Letq = qOeo + qi ei be an element of an (n + I)-dimen­
sional ql algebra Q. Then, the vector q: = qOeo - qi eiEQ is 
said to be a conjugate vector to the vector q. Define the fol­
lowing subset of Q: 

HQ: = {qEQ: qq = leo}. (2.14) 

Employing the formulas (2.4) and (2.5) one can easily 
check that the set H Q together with the multiplication inher­
ited from Q constitute a group. Moreover, as Q possesses a 
differentiable structure of F n + I , then H Q is an n-dimen­
sional submanifold of Q. Finally, HQ is an n-dimensional 
(real or complex) Lie group. [Notice that if Q is the quater­
nion algebra, then we have a well-known isomorphism 
HQ =SU(2).] Let now WCHQ be an open neighborhood of 
eo in HQ such that the pair (W,tP) is an allowable chart of 
H Q' where tP: W -+ F n is a mapping which sends q = qOeo 
+ qieiEW into (ql/qO, ... ,qn/qo)EF n

• Let PEW, qEW, and 
p,qEW. Then, denoting Xi: = i/po, /: = qi/qO, :t: = (pq)i / 
(pq)o, using (2.2), one finds 
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. . Xi + / + !C~kXjyk 
1T'Q (X,y): = z' = I 

1 +lKlmxym 
(2.15) 

where x stands for (xl, ... ,xn )Et{!( W) CF" and analogously 
y stands for (yl, ... ,y" )Et{!( W) C F n . Henceforth we call the 
coordinates Xi, /, Zi, etc., the projective coordinates. Thus 
one arrives at the following. 

Theorem 2.4: Let Q be an (n + 1 )-dimensional ql alge­
bra over F and let H Q be an n-dimensional Lie group defined 
by the formula (2.14). Let UCFn XF" be an open neigh­
borhood of the point OEF n X F n such that for every 
(x,y)eU, 

(2.16) 

whereKij is defined according to (2.2); moreover, (O,y) and 
(x,O) are elements of U for all x,yeFn. Then the pair 
(F" ,rrQ) is a local Lie group locally isomorphic to H Q, 
where rr Q: U ..... F n is a mapping defined as in (2.15). • 

From (2.15) we find immediately 

(
J

2
tf(X,y») _ (J

2
tf(x,y») = C i . • (2.17) 

a jJk X=O akJj >;=0 Jk 
X Y y=O X Y y=O 

Therefore, the numbers C ~k are the structure constants of 
the Lie algebra of HQ [and, of course, of (Fn,rrQ )] with 
respect to a suitable chart (W,t{!) [(t{!( W),id), respective­
ly].3 Thus we can identify these Lie algebras with the Lie 
algebra QL' The formula (2.15) resembles closely (1.1). In 
fact (2.15) is a "natural" modification of (1.1), that we have 
spoken about in the Introduction. But, for completeness, one 
should solve the following problem: Let K ij , C~k = - C i

kj 
be some numbers in Fand let UCF n XFn bean open neigh­
borhood of the point OEFnxF n defined analogously as in 
Theorem 2.4. Finally, let rr: U __ Fn be a mapping defined as 
in (2.15). The question is what the conditions are for the pair 
(F" ,rr) to be a local Lie group. 

The answer is the following. 
Theorem 2.S: (Fn ,rr) is a local Lie group iffEqs. (2.4) 

and (2.5) hold. 
Proof: First, rr(x,O) =O=rr(O,x) for every xEFn; 

moreover, if ( - x,x)eU, then rr( - x,x) = O. The map­
pings rr: U ..... F and F n 3~ - xEF n are analytic. Therefore 
it remains only to prove that if (x,y)eU, (y,z)eU, (rr(x,y),z) 
eU, and (x,rr(y,z) lEU, then 

rr(rr(x,y),z) = rr(x,rr(y,z»). (2.18) 

Simple manipulations show that (2.18) is satisfied iff Eqs. 
(2.4) and (2.5) hold. Thus the proof is complete. • 

From Theorem 2.5 and our previous considerations it 
follows that there exists a 1: 1 correspondence between the 
class of all nonisomorphic ql algebras of dimension > 2 and 
the class of all locally nonisomorphic local Lie groups of 
dimension > 1 endowed with the composition laws of the 
form (2.15), where Kim andC~k = - C i

kj are the elements 
of F. Every Lie algebra induced by a ql algebra can be identi­
fied with the Lie algebra of the corresponding local Lie 
group. One easily finds that in the case of the quaternion 
algebra [QL =so(3;R)] theformula (2.15) turns into (1.1) 
with (gij) = diag( - I, - 1, - 1); in the case of the gener­
alized quaternion algebra such that C 1 ij = - 2Elij

, 

C 2
ij = - 2~ij, C 3

ij = 2E3ij [QL =so(2,I;R)] the formula 
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( 2.15) yields (1.1) with (gij) = diag (1,1, - 1). The latter 
results in a slightly different formalism than was found by 
Plebanskp·7 many years ago. It is now evident that the com­
position law (2.15) appears to be a natural generalization of 
(1.1). 

We close the present section with some considerations 
on the Baker-Campbell-Hausdorffformuia for the elements 
of the Lie algebras induced by the ql algebras. 

Let Q be an (n + 1) -dimensional ql algebra over F and 
QL the Lie algebra induced by Q. Ifv = Vi eieQL' then using 
(2.2) one gets 

eV = (cosh a)eo + [(sinh a)1 a]vieiEHQ ' (2.19) 

where a: = ~(vlv), (vlv): = -lKijviv j
• If v belongs to a 

sufficiently small open neighborhood of the vector OeQL' 
then Vi are the canonical coordinates of the first kind (see 
Ref. 2, Sec. III, Chap. 4) of the point eVEHQ • From (2.19) 
and the notion of the projective coordinates one easily finds 
the relation between the canonical coordinates Vi and the 
corresponding projective coordinates Xi, 

. sinha . tanh a . 
x'= v'=---v'. 

a cosh a a 
(2.20) 

This is the "tangential" parametrization l ,6,7 generalized on 
an arbitrary H Q • 

Let V,WEQL' Then 

(2.21) 

where V#w is the Baker-Campbell-Hausdorff series. 1.2,5-7 

To express V#w in a concise form we proceed as follows. If v 
and ware elements of a sufficiently small open neighborhood 
of the vector OeQL' then we have the projective coordinates 

i tanh ~(vlv) i i tanh ~(wlw) i 
x = v, y = w, 
~ (wlw) 

Zi = tanh ~ (V#wlv#w) (V#W)i 
(v#wlV#w) 

for eV, eW
, and ev#w, respectively. Define 

Utilizing (2.15), (2.22), and (2.23) one gets 

V#w = arctanh v'(ZIZ) z, 
~(zlz) 

x + y + xl\y tanh ~(vlv) 
Z= , x= v, 

1 - (xly) ~(vlv) 

tanh~(wlw) 
y= w, 

~(wlw) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

where (xly): = -lKijxyj, xl\y: = !C~kxjykei' Then in­
serting (2.25) into (2.24) and understanding that the right­
hand side of (2.24) is a "formal sum" of the Baker-Camp­
bell-Hausdorff series we find the Baker-Campbell­
Hausdorff formula in a concise form for arbitrary V,WEQL . 
This result is an obvious generalization of the one given for 
the Lie algebras so(3;R) and so(2,1;R) (see Refs. 1,6, and 
7). 
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III. CLASSIFICATION OF LIE ALGEBRAS INDUCED BY 
QUATERNIONLIKE ALGEBRAS 

In this section we present the classification of Lie alge­
bras induced by ql algebras. Thus, at one stroke, we get also 
the classification of the local Lie groups endowed with the 
composition laws of the form (2.15). From Theorem 2.3 it 
follows that the case of n = 3 is rather a particular one and it 
should be examined separately. First we consider real Lie 
algebras and then complex Lie algebras. 

A. Real Lie algebras 

1.n=3 

All nonisomorphic three-dimensional real Lie algebras 
were found by Bianchi.8 Then Bianchi's classification has 
been reformulated by Behr et al.9 and Ellis and MacCal­
lum. lo We follow them (see also MacCallumll

•
l2 and Spin­

del17
). 

The structure constants of a three-dimensional Lie alge­
bra can be written as follows: 

j iI £Ii 3 1 C jk = M Eljk + N,ujk , ( . ) 

where Mil = M Ii
, Eljk is the totally antisymmetric Levi-Ci­

vita symbol, and 
£Ii • £1 £j £1 £j ujk,=UjUk -UkUj' 

Then the Jacobi identity (2.8) is equivalent to the relation 

M"J~ = O. (3.2) 

From (2.9) and (3.1), utilizing also (3.2), one gets 

(3.3 ) 

Inserting (3.1) and (3.3) into (2.5), employing (3.2), we 
conclude that Eq. (2.5) is satisfied iff 

Ejjk detCM'm) = Ekij detCM'm) . (3.4) 

As (3.4) holds true, the condition (2.5) is fulfilled automati­
cally without any further assumptions. 

Consider now the consequences of (2.4). From (3.1) 
and (3.2) we find 

C~mcmkj = _MmlMprEjmpEkjr + 2Mlm~Emkj 
+~(NkOlj -Nj01

k ). (3.5) 

Substituting (3.3) and (3.5) into (2.4) we arrive at the con­
clusion that Eq. (2.4) is satisfied iff 

jk jk M ~ =O¢}M =0 or ~ =0. (3.6) 

Gathering the present results we can see that a three-dimen­
sional real or complex Lie algebra is induced by a ql algebra 
iff ~k = 0 or Nj = O. 

For each three-dimensional (real or complex) Lie alge­
bra there exists a basis e l , e2 , e3 such that 

Mjj = diag(MI,M 2,M 3 ), N j = (O,O,N) . (3.7) 

Then from (3.2) and (3.7) we have 

M 3N=0. 

The commutators of the basic vectors are 

[e l ,e2J = M3e3' [e2,e3J = M lei - Ne2, 

[e3,ed = Ne l + M 2e2· 
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(3.8) 

(3.9) 

Equations (3.3) and (3.7) yield 

K.. = _MIM203 03 _M3M lo2.02 _M2M30 1 0 1 
lJ I } I } I J 

+N203j03j. (3.10) 

Assume first that M I = M 2 = M 3 = 0, N =1= 0 [compare 
with (3.6) J. In the real case these conditions define a three­
dimensional real Lie algebra of class B and type V (the Bian­
chi-Behr classification). Rescaling, if necessary, the basic 
vectors ej one can make N = 1. 

Let now N = O. In the real case this condition character­
izes all three-dimensional real Lie algebras of class A. Then 
rescaling, if necessary, the basic vectors ej we can make all 
nonzero ~ either 1 or - 1. Thus one arrives at the follow­
ing nonisomorphic three-dimensional real Lie algebras with 
N = 0 (we apply the Bianchi-Behr classification) : 

MI =M2 =M3 =0++1, 

MI=I, M 2 =M 3 =O++II, 

MI =M2 = 1, M3 = O++VIIo , 

MI=l, M2= -1, M 3 =O++Vlo , 

MI =M2=M 3 = l~IX, 

MI =M2 = 1, M3 = -l~VIII. 

(3.11 ) 

Concluding, type V and all the types in (3.11) exhaust all 
three-dimensional real Lie algebras induced by real ql alge­
bras (see also Table I). One finds immediately that the Lie 
algebras so(3;R) and so(2,1;R) are of types IX and VIII, 
respectively. 

2.n;i3 

For n = 1 we have C III = 0 and our one-dimensional 
real Abelian Lie algebra appears to be induced by a two­
dimensional real ql algebra. Evidently the latter assertion 
holds true for the complex case, too. 

Let n > 1 and n =1= 3. Contracting Eq. (2.4) with Kpi and 
utilizing (2.13) one gets 

Kj[jKpJk =0, (3.12) 

where [j p] stands for the antisymmetrization with respect 
to the indices j, p. 

From (3.12) it follows that Kij is ofthe form 

(3.13 ) 

Consider first the case ofthe rank (Kjj ) = 1. Then, we can 
always choose the basic vectors e j so that 

K jj = EOnjOnj> C = 1 . (3.14) 

The condition (2.13) with the use of (3.14) gives 

cnjj =0. (3.15) 

The condition (2.4) amounts presently to 

cajO'CO'kj = EOnjO~f (3.16) 

(from now on lowercase Greek indices a, p, u, ... are as­
sumed to run through 1, ... ,n - 1). Equation (3.16) forj = p 
gives 

(3.17) 

Insertingj = n, k = n, i = p, and thenj = n, k =p, i = r 
into (3.16) we obtain 
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TABLE 1. Real Lie algebras of dimension 2<n<6 induced by ql algebras. The terminology of Patera et al. 15.I • bas been used. In the parentheses ( ... ) the 
Bianchi-Bebe type is given. 

Dimension 

n 2 

n 3 

n 4 

n 5 

n 6 

Name 

A2,1 

A l •1 (II) 
A 1.3 (V) 
A 1.' (VIo) 
A 1 •• (VIIo) 
A 1.8 (VIII) 

AI,I 
O,S 

A 1,-1 
4,5 

As,1 

As,. 
A 1,1,1 

5,7 

A 1,1,-1 
S,7 

A 1,-1,-1 
5,7 

A ± 1,0.0 
5.11 

A.,l 

A.,. 

Nonzero commutation relations 

[e2.ell = el 
[el.e.] = el• [el.e21 = e2 

[el.e.] = el • [e, .e21 = - e2 

[el.e.] = e2• [el.e21 = - el 
[e •• e21 = - el • [e2.el l = e .. 
[el.e.] = e2 

[el.e21 = el • 

[el.etl = e2 

[e •• ed =e .. 
[e".ell = el 

[e •• e.] = el, 
[e.,el ] = - el 

[el.eS ) = el• 
[e2.e.] = el, 
[es.ell = e .. 
[es,ell = el • 

[es,e.] = e .. 
[es.ell = el• 
[es.ell = el• 
[es,e,l = - el • 

[es.ell =el • 

[es.e,) = - el, 

[el.e21 = e., 
[ez,e,l = es 
[e1.e21 = es• 
[ez.e.l = e6 
[e •• el ] = es• 
lez.ell = ae6• 
(a¥O) 
[e •• e.] = e .. 
[e •• el ] = el • 

[e •• e.] = eo. 
[e •• e.] = e .. 
I e&e31 = el • 

[e&e.l = e., 
[e&e.] = el• 
[e.,e,l = el • 

[e.,e.] = - e., 

[e •• e2] = e2• 

[e.,e21 = e2, 

[e.,esl = e2 

[e,.esl = el 
[es.e2 ) = e2• 

[es,e.) = e. 
[es.e2 l = e2 
[es.e.l = - e. 
[eS.e2] = e2' 
[es.e.] = - e. 
[eS .e2] =e. 
[es.e.] = - e2 

[e"e,l = e •• 

[el.el ] = e •• 

[e •• e.] = e6• 
[e2.e.] = es 

[e6.e21 = e2' 

[e •• esl = es 
[e6.e21 = e2' 

[e.,esl = - es 
[e6.e2] = e2• 

[e •• esl = - es 

Comments 

solvable 

nilpotent 
solvable 
solvable 
solvable 
simple 
so(2.1;R) 
=sI(2;R) 
simple 
so(3;R) 
""su(2) 

solvable 

solvable 

nilpotent 
nilpotent 
solvable 

solvable 

solvable 

solvable 

nilpotent 

nilpotent 

nilpotent 

solvable 

solvable 

solvable 

ca"C"p = E{jap , 

where ca,,: = canu and 

(3.18 ) well-known result in the linear algebra (see Ref. 4, Sec. 12, 
§88) that by some linear transformation the matrix (C a 13 ) 

can be brought to the following form: 

Ca"C"Pr = O. (3.19) 

Contracting (3.19) with CPa and employing (3.18) one 
finds 

CPpr = 0 (3.20) 

[Notice that Eq. (3.17) is a consequence of (3.20).] Thus 
the only nonzero structure constants are of the form C a n/3' 

Assume first 

E 1. (3.21) 

Hence the eigenvalues of the matrix (C a 13) are ± 1. It is a 
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(

AI 
(cap) = 0 0), 

A, 
(3.22) 

where the matrices AI' ... ,Ar are of the form 

o 0 0 a l 

1 0 0 a2 

A" = 0 1 0 a3 (3.23) 

o 0 
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where if = 1, ... ,r'!l + '" + fr = n - 1. From (3.18) with 
(3.21) one infers that the matrices A" are of the forms 

A" = (~ ~) or A" = I or A" = - 1. (3.24) 

It is easy to check that a suitable linear transformation brings 
the leftmost matrix in (3.24) to the diagonal form (~ ~ 1 ). 
Gathering the above results, we can see that if, in Eq. (3.14), 
£ = 1, then there exists a basis ei such that 

C"o = 0 = Cap'Y' Ca"p = £p8a
p, £p = ± 1, (3.25) 

and also (3.14) with £ = 1 holds true. (For three-dimen­
sional real Lie algebras this is the case of the Bianchi-Behr 
type V, £1 = 1 = £2' or of the type VIo, £1 = 1 = - £2') 

Assume now 

£= -1. (3.26) 

Then the eigenvalues of (cap) are ± i. Utilizing (3.18) 
with (3.26) one finds that the matrices A", defined by (3.22) 
and (3.23), are ofthe form 

A,,=e ~1). (3.27) 

Therefore, by some obvious changing of a basis, the matrix 
(C a p ) can be brought to the following form: 

- 1(112)(" _ I») 
o ' (3.28) 

where I( 112)(" _ I) is the identity matrix of degree! (n - 1). 
Equations (3.15), (3.20), and (3.14) with £= - I hold 
true. Note that (cap) satisfying Eq. (3.18) with £ = - 1 
defines an almost complex structurel8 on a real vector space 
generated by el, ... ,e,,_ I' (One can easily check that for 
three-dimensional real Lie algebras, precisely the type VIlo 
belongs to the just considered algebras.) 

Finally let us remark that real Lie algebras induced by ql 
algebras and such that 

rank (Kij ) = 1 (3.29) 

are solvable but non-nilpotent Lie algebras. 2,5, 19,20 
Consider now the case of 

Kij =0. 

From (2.4) with (3.30) it follows that 

( 3.30) 

C~mcmkl =0. (3.31) 

Hence our real Lie algebras appear to be either Abelian Lie 
algebras (when C i

jk = 0) or nilpotent Lie algebras of the 
nilpotency class 2.2,5,19,20 [For three-dimensional real Lie 
algebras this is the case of type I (Abelian) or of type II 
(nilpotent of class 2).] To close the considerations found in 
this subsection (III A) we list (Table I) all nonisomorphic 
real Lie algebras of dimension 2 <;n <; 6 induced by ql algebras 
omitting the Lie algebras which are algebraic sums of alge­
bras oflower dimension. We follow the works of Behr et al., 9 

Ellis and MacCallum,1O MacCallum,11,12 and Patera et 
al. 15,16 

B. Complex Lie algebras 

In the complex case the considerations are very similar 
to those concerning real Lie algebras. The only difference is 
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that some algebras that are nonisomorphic on the real level 
appear to be isomorphic after complexification. Thus one 
finds that for n = 3 the complex Lie algebras VIII and IX are 
isomorphic to sl(2;C) and also the complex types VIo and 
VIlo overlap. Generally we conclude that for every n > 1 an 
n-dimensional complex Lie algebra induced by a complex ql 
algebra for which rank(Kij) = 1 possesses a basis el, ... ,en 

such that the structure constants with respect to it take the 
form (3.25). 

IV. CONCLUDING REMARKS 

The main results of the present paper can be summar­
ized as follows. 

An n-dimensional real Lie algebra appears to be the one 
induced by a ql algebra if and only if it belongs to one of the 
following types. 

( 1) An Abelian Lie algebra. 
(2) A nilpotent Lie algebra of the nilpotency class 2, i.e., 

a non-Abelian Lie algebra for which C ~m C m kl = 0, 
i,j, ... = l, ... ,n. 

(3) A solvable Lie algebra for which there exists a basis 
el, ... ,e" such that C"ij = 0 = cap'Y' ca"p = £p8a

p; 
£13 = ± 1; i,j, = 1, ... ,n; a, p, r = l, ... ,n - 1. 

( 3') A solvable Lie algebra for which there exists a basis 
el, ... ,en such that C"ij=o=capr , and the 
(n - 1) X (n - 1) matrix 

- 1(1/2)(" - I») 
o ' 

where cap: = ca"p, and 1(112)("_1) is the identity matrix 
of degree !(n - 1); i,j = l, ... ,n; a, p, r = 1, ... ,n - 1. 

( 4) A Lie algebra isomorphic to su (2) . 
( 4') A Lie algebra isomorphic to sl (2;R ) . 
In the complex case one has the types (1), (2), (3) and 

the following. 
( 4") A Lie algebra isomorphic to sl (2; C) . 
The above presented list gives also a classification of all 

real or complex local Lie groups endowed with the composi­
tion laws of the form (2.15). 

Finally let us note that our considerations on ql algebras 
appear to be closely related to the problem of a definition of a 
cross product in a vector space of an arbitrary dimension. 
(Weare indebted to Professor J. Adem for this suggestion. 
The paper on this subject has been submitted to the Journal 
of Mathematical Physics21 ; see also Ref. 22.) 
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The set 1"" of infinite matrices and the set Q "" of squarable matrices are considered as partial 
*-algebras. The connection between Q"" and two partial *-algebras of closed operators is 
studied. Conditions for a matrix representation in "von Neumann's sense" of a family of closed 
operators are given. 

I. INTRODUCTION 

Since the beginning of the theory oflinear operators, the 
matrix calculus has played so relevant a role as to achieve the 
status of a classical argument. 

This growth of importance, mainly due to the quantum 
mechanical custom of replacing indifferently matrices with 
operators, has given rise to a wide literature (some papers 
date back to the pioneer age of quantum mechanics), essen­
tially concerned with the study of the relationship between 
matrices and operators, which has emphasized the fact that a 
theory of matrix representation of unbounded operators is 
not at all a slight modification of the bounded case. 

From the algebraic point of view the situation was clear 
as far as one had to deal with finite or bounded matrices. As a 
matter of fact, the operators occurring in the applications are 
often unbounded and unbounded matrices may exhibit a be­
havior as singular as that of operators. For instance, the set 
of all infinite matrices does not carry any usual algebraic 
structure because of two well known features: the multipli­
cation of two matrices is not always defined and, even if it is, 
the associative property may fail to be true. 

The question arises whether any help from this point of 
view can be given by some partial algebraic structure like 
those introduced and studied in the last years by some auth­
ors (Refs. 1-3). 

In Sec. II, we show that the answer is affirmative: the set 
1 '" of all infinite matrices and the set Q '" of squarable 
matrices are in fact partial *-algebras. 

In Sec. III, we study the correspondence between Q", 
and the sets <£(£t1 0), and <£*(£t1 0) of, respectively, £t1 o-mini­
mal and £t1 o-maximal closed operators on the linear hull £t1 0 

of an arbitrary orthonormal basis. 
In Sec. IV, the problem of the matrix representation in 

"von Neumann's sense" of families of closed operators is 
examined. 

II. PARTIAL ALGEBRAIC STRUCTURE IN THE SET OF 
INFINITE MATRICES 

The main concept we have to deal with is that of a partial 
*-algebra due to Borchers (Ref. 2) and studied by Antoine 
and Karwowski [Ref. 1 (a) 1 . 

For the reader's convenience we recall the basic defini­
tions. 

Definition 2.1: A partial *-algebra is a vector space d 
with involution x .... x t [i.e., (x + Ay)t = xt + Ayt; xtt = xl 
and a subset r~dXd such that (i) (X,y)Er implies 
(yt,Xt)Er; (ii) (x,y) and (X,z)Er imply (x,y + AZ)Er; and 

(iii) if (X,y)Er, then there exists an elementxoyEd and for 
this multiplication the distributive property holds in the fol­
lowing sense: if (x,y)er and (x,z)er then 

xoy + XOz = xo(y + z). 

Furthermore, (xoy)t =ytoxt. 
Notice that it is not required that the o-product be asso­

ciative. 
The partial *-algebra d is said to have a unit if there 

exists an element led (necessarily.unique) such that 
It = 1, (I,x)er, and lox = xol = x 'tJxe r. 

Whenever (x,y)er, we say that x is a left multiplier ofy 
[and writexe L(y) 1 ory is a right multiplierofx ryE R(x) l. 

If S~d we put LS= nxeSL(x), RS= nxeSR(x); 
MS = LSnRs. Ifs = d, Md is called the set of universal 
multipliers of d. 

A particularly interesting situation occurs when 

{(x,y)Ed X dlxed 0 or yed o} ~ r, 

where d 0 ~ d is a * -algebra. 
In this case we say, following Lassner (Ref. 3) that d is 

a quasi-*-algebra with distinguished *-algebra do. 
A quasi-*-algebra (d,do) is said to be a topological 

quasi-*-algebra if d is endowed with a locally convex topol­
ogy T such that (i) do is dense in d; (ii) the multiplications 
x .... xoyandx .... yox are continuous for every XEd 0; and (iii) 
the map x .... x t is continuous. 

We will now show that the set 1 "" of all infinite matri-
ces 

1"" = {(Al'v),Al'vEC,,u,veN} 

carries a very natural structure of partial *-algebra. 
Proposition 2.2: (i) In 1"" the map (A}w) --+ (A!v), 

where A!v = A VI' , defines an involution and the usual 
rows-columns product defines a partial multiplication on 
the set 

r = {(Al'v),(Bl'v»): ~pAI'PBpv < 00 'tJ,u,veN}. 

Thus (1", ,r) is a partial*-algebra with unit 1 = (lJl'v)' 
(ii) The set R1 '" of the right universal multipliers of 

1 "" consists exactly of the matrices with a finite number of 
nonzero elements in each column. Analogously, the set 
L1 '" of the left-universal multipliers of 1 '" consists of 
those matrices having a finite number of nonzero elements in 
each row. 

(iii) The set M1 '" of the universal multipliers of 1 '" , 
i.e., M1 '" = L1 '" nR1", , is a *-algebra; then 1 '" is a 
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quasi-*-algebra with distinguished *-algebra MJ/ 00. 

PrOOF Ci) is straightforward. 
Cii) We prove only that a matrix CBp,,,) having an infi­

nite number of nonzero elements in some column does not 
belong to RJ/ 00 • Let, in fact, CAp,,,) be a matrix such that for 
some GEN, I."AO'V does not converge. Without loss of genera­
lity we may suppose Bpp ¥O VIl, for fixed p. Put Cuv 

=AuvB ,,-;; I. Then 

L CuvB"p = LAuvB ; IB"p = LAO'V = 00. 
" " " 

suppose that there exists Il such that C p," =I 0 V veN. Let Po be 
the minimal number such that App = 0, p >Po; necessarily 
some of the Bpv's are not zero for p<.po. Then the matrix 
CBp,,) has infinite nonzero elements in the oth row with 
1 <.u<.po. This is a contradiction. 

Remark: In J/ 00 a topology TO can be introduced by 
means of the set of seminorms 

Pp,,, [CApo-)] = lAp,,, I VIl,veN. 

It is easily proved that J/ 00 [1"0] is a Frechet space and 
MJ/ 00 is To dense in J/ 00; moreover operations are contin­
uous. By the previous proposition we get that J/ 00 is a topo­
logical quasi-*-algebra over MJ/ 00 • 

One of the most remarkable subsets of J/ 00 is the set 
J/ b of bounded matrices 

J/b = {CAp,,,)~ 00: 

~ 1 ~Ap,,,S,, r <.C2~lsp,I2 VCSp, )p,eI2}. 

As is well known, J/ b is a *-algebra isomorphic to the 
*-algebraB(,7t") of bounded operators in Hilbert space. But 
J/ '" contains also many *-algebras of unbounded matrices, 
like the set J/ d' considered in Ref. 4, which is isomorphic to 
the *-algebra Cg = .2"t(iiJ) of unbounded operators. Here 
we are interested in the following subset of J/ '" : 

Q", = {CAp,,,)~ 00: ~IAp,vI2< 00, ~IAp,,,12< oo}. 
Following von Neumann (Ref. 5) we call elements of 

Qoo squarable C"quadri.erbar") matrices. Clearly, J/ b k Qoo 
andJ/d kQ"". 

As is known Q"" plays an important role in the study of 
the correspondence between matrices and operators in sca­
lar product space. Actually, a necessary condition for a ma­
trix CAp,v) to represent an operator is that CAp,,, )eQoo . 

Proposition 2.3: Ci) Qoo is stable under involution. 
(ii) Q 00 is a complex vector space under the usual opera-

tions. 
ProoF (i) is obvious. (ii) follows from the inequalities 

LIAp,v + Bp,,, 12<'I(IAp,,, I + IBp,,,I)2 
p, P, 
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Thus Q 00 inherits from J/ 00 the structure of vector 
space stable under involution; but for the multiplication the 
situation is more complicated. In fact, the product of two 
elements of Q 00 is always defined, as a consequence of the 
inequality 

1 
IAppBp" 12 <'L lApp 12IIBp" 12 < 00, 
p p p 

but it need not belong to Qoo . Then Qoo is neither an algebra 
nor a partial *-subalgebra of J/ 00. Nevertheless for a suit­
able choice of the set r Q' ( Q 00 ,r Q) becomes a partial 
*-algebra. 

Proposition 2.4: (Qoo ,r Q) is a partial *-algebra with uni­
ty I = (~p,,,) if 

r Q = {(Ap,,,),(Bp,,,»)eQ,,,, XQoo: ~1~Ap,,,B,,p r < 00, 

Proof: We already proved that Q"" is a vector space sta­
ble under involution. By the definition itself it follows that if 
(Ap,,,),(Bp,,,»)er Q then (CB;" ),CA ;,,»)er Q. 

Let now (CAp,v),(Bp,,,»)er Q and (Ap,,,),(Cp,v»)er Q. We 
have 

~ / ~Ap,v (B"p + -iCvp ) r 
= L 1 LAp,,,B,,p + -i LAp,,,C,,p 12 

p, " " 

<.2(~I~Ap,,,Bvp r + l-i 12~I~Ap,,,C,,p /2) < 00. 
In an analogous way the other condition can be proved 

and therefore (Ap,,, ),(Bp,,, + -iCp,,,»)er Q. 

At this point the equality «Ap,,,)· (Bp,,,»* 
= (B;,,) (A ;,,) and the distributive property, in the sense 

of Definition 2.1, can be easily. proved. 

III. MATRICES AND OPERATORS IN SCALAR PRODUCT 
SPACES 

The wide gap existing between the matrix representa­
tion of bounded operators and that of unbounded ones has 
been already mentioned in the Introduction. Let us recall 
shortly the terms of the question. 

If {A; } is a family of closed operators such that there is a 
dense linear manifold fl. with fl.C n; [D(A;) nD(A n] and 
A; ~ fl. = Aj ~ fl. Vi,j, it is always possible to find a matrix 
(Ap,,,) such that for any vector rp = I."S"e"e D(A;) its im­
age'" = A;rp can be determined by the matrix (Ap,,,) [the 
e"efl. VveN and Ap,,, = (Ae",ep,); from now on the Hilbert 
space is always supposed to be separable]. Nevertheless, the 
matrix (Ap,,, ) has in Hilbert space a domain, in general, larg­
er than the D(A;fs; therefore it defines an operator T~A 
and no general connection between the A; 's and T is known. 

For this reason, we will use the words "matrix represen­
tation" when a prescription to find the domain is also given. 
One possible way to do this is to use the notion of matrix 
representation in von Neumann's sense (for a more detailed 
discussion of this point, see Ref. 6). 
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No problems arise clearly if the domain of the operators 
can be considered to be the whole space as it happens for 
bounded operators or for the operators of C g as shown in 
Ref. 4. 

Here we will show that some one-to-one correspon­
dence (preserving operations) between some class of opera­
tors and matrices of JI 00 can be established. 

We will deal with two partial *-algebras of closed opera­
tors introduced by Antoine and Karwowski in Ref. 1 (a). A 
detailed study has been made by Antoine and Mathot in Ref. 
1 (b). 

Let C ( g; ,Jf') be the set of closed operators A in Jf'such 
that g;~D(A)nD(A *). Given AEC(g;,Jf') define At 

= A * ~ g; and A t = [A ~ g;] *. The operators A t,A tt are 
called g; minimal (i.e., g; is a core for them). The operators 
A t, A tt are called g; maximal (i.e., they are the adjoints of 
g; -minimal operators; in fact A tt = A t* and A t = A H*). 
Let us denote by ~ (g;) the set of g; -minimal operators and 
by ~* (g;) the set of g; -maximal ones. Here ~ (g;) has a 
partial *-algebra structure when one defines the operations 
as 

A -+ B = (A + B) ~ g; , AA = AA ~ g; , 

A_At= A* ~g;, ADB=(A*B)tt, 

where A *B = [B t (A t ~ g;)] * defined whenever 
BIi) ~D(A tt) and At g; ~D(B t). 

Analogously, the set ~* (g; ) can be considered as a ~ar­
tial *-algebra with the following operations: A + B 
=[(A*+B*) ~g;]*, AA=[IA* ~g;]*; A_At 
= [A ~ Ii)] * and partial multiplication A *B defined as 

above. 
We have examined in Sec. II the partial *-algebra of 

matrices Q 00. The question arises now: does it correspond to 
some partial *-algebra of operators? 

Let us first remark that given a matrix (Apv )EQ 00 and a 
basis (e y ) in Jf'two closed operators can be determined in 
an easy way. The first one is the operator R (A) which is the 
closure of the operator Ro(A) defined by the matrix 
A = (A pv) on the linear hull g; 0 of the basis vectors. 

The second one is the operator S(A) defined by (Apv) 
on the domain 

D(S(A») = {qJ= ~5veveJf'1 ~1~Apv5YI2 < oo}. 
In order to show that S(A) is closed we prove the fol-

lowing. 
Lemma 3.1: 

SeA) = R(A *)* = Ro(A *)*. 

Proof' Let 
m 00 

qJ = Ly 5yevE g;o, t/J= Lv 1]vevED (S(A»); 
1 1 

we get 
m 00 

(Ro(A*)qJ,t/J)=Lv5vLp Avp1]1l =L5v (S(A)t/J)v 
Ill' 

= (qJ,S(A )t/J), 

i.e.,S(A)~Ro(A *) =R(A *)*. 
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Conversely, let us suppose that t/JED (Ro(A *) *) with 
t/J = ~1l1]llell then 

(Ro(A *)ev,t/J) = (ev,Ro(A *)*t/J) = LA !JIIl 
p 

Therefore ~IlAllv 1]1l represents the vth component of the 
vector Ro(A *)*t/J; then it must be 

~1~Avll1]1l12 < 00. 

Thus t/JE D (S(A»). 
Since, by definition, R (A) is a Ii) o-minimal operator, 

S(A) is g; 0 maximal. 
This suggests the possibility to find two classes of opera­

tors corresponding to Qoo for a given basis (ev )' We can, in 
fact, define for a fixed basis (ev ) the following two maps 
[g; 0 being the linear hull of (e v ) ] : 

R: A = (Allv )EQoo ---+R(A)E~(g;o), 

S:A = (Apv)EQoo -S(A)E~*(g;o). 

Let us now discuss the question whether Rand S are 
*-isomorphisms of partial *-algebras. 

We recall first the following definition [Ref. 1 (a) ] . 
Definition 3.2: A homomorphism of a partial *-algebra 

m into another one :n is a linear map 0': m ---+:n such that 
(i) O'(xt) = [O'(x) It; 
(ii) if xEL(y) in m, then O'(x)EL(O'(y») in:n and 

O'(x) . O'(y) = O'(xy). 

Clearly a *-isomorphism of the partial *-algebras m and 
:n is a homomorphism ofm into:n which is one-to-one and 
onto. 

Proposition 3.3: The map R: AEQoo -R (A )E~(g;) is a 
*-isomorphism of the partial *-algebras (Qoo ,r Q'O) and 
(~(g;o),r,D). 

Proof: One readily checks that 

R (A *) = R (A ) t 

and 

R(A +AB) =R(A) -+AR(B). 

Let us now show that if (A,B)Er Q then (R(A), 
R(B»)Er. It is clearly enough to prove that 

R(A)eIlED(S(A») 

and 

R(A *)eIlED(S(B*») Vf-lEN. 

We have in fact (R (B)ell)v = Bvll , (R (A * ) ell )v = AllY' 
Since (A,B)Er Q we get 

~ 1 ~AllyByp 12 < 00 

and 

~1~BypApv 12 < 00; 

these, respectively, mean that R (B)e"E D (SeA») and 
R(A *)eyED(S(B*»). Now 
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R(A)DR(B) 

= (R(A)*R(B»)H 

= [Ro(B)*Ro(A *»)*H = [S(B*)Ro(A *»)*~~ 

= [Ro(B*A *»)*H = [S(AB»)H =R(AB). 

The map R is a *-isomorphism since go is a core for all the 
operators of <§: (g ). 

Proposition 3.4: The map S: AEQ", -SeA )E<§:* (g) is a 
*-isomorphism of the partial *-algebras (Q", ,r Q'o) and 
(<§:*(g),r.,*). 

Proof One readily checks that SeA *) = S(A) t and 
SeA +AB) = SeA) +- AS(B). Let now (A,B)Er Q' we need 
to prove (S(A),S(B»)Er.. Since S(B)go = Ro(B)i?lJo and 
SeA *)i?lJo = Ro(A *)i?lJo the statement (S(A),S(B»)Er. is 
equivalent to the statement (R (A ),R (B) )Er already proved 
in Proposition 3.3. It remains only to prove that S(AB) 
=S(A)*S(B). But 

S(A)*S(B) = [S(B*)Ro(A *»)* 

=R(B*A *) =S(AB). 

Since, as remarked in Ref. 1, <§:(i?lJo) and <§:*(i?lJo) are iso­
morphic and R: Q", -+<§:(i?lJo) is a *-isomorphism, so is S: 
Q '" -+<§:*(i?lJo)' 

IV. MATRIX REPRESENTATION IN yon NEUMANN 
SENSE 

We return now to the problem of matrix representation. 
We have already seen that a matrix A = (AI-LV )EQ"" and a 
basis (ev ) in J¥' identify two closed operators in Hilbert 
space, namely, R (A) and S(A), which are, respectively, i?IJ 0 

minimal and go maximal, where go is the linear hull of the 
basis vectors. 

If A is a closed operator in J¥' with A (A) 
= D(A) nD(A *) dense in J¥' and (e y ) is a basis in a(A), 

then the matrix (A/Lv) belongs to Q"" ; thus it identifies the 
two operators R (A) and S(A). According to von Neumann, 
the "basis for a matrix representation of A " is a basis (ev ) 

such that R (A) = A and he proved that such a basis always 
exists for a closed symmetric operator. In Ref. 6 we gave a 
necessary and sufficient condition for a closed operator to 
have a matrix representation in this sense. Clearly if 
A = R(A) then A * = SeA *). We will then split the defini­
tion of matrix representation into two parts. 

Definition 4.1: Let A be a closed operator with dense 
domain in J¥' such that A (A) is also dense and (ev ) a basis in 
A(A). PutA/LY = (Aey,e/L)' 

We say that A admits a matrix representation of the first 
kind if A = R (A ). 

We say that A admits a matrix representation of the 
second kind if A =S(A). 

Proposition 4.2: The operator A admits a representation 
of the first kind if, and only if, A * admits a representation of 
the second kind. 

Clearly, the mapR: Q", -+<§:(go) is a matrix represen­
tation of the first kind and the map S: Q", -+<§:*(i?lJo) is a 
matrix representation of the second kind. 

We wish now to discuss the following question. Given a 
family d of closed operators defined together with their 
adjoints on a dense domain i?IJ [i.e., a subset ofC(i?IJ ,J¥'»), 
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is it possible to find an orthonormal basis (ey ) for a matrix 
representation of the first kind of all operators of d? 

Let us first consider the following two families of opera­
tors defined by d: 

d m = {A H = A ~ D IAEd}, 

d M ={Att= [A* tD)*IAEd}. 

By the definitions it follows that d m ~<§:(g) and 
d M~<§:*(i?IJ). Clearly, if dis *-invariant, d M = d!. 
Thus if d m admits a matrix representation of the first kind 
then d M admits a matrix representation of the second kind. 
So we can confine ourselves to consider the question whether 
d m admits a matrix representation of the first kind. There­
fore, from now on, we will take directly d ~ <§: (i?IJ ). In this 
condition, since each element of d is g minimal, for each 
AEd there exists a basis (ey ) for a matrix representation (of 
the first kind) of A. But, of course, nothing enables us to say 
that the basis is the same for all operators of d. 

It is clear that if d admits a matrix representation (of 
the first kind) with respect to (ev ) then d ~ <§:(i?IJ 0)' where 
i?IJ 0 is the linear hull of the basis vectors. The converse is also 
true. 

The following proposition gives some conditions for the 
matrix representation of a set d ~ <§: ( g ) . 

Proposition 4.3: Let d~<§:(i?IJ), (ey ) be an orthonor­
mal basis in i?IJ, and i?IJ 0 be the linear hull of the ey 'so Then for 
the statements ( 1) (e y ) is a basis for the matrix representa­
tion of the first kind of d; (2) d ~ <§: ( i?IJ 0); (3) go is a 
common core for all elements of d; (4) i?IJ 0 is dense in i?IJ 
with the d -graph topology defined by the seminorms 
q>-+ IIAq> II AEd; and (5) g is separable for the d-graph 
topology, we get 

(1) ¢:> (2) ¢:> (3); (4):::::::> (3); (4):::::::> (5). 

If d is directed (i.e., VA,BEd 3CEd: 
IIAq> 1I,IIBq> II < IICq> lI)thenthestatements (1)-(4) areequiv­
alent. 

Proof' (1) ¢:> (2) ¢:> (3) follows easily from the defini­
tions. 

( 4) :::::::> (5). The set of finite linear combinations with 
rational coefficients of the basis vectors is contained in i?IJ 
and is dense in it for the d -graph topology. 

( 4) :::::::> (3). Let i?IJ 0 be dense in i?IJ for the d -graph 
topology. Then V q>Ei?IJ there exists a net {q> a} ~ i?IJ 0 such 
that 

q>a -+q> and Aq>a -+Aq> VAEd, 

this implies that A = A t i?IJ 0 VAEd and therefore go is a 
common core for d. 

Now, for directed d, it is proved in Ref. 7 [Theorem 
1 (4) ) that the completion fJ) 0 of i?IJ 0 for the d -graph topol­
ogy is 

fJ)0 = n D( A ~ i?lJ o) = n D(A) ;)i?IJ, 
AE-<>' AE-<>' 

then i?IJ 0 is dense in i?IJ for the d-graph topology. 
Proposition 4.4: Let d ~ <§: ( i?IJ ) and assume that the d­

graph topology on g is separable. Then there exists in i?IJ a 
basis for a matrix representation of the first kind of d. 

Proof By the assumption, there is in g a sequence {In} 
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dense in it for the .If -graph topology. Let (e,,) be the basis 
obtained from {In} by orthonormalization and ~ 0 the lin­
ear hull of (e" ). Here ~ 0 is clearly dense in ~ for the .If­
graph topology. The statement follows from Proposition 4.3. 
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Two cohomology classes associated to groups of transformations (symplectic or not) of 
Hamiltonian and Lagrangian systems are studied. A geometrical interpretation of the family of 
cocycles arising from a class of nonsymplectic actions is given in terms of the Poisson structure 
ofthe phase space of the system. These ideas are used to study nongauge (i.e., anomalous) 
groups of transformations of (locally or globally defined) Lagran~an s~ste~s. In particular, 
well-known results about the magnetic monopole system are descnbed In thIS context and 
some hints relating Yang-Mills anomalies with nonsymplectic groups of transformations are 
given. 

I. INTRODUCTION 

Physics has been increasingly concerned about anoma­
lies, i.e., classical symmetries broken at the quantum level­
for example, the loss of gauge invariance in a Yang-Mills 
theory with massless Weyl fermions is calleq the Yang-Mills 
or non-Abelian anomaly. Different families of anomalies 
have been computed using powerful techniques from global 
analysis, and some of its implications, showing, for example, 
the inconsistency of the canonical quantization procedure 
for the Yang-Mills anomaly, have been pointed out" In a 
different way Dirac pointed out that consistency in the quan­
tum representation of the translation group for the magnetic 
monopole system implies the quantization condition for the 
electric charge2 (see also, for example, Ref. 3 and references 
therein). 

The main goal of this paper is to provide a common 
background for both phenomena in terms of a general coho­
mological structure associated to noncanonical action of Lie 
groups on (pre)symplectic manifolds. We will study the 
classical structure of groups of transformations in Hamilto­
nian and Lagrangian systems and we will show that there 
exists a natural way (similar to the descent equations of Fad­
deev but inspired in a different choice of double complex) of 
constructing a family of cocycles with values in forms on the 
(pre) symplectic manifold (phase space of the system). This 
family has a geometrical interpretation in terms of the Pois­
son bracket of the theory. The physical meaning of the dis­
cussion is displayed step by step through the detailed de­
scription of groups of transformations for classical 
finite-dimensional Lagrangian systems mimicking the no­
tion of anomalous systems. 

This paper is organized as follows: Section II will be 
devoted to the statement of usual properties of gauge groups 
of transformations of Lagrangian systems and the introduc­
tion of some obvious generalizations of such concepts. We 
will describe the descent method for a noncanonical action 
of a Lie group in Sec. III and in Sec. IV the relation of the 
family of cocycles obtained with symplectic geometry is 

aJ On leave of absence from the Departamento de Fisica Te6rica, Universi­
dad de Zaragoza, 50009, Spain. 

studied. In particular, we will provide a Poisson bracket in­
terpretation of them. Some applications, remarks, and impli­
cations of the ideas described in this paper will be considered 
in Sec. V and, in particular, the application of this approach 
to anomalies in quantum field theory is sketched. 

II. GROUPS OF TRANSFORMATIONS AND 
LAGRANGIAN SYSTEMS 

Groups of gauge transformations of Lagrangian sys­
tems have been studied for a long time and their cohomologi­
cal implications analyzed in different contexts.4-6 As has 
been pointed out in the Introduction, nongauge groups of 
transformations are relevant to understanding the geometric 
structure of anomalous systems. We will assume in the fol­
lowing discussion that the configuration space of the system 
is a COO -differentiable (finite- or infinite-dimensional) mani­
fold Q, and L is a Lagrangian function defined on TQ, the 
tangent bundle of Q. Let G be a group of fiber preserving 
transformations of TQ. The action of G may either preserve 
the canonical tensor field S of TQ or not. 7 In the former case 
the action of G on TQ corresponds to a lifted action of a 
groupH on Q times (semidirect product) a group of trans la­
tions along the fibers of TQ. We will call these transforma­
tions natural and we will be restricted to this simpler case in 
what remains of this section. 

Let us recall some well-known results about gauge 
transformations before introducing some generalizations. A 
group G is said to be a group of gauge transformations of 
( TQ,L) if g* L = L + ag, where a g is a closed one-form on 
Q, and ag the associated function on TQ. The set of one­
forms a g satisfy the one-cocycle condition 

ag,g, = g!ag, + ag,. (2.1) 

If the group G preserves the vertical endomorphism S, 
[g* ,S] = 0 VgEG, then 

g*OL = g*(dLoS) = dLoSog. 

= d(Log) oS = d(g*L) oS = Og*L' 

Consequently, 

Og*L = OL + 1T*ag, (2.2) 
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where we have just used that (}o. = 11"*a VaeB I(Q).4 The 
infinitesimal version of (2.1) is 

a[a,bJ = d (Xa,ab) - d (Xb,aa) Va,bEg, (2.3) 

where aa = (d/dt)aexptalt=o, and Xa denotes the vector 
field associated to the infinitesimal generator a. Then if G 
acts by natural transformations we have that the Poincare­
Cartan one-form (}L transforms as shown in (2.2) and corre­
spondingly the Lagrange two-form OJL is invariant because 
of the closedness of ag • 

If L is a regular Lagrangian we find that G acts by sym­
plectomorphisms of OJ L' and if H I ( Q) = 0, there exists a 
global Hamiltonian function associated to each infinitesimal 
generator a of G defined by the formula4 

fa = (}L(Xa ) -ha' 

with dha = aa VaEg. The main implication of the nontrivia­
lity of the cocycle aa is the appearance of a nontrival two­
cocycle c, with coefficients in R in the commutation relation 
of the Hamiltonian functions/a' More explicitly, we get 

{fa,fb} =/r.a,b ) + c(a,b) Va,bEg. 

A natural generalization of the above structure appears 
removing the closed character of the cocycle aa' The first 
change is that the group of transformations is not any longer 
a group of symplectomorphisms of OJL . Let us make more 
precise these assertions. 

We will call a group of transformations G quasigauge if 
g*L = L + ag , where ag is a family of (non-necessarily 
closed) one-forms on Q. If G acts by natural transformations 
on TQ, we haveg*OJL = OJL + 11"* daa or, infinitesimally, 

LxQOJL = 11"* daa VaEg. (2.4) 

There is an important remark related with the noncan­
onical character of the quasigauge transformations. There is 
no local Hamiltonian function associated to the infinitesimal 
generators of the groups G, because i XQ OJ L is not closed and 
can be written, in a nonunique way, as a sum 

(2.5 ) 

wherePa is a closed one-form. Locally there will exist a func­
tionfa such that Pa = d/a and the previous equation shows 
that Xa has a canonical part (wi IPa) and a noncanonical 
one (wi: laa)' We will analyze this structure in detail in Sec. 
IV. 

Example: Perhaps the easiest example for this corre­
sponds to a system with a broken symmetry. Let Lo be a 
Lagrangian in TRn

, that is, invariant under tr~slations 
along k directions on Rn, and let LA = Lo + A, where 
A = Ai dqi is a generic one-form on Rn (in physical terms 
that corresponds to couple the original system with a mag­
netic potential A ). In general LA is not any longer Rk invar­
iant, and for any infinitesimal generator aERk, we have 
aa = XaL = ai(aAj/aqi)qi. This gives for aa the expres­
sions aa = ai(aAj/aqi)dqi. Notice that OJLA = OJL" 
+ 11"* dA, then 
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where F ~ dA is the magnetic field associated to A. The non­
trivial cocycle aa reflects the transformation properties of 
LA and by previous commentaries we could say that the La­
grangian LA is "anomalous" with respect to the translation 
group Rk. 

III. NONCANONICAL COCYCLES 

In this section we are going to establish the cohomologi­
cal foundations of some of the ideas encountered in the com­
mentaries of the previous section. Afterwards we will discuss 
the interpretation of some of these objects in terms of sym­
plectic geometry. 

From the discussion in the previous section it is clear 
that the relevant geometric structure to be studied is an ac­
tion (noncanonical in general) of a Lie group G on a mani­
fold M equipped with a closed two-form n (possibly degen­
erate). As we noticed before, if the action leaves n invariant 
we are in the well-known case of (pre) symplectic actions. By 
the contrary, if G does not leave n invariant we get a family 
of closed two-forms OJa defined as follows: 

LxQn=OJa VaEg. (3.1) 

The family of two-forms OJ a' obviously satisfies the one­
cocycle relation 

(3.2) 

or, equivalently, 

d«Xa,OJb) - (Xb,OJa» -OJ[a,b ) =0 Va,bEg. (3.3) 

It happens that the existence of this one-cocycle has 
physically relevant consequences on the transformation 
properties of (G-invariant) systems described on (M,n). 
Some of these properties are related with a family of coho­
mological objects associated to OJ a • 

The best way to describe the origin and structure of 
these objects is dealing with the cohomologies involved here, 
i.e., the cohomology on the group G and the cohomology on 
the manifold M. 

Let us consider an open neighborhood U on M such that 
there exists a family of one-forms aa satisfying daa = OJa 

(for example, U contractible). Consider the double complex 
Ea p,q;>O nM (g, U) of left-invariant p-forms on G with values 
in forms on U, i.e., nM(g,U) = AP(g*) ® n q

( U), where 
AP (g*) represents linear p-forms on g and nq (U) differen­
tial q-forms on U. This double complex could be represented 
as a grid with the (p,q) entry given by the (p,q) factor 
nM(g,U). The exterior differential d maps nM(g,U) into 
nM + I (g. U) and the exterior differential on the group a 
maps nM into np + ),q. Because of the action of G on M there 
is another cohomology operator, denoted by 8, defined as 
follows: 

8a(a!> ... ,ak+ I) 

k+) 
= " ( - 1)i+ )Lx a(al, ... ,ai, ... ,ak+ I) 
~ Q, 

;=1 

'" 1 i+i [ ] A A ) + ~(-) a( ai,ai ,al, ... ,ai, ... ,ai,···,ak+) , 
i<j 

where a is an element in nk,q and a), ... ,ak +) is a family of 
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. 
elements in g. The Lie derivative commutes with the exterior 
differential and then we have that 8 commutes with d as well 
as a, i.e., 

8d = d8, ad = da. 

The one-cocycle UJa defined previously is an element in 
n 1.2(g,U), and satisfies 8UJa = 0 = dUJa. From dUJa = 0 we 
get that there exists a family aa in n1.1(g,U) such that 
daa = UJa. The element A. in 02.1(g,U) defined by A. = 8a isa 
two-cocycle with respect to 8-namely 8A. = 82a = 0, and is 
again a cocycle with respect to d because 
dA. = d8a = 8 da = 8UJ = O. Notice that the explicit for­
mula for A. is given by 

A.(a,b) = Lx.ab - Lx.aa - a[a.b 1 

= ix UJb - ix UJa + d (Xa,ab) 
• • 

- (Xb,aa) - a[a.b 1 Va,bEg. (3.4) 

Again A. (a,b) is a fakilY of closed one-forms on U, then 
there exists a family of functions h(a,b) such that 
dh (a,b) = A. (a,b). The family h (a,b) defines a cochain ele­
ment in n 2.O(g,U). The image under 8 of h provides a new 
element rin 03.0(gU) satisfying 8'1' = 0, i.e.,ris three-cocy­
cle in g. In addition we have that '1' has values in locally 
constant functions because of the relation dr = d8h 
= 8 dh = 8A. = O. Then, as Uis connected r(a,b,e) is a con-

stant function for any elements a,b,e in g and this means that 
7 is a three-cocycle in g with values in R. This construction is 
a particular case of the tic-tac-toe lemma for double com­
plexes8 (see also, Ref. 9 for a different example ofthe use of 
the tic-tac-toe lemma). 

The preceding discussion has a local character in M. 
Nevertheless, the conclusion is global; that means that if we 
change the neighborhood U we get cocyles 7' and A. ' in the 
same cohomology classes as 7 and A. respectively. Let U, Vbe 
two nondisjoint neighborhoods of M and a::,a: two families 
of one-forms satisfying da:: = UJajU and da: = UJaW' On the 
intersection un v, there exists a family of closed one-forms 
fla such that a:: = a: + fla . The two-cocyles A. v and A. vob_ 
tained, respectively, from a v and a v differ by 8fl a . But there 
exists a family of functions ga such that fla = dga; then 
A. v = A. v + 8 dga = A. v + d(8ga ). But A. v = dh v and A. v 
= dh v, thereforeh v = h v + 8g + e, wheree(a,b) is a con­

stant on M depending only on a,b, and finally 7
v = 8h v 

= 8(h v + 8g + e) = 8h v + 8c = 7v + ae. The conclusion 
is that the cohomology class of the three-cocycle 7

v is an 
invariant of the action of G on M. 

This discussion can be summarized in the theorem be­
low. 

Theorem 1: Any action of Lie group G on a (pre)sym­
plectic manifold (M,O) has associated a cohomology class 
[7JEH 3(g,R) and a cohomology class [A.JEH2(g,Z I(M»). 
Furthermore, if the action is symplectic the classes [7 J and 
[A. J vanish, and h becomes a two-cocycle in the 8 cohomo­
logy. Here A. is given by formula (3.4) and 7 is defined by 

7(a,b,e) = S (Xa,A.(b,e» - h( [a,b J,e») 
(a.b,c) 

= S (Xah(b,e) - h( [a,b J,e») Va,b,eEg, 
(a,b,c) 

(3.5) 
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with dh (a,b) = A. (a,b) and the symbol S denotes cyclic 
(a,b,c) 

sum over the indices (a,b,e). 
Proof The construction of [7 J and [A. J was discussed 

previously as well as its independence of the covering chosen 
for defining them. Notice that if the action is symplectic that 
means that UJa = 0 and then daa = 0, Thus there exists a 
family of functions ka such that dka = aa' Because of the 
commutativity of 8 and d and the vanishing of A. we get 
h = 8k and dh = O. In consequence [hJ is a well-defined 
class in H 2 (g,R). It is important to remark that the cohomo­
logy operator 8 collapses to a when it is restricted to multilin­
ear forms on g with coefficients in locally constant functions 
and this is the reason 7 is a three-cocycle in g with coeffi­
cients in R, i.e., with respect to a. 

As an immediate consequence of the previous theorem 
we get the following corollary. 

Corollary 1: Any action of a Lie group G on an exact 
(pre)symplectic manifold (M,n) has vanishing [A.J and 
[ 7 J cohomology classes. 

Proof It is obvious because we can define in any neigh­
borhood a family of one-forms aa such that daa = UJa and 
8a = 0 by Lx. 0 = a a' It follows that h is going to be a locally 
constant cochain, hence 7 is trivial in the a cohomology, 
7=ah. 

From this remark follows the important conclusion. 
Corollary 2: Any Lagrangian system (TQ,L) with a 

quasigauge group of transformations G has trivial cohomo­
logy classes [A. J and [7 J. 

Proof The reason is that any Lagrangian system has an 
exact (pre) symplectic structure UJ L = dOL' where 0 L is the 
pullback of the canonical Liouville one-form on T *Q by the 
Legendre transformation. 

Notice that this remark does not contradict the possible 
existence of nontrivial three-cocycles for Lagrangian sys­
tems not globally defined. In such a case the symplectic 
structure in the canonical formalism is not exact. This is 
what happens with a particle moving in a monopole magnet­
ic field F (Ref. 10) because the two-form giving the field 
strength F is not exact. We will proceed along with this dis­
cussion in the last section. 

IV. POISSON BRACKETS AND COHOMOLOGY 

In the previous section we have shown how a noncanon­
ical action of a Lie group in a (pre)symplectic manifold 
causes a family of cocycles of g with coefficients in the ring of 
differential forms on M. In this section we will provide a 
symplectic interpretation of the second cohomology class 
[A.J described before, formula (3.3), in terms of the Poisson 
structure induced in the ring of functions on Mby the sym­
plectic structure 0 (if 0 were presymplectic we should use 
the ring of first class functions, i.e., those invariant along 
char 0) and a new formula for computing 7 in some particu­
lar cases. 

From the definition of the one-cocycle UJa , formula 
(3.1), we get that locally we can find families of one-forms 
aa and fla such that 

(4.1 ) 
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where fJa is a family of closed one-forms. We will call the 
locally Hamiltonian vector field Ha associated with fJa, i.e., 
satisfying the equation i x)l = /3a' the Hamiltonian part of 
Xa' The vector field Aa defined by iAa 0. = aa is called the 
noncanonical part of Xa with respect to the decomposition 
(4.1). Clearly, Xa =Ha +Aa VaEg and, as it is obvious 
from the definitions, both Ha and Aa are not uniquely de­
fined. Because of this there is no real reason to talk about the 
Hamiltonian of Xa' In spite of this one has reason to ask 
about what happens with the "representation" of g obtained 
for each decomposition (4.1) using only the canonical or 
Hamiltonian part Ha. The canonical part of Xa is only part 
of the fundamental vector field representation of g in the Lie 
algebra of vector fields of M. Because of that, it is expected 
that the Hamiltonian vector fields associated with the infini­
tesimal generators of G do not provide a representation of g. 
The cocycle A is defined by the commutation relations of the 
Hamiltonians associated with the infinitesimal generators of 
g only for special decompositions of the fundamental repre­
sentation of g. Thus the link between the cocycle A and the 
Poisson bracket commutator is partial. 

We will say that a decomposition Xa = Aa + Ha of the 
fundamental vector fields of a noncanonical action of G on 
M is Abelian if 0. (A a .A b) = 0 Va ,bEg, or in other words, if 
the distribution generated by the noncanonical part of the 
fundamental vector fields Xa is isotropic. Two important 
cases in which we have Abelian decompositions are given by 
the following. 

Examples: ( I) Let G be a group of quasigauge transfor-

d{fa,fb}=do.(Ha,Hb) =do.(Xa -Aa,xb -Ab) 

mations of a Lagrangian system with Lagrangian L. Defin­
ing the decomposition of Xa as given by formula (2.4) it is 
obvious that Aa is a vertical vector field because aa is the 
pullback of a one-form on the base space Q. The vertical 
distribution of TQ is Lagrangian and then clearly 
W L (Aa.A b) = 0 Va,bEg. Because of this any quasigauge 
group of transformations admits an Abelian decomposition. 

(2) Let G be a group acting by diffeomorphism on a 
manifold Q. There is a natural action of TG on TQ. Let L be a 
Lagrangian function invariant under the complete lifting of 
G. The Lie algebra of TG is gC EEl gO. The complete lifting part 
gC is Hamiltonian, and the vertical part g" is noncanonical. 
This (trivial) decomposition is clearly Abelian. 

The main theorem relating Poisson brackets and cocy­
cles is the following: 

Theorem 2: Let G be a group of noncanonical transfor­
mations of the symplectic manifold (M,o.) such that there 
exists an Abelian decomposition Xa = Ha + Aa VaEg of its 
fundamental realization. If the Hamiltonian associated to 
Xa with respect this decomposition isla, we have 

d{fa,fb} = d/ra,b j +A(a,b) VaEg, (4.2) 

where A is the two-cocycle associated to the action of G as 
given in formula (3.4) and 

T(a,b,c) = S (Aa,A.Ib,cj) Va,b,cEg, 
(a,b,c) 

(4.3) 

where l' is the three-cocycle defined in formula (3.5). 
Proo!' Computing d{la,fb} we get 

=do.(Xa,xb) +do.(Aa.Ab) -do.(Xa.Ab) -do.(Aa,xb) 

= d (iXb (ixao.») + d (Xa,ab) - d (Xb,aa) 

=Lx (ix 0.) -ixd(ix 0.) +d«Xa,ab) - (Xb,aa» 
b Q b a 

= d/ra,b ] - aIa,b ] + iXa dab - iXb daa + d( (Xa,ab) - (Xb,aa» 

= d/ra,b ] + A,(a,b). 

Noticing the dh (a,b) = A (a,b) we get that the formula 
(4.2) from before can be written as 

{Ia,fb} = /ra,b ] + h(a,b) + c(a,b), 

wherec(a,b) isjust a constant depending only ona,b. Then a 
straightforward computation gives us 

S h([a,b],c) = S {/ra,bl'.fc}- S /rIa,b],C] (a,b,c) (a,b,c) (a,b,c) 

= S (Ha,A.(b,c», 
(a,b,c) 

and from formula (3.5) we get 

T(a,b,c) = S (Xa,A.(a,b» - S h([a,b ],c) 
(a,b,c) (a,b,c) 
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= S (Xa,A.(b,c» - S (Ha,A.(b,c» 
(a,b,c) (a,b,c) 

= S (Aa,A.(b,c». 
(a,b,c) 

Notice that in the trivial case, i.e., when we are dealing 
with canonical actions, aa = 0 and A = 0, then h(a,b) is a 
two-cocycle in the a cohomology, that can be assimilated to 
the constant c(a,b) reproducing the classical results. 11 It is 
also important to notice that the decomposition used to ob­
tain the relation (4.2) is not unique. Not all possible decom­
positions are Abelian, so formula (4.2) is only true for Ham­
iltonians corresponding to Abelian decompositions. 
Formula (4.3) deserves some commentaries too. First it is 
convenient to remark that this formula is true only for Abe-
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lian decompositions and it shows once again that for sym­
plectic actions 7 is equal to zero because we can choose Aa 
= 0 'daEg and then trivially we get 7 = o. 

Example: Continuing the example started in Sec. II, we 
get 

iX/,JJLA = iXaltho + iXa dA = dfa + aa' 

Assuming, for example, that the Lagrangian Lo is the kinetic 
energy corresponding to a metric ( , ) we get that 

fa (q,q) = (a,q) - (a,A(q», 

and 

Then 

JA. J A =a._J _ 

a 'JqiJq 

is a familiy of vertical fields and obviously they define an 
Abelian decomposition of Xa' The Poisson bracket offa and 
it, is easily computed and it gives 

d{fa,fb} = (.tJLA (Ha,Hb) = d (F(Xa,xb »). 
This result is in complete agreement with formula (4.2) be­
cause [a,b] = 0 'Va,bEg and 

A(a,b) = ixa(.tJb - iXb(.tJa - a[a.b J 

= (akb i - aib k) (J 7kAj - J ~Ak )dqj 

=d(F(Xa,xb»)' 

Finally the three-cocycle 7 vanishes because the Lagran­
gian LA is globally defined. As we will show later, even in the 
monopole system the three-cocycle 7 is still zero. 

V. SOME APPLICATIONS, REMARKS, AND 
COMMENTARIES 

During the general discussion we have been studying 
the example of the translation group acting in the system of a 
particle moving in a magnetic field F = dA. This example 
lead us to trivial results in the sense that both cohomology 
classes, [A] and [7], were trivial. We can modify slightly 
this example considering a charged particle moving in the 
field of a magnetic monopole. A magnetic monopole of 
strenth g at the origin in R3 creates a magnetic field given by 
a two-form F on R3 - 0 (the field is singular at the origin) 
that is closed but not exact. Its integral over S2, the unit 
sphere centered at the origin, is 41Tg. There is nO globally 
defined vector potential for F, hence there is no globally de­
fined Lagrangian for the system. 10 The two-form F is com­
pletely determined by its restriction to S 2, where it coincides 
with gu, u being the area form on S2. However, there are 
local one-forms, As defined on S2 - {north pole} and AN 
defined on S 2 - {south pole}, differing by an exact form on 
their common domain, whose exterior derivatives are both 
F. Choosing these forms we can reproduce the computations 
we did for the globally defined potential example and we get 
again that the two-cocycle A is given by the formula 
A(a,b) =d(F(Xa,xb»)' Here 7 is still zero because 
7(a,b,c) = dF(Xa,xb,xc)' and as far asFis closed the three-
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cocycle 7 will be zero. For the monopole system the two­
cocycle A is not trivial but 7 still is. Thus the Dirac's quanti­
zation condition for the electric charge does not appear from 
the existence of a three-cocycle on the system but from inte­
grability conditions of the system in the geometric quantiza­
tion scheme, namely integer class of the charge symplectic 
form of the system, as was pointed out in Ref. 12, which is 
equivalent to the requirement that the path integral quanti­
zation of the system be well defined.9 

Finally, a brief discussion about Yang-Mills anomalies 
and the ideas described previously is in order (a forthcoming 
paper is devoted to a thorough discussion on the subject). 
Let Q be the space of Yang-Mills potentials, irreducible con­
nections on the principal fiber bundle P( G,x) with X a 2n­
dimensional space-time. Here Lelf is the effective Lagran­
gian of the theory obtained from the generating functional 
Z [A] = f dJt[A ]exp( - SYM [A]) by the formula 
f Lelf dt = W[A] = - In Z[A], where SYM is the classical 
Yang-Mills action with Lagrangian density L(A;t/J,¢) 
= (i/2)¢DA t/J, t/J,¢ are Weyl massless fermions, and DA is 
the covariant Dirac operator associated to the connection A .. 
The group of gauge transformations of the theory will be 
denoted by G and it is well known that the effective action 
W[A] of the theory is not gauge invariant. The anomaly of 
the theory is defined as the infinitesimal variation of the ef­
fective action under the group of gauge transformations and 
can be easily seen to be a one-cocycle on G (Wess-Zumino 
consistency condition). From the previous discussion we 
know that there exists a two-cocycle A that modifies the 
commutation relations of the Hamiltonians associated to the 
infinitesimal generators of the group of gauge transforma­
tions. In this sense the cochain h such that dh = A is precise­
ly the Schwinger term computed in Ref. 1. 
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The method presented in the first part of this work is applied to the superalgebra B(0,2). Two 
families of irreducible *-representations ofthis superalgebra and its real form osp(l,4) are 
constructed explicitly in terms of differential operators on the Hilbert space L 2(.M) ® CN of N­
component vector functions '1': if ..... CN

: (i) the family {1TJ : J = 0, I, ... } of massless 
representations with N = 2, if = R + X ( - 1T, 1T) X R +, the dimension of the vacuum subspace 
of 1T J being J + 1; (ii) the family {1T~/J): {} > O} of massive representations such that 
1Tf/) I so(3,2) equals the direct sum of three irreducible representations ofso(3,2). This family 
is characterized by N = 4, if = R + X (0, 1T) X R + and nondegenerated vacuum. It is also 
shown that all the remaining massive representations form a system of families {1Tj11): {}> J 12}, 
J = 1,2, ... , with N = 4(J + 1), (J + I)-fold degenerated vacuum and common 
if = R+ X (0,1T) XR+. 

I. INTRODUCTION 

In the first part of this study I we have presented a meth­
od for constructing *-representations of complex Lie super­
algebras B(O,n) (n = 1,2, ... ) whose real forms are 
osp(l,2n). In the present paper the method is applied for 
obtaining a family of irreducible Hilbert space *-representa­
tions of B(0,2) and osp(l,4). 

We shall start by recalling basic features of the method 
and specifying it for the case n = 2. A basis of B(0,2) is used 
in which the odd and even generators are denoted by aj and 
bjk , respectively, withj,k = ± 1, ± 2 and bjk = bkj . The rel­
evant commutation and anticommutation relations read 

(1.1 ) 

where gjk:=sgn(j)oj+k' The (unique) involution on 
B(0,2) can be defined by aj: = a _j' which implies 
bJk=b_ j _ k· 

The construction is based on the following assumption: 
an infinite-dimensional linear representation n of B(0,2) is 
given and there exists involution T~ T~ on a subspace A ( V) 
of all linear operators on the representation space V such 
that for all zEB(0,2), one has n(z)eA( V) and 

n(z*) = n(z)~. (1.2) 

The problem consists in finding an n-invariant subspace 
~ C V and defining scalar product (. , .) on ~ such that 
Zl---+1T(Z): = n(z) I ~ becomes an algebraically irreducible 
representation of B(0,2) on ~ satisfying for all <I>,'I'e~ the 
following *-condition: 

(<I>,1T(Z)'I') = (1T(Z*)<I>,'I'). (1.3 ) 

In addition, we require that the vacuum subspace 

~ vac: = ~ n{ <l>eV: n(ar)<I> = 0, r = 1,2} (1.4a) 

be finite dimensional, 

1 ,dim ~ vac < 00. (l.4b) 

Remark 1.1: The real linear hull of even generators bjk 
equals sp(4,R) -so(3,2); this Lie algebra can also be ex-

pressed as the real linear hull of Xjk : = ~ (bjk - b _ j _ k ) 
+ (i/2)(b -jk + bj _ d, j';Pk, for which one has 

Xtk = - xjk · Then (1.3) implies that the representation 
~1T(X) of sp( 4,R) is skew symmetric, and as sp( 4,lR) is 
noncompact, ~ must be infinite dimensional, at least one of 
operators 1T(X) being unbounded.2 

Suppose that for a given linear representation n on V 
there exists a subspace ~ C V such that 1r== n I ~ has all 
the required properties. We have seen that a necessary condi­
tion for it is dim ~ = 00. Some further necessary conditions 
are implied by the following properties of operators 

E: = 1T(b2 _ 1 ), E: = 1T(b l _ 2 ), 

and 
_ 1 2 

N: = 1T(b l _ 1 + b2 - 2 ) = - L {1T(ar),1T(a~)} 
2 r= 1 

( 1.5a) 

( 1.5b) 

(see Ref. 1): (a) the vacuum subspace ~ vac is invariant 
under N, E, E, and iI; (b) the restrictions of E, F, and iI to 
~ vac form a finite-dimensional representation of sl(2,C); 
and (c) N is positive and commutes with E, E, and iI. 

Well-known properties of finite-dimensional represen­
tations of sl(2,C) now imply existence of a subspace 

V HW C ~ vac on which N is a multiple of identity and the 
operators E, E, and iI form an irreducible highest-weight 
representation of sl(2,C). In other words, a non-negative 
integer J and a vector 'I' Je~ vac exist such that {E k'l' J: 
k = O,I, ... ,J} is a basis in VHW and the following relations 
hold: 

- J 1 - -
E + 'l'J=O' FWJ=O, H'l'J=J'I'J' (1.6a) 

Nw J = v'I' J (1.6b) 

for some v';PO. These equations are completed by 'I' Je~ vac' 

i.e., 

Ar'l'J=O, A r:=1T(ar ), r=I,2. (1.6c) 

Equations (1.6) represent the main part of necessary condi-
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tions as mentioned above. One more condition is implied by 
algebraic irreducibility of 1T that is equivalent to requiring 
that 'I' J (and any other 'l'Eg) be cyclic, i.e., 

g = ~(AI,A2,A-l,A-2)'I'J' (1.7) 

where ~ ( ... ) denotes the linear hull of the set of all opera­
tors 

Tn = IT (A :'A ~'A I~ I A ':'2 ), 
r=l 

with n = 0,1, ... , and any non-negative integersjr, k r , Ir , and 
m,.3 We have argued in Ref. 1 that explicit knowledge of a 
basis 'Ii' of g would be useful for proving algebraic irreduci­
bility and for introducing a scalar product of g for which 
Eq. (1.3) will hold. It has been further suggested that such a 
basis should consist of vectors «P K satisfying 

N,«PK = (v, + n,(K»)«PK , r= 1,2, (1.8a) 

where 

Nr: = !(N + ( - 1 )rjj) = 1T(br_ r), 
(1.8b) 

Vr: = !(V + ( - 1 )rJ), 

and nr (K) are some integers. In particular, the HW vector 
'I' J is in 'Ii' and n l (K) = n2 (K) = ° for «PK = 'I' J' 

The paper is organized as follows. Section II deals with 
solving Eqs. ( 1.6) for a family of representations 
{fi} = {fiN} (N = 2,4, ... ) ofB(0,2) in termsoflineardiffer­
ential operators on the space C N (M) of infinitely differen­
tiable vector functions M3.n--+«P(x)EC N

•
4 In the third sec­

tion the family {fi2} is considered in detail; for each 
J = 0,1, ... , the HW vector 'I' J is found and an infinite set 
'li' J C C i containing 'I' J is obtained. It is further shown that 
~1TJ (z): = fi2(z) ~ ('li' J )Iin is an algebraically irreducible 
representation of B( 0,2) and that the *-condition (1.3) 

holds for the usual L 2-scalar product; the completion of 
( 'Ii' J ) lin under this scalar product equals 
L 2(R+ X ( - 1T,1T) XR+) ® C2. The dimension of the vacu­
um subspace of 1TJ equals J + 1 and the family {1TJ : 
J = 0, I, ... } is just the set of all the massless representations 
of osp ( 1.4).5 

In Sec. IV we show that each element of 'li' J is an analyt­
ic vector for each of the operators 1TJ (aj ) and 1TJ (bjk ) and 
hence a basis inB(0,2) can be chosen such that all the gener­
ators are represented by essentially self-adjoint operators. 
Reduction of each 1TJ with respect to so(3,2) is performed 
and weight diagrams of the resulting irreducible compo­
nents are found. 

The next section deals with the remaining families 
{fiN}' N = 4,8,12, .... An analysis similar to that in Sec. III 
is performed; detailed results are given for the case N = 4 
that covers just all the massive representations belonging to 
the second class of Ref. 5. Finally, in the last section our 
results are compared to those of earlier works. 

II. ANALYSIS OF NECESSARY CONDITIONS 

In Ref. 4 we have presented for N = 2,4,... families 
{fi}={fiN} oflinear representations of B(0,2) in terms of 
linear differential operators on the vector space C N (M) of 
C;N-valued functions that are infinitely differentiable on 
M: = R X (0,00 ) X (0,00 ). For a given even N the family 
{fiN} is labeled by one real parameter x that takes values in 
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some interval % N' Explicit formulas given below for the 
odd gener~ors Aj : = fi (aj ) are related to expressions for the 
operators lj of Ref. 4 by 

Aj = 2- 1/2 v(lj - iY _j) V-I. (2.1) 

Here V is a bijection of spaces Coo (M) and COO (M) with 
M: = (0,00 ) X (0,1T) X (0,00 ) given by 

( VtP) (p,cp,z): = pi 12tP(p cos cp,z, p sin cp). 

Expressing the Vimages of the partial derivatives Pk tP= a k tP, 
k = 1,2,3, in terms of ap VtP, a", VtP, and az VtP yields 

VPI V-I = pl/2 cos cp ap p-l12 - (1lp)sin cp a"" 

VP2 V - I = az , (2.2) 

VP3V-I = p 1/2 sin cpap p-1/2 + (1lp)cos cp a",. 

Then, by Theorem 111.3 of Ref. 4 one gets 

Al = 2- 1/27j[ (p + ap - l/2p)(cos cp®A - i sin cp®B) 

+ (il p) ( - cos cp a<p ® B + i sin cp a<p ® A 

+ (1/2 sin cp) ® C)), (2.3) 

A2 = 2- 1127j[ (z + az ) ®A 

+ ~(ia",®B- ~ cotcp®C- ~ ®D )], 

where 1/: = exp(i1T14). The N XNmatricesA, B, C, and D 
(Ref. 6) satisfy the anticommutation relations as given in 
Ref. 4; A and C are Hermitian and the remaining two anti­
Hermitian. 

The involutive map D I---+D II defined in Ref. 1 for linear 
differential operators on C N (M) is transformed through V 

to the involution D I---+D II on the space AN oflinear differen­
tial operators on C N (M): 

D": = VD"V- I
• (2.4) 

One then has, for r = 1,2, 

A~ =A _, (2.5a) 

and a! = - ap , a! = - a"" a~ = - az ; consequently, 
Eqs. (2.3) yield 

-11- .- -
A ,- - iAr + 8" (2.5b) 

with 

81: = 21/21/p( cos cp ®A - i sin cp ® B), 82: = 21/21/Z ®A. 
(2.5c) 

For the particle-number operator one has by Eq. (1.8b) 
N, = !{Ar,A -,l, which can be expressed via even genera-

A _ A 

tor~ ~k of Ref. 4 as follows: N r = - (iI2) V(X" 
+ X _ r _ r) V - I (cf. Remark 1.1). Theorem III.3 of Ref. 4 
now gives 

NI=+[p2_a~_p-2(a~+ ~ - sin~cp ®T)], 

T: = [~ (BC + 1) r -! ' 
(2.6) 

NI = ~[r-a;-z-2(! + (a<p®AB 

- ~ ®U-AD) - ~ cotCP®ACY)]. 
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In addition, one has N~ = N, for r = 1,2. 
For analyzing Eqs. (1.6) it is convenient to rewrite op­

erators E, E, H, and Nwith the help ofEq. (2.Sa) as follows: 

E=HAz.AH. E=~{AI.An, 
H=Nz-NI , N NI +N2• 

Then, in view of A, \{I = o for \{lEg vac and Eq. (2.Sb), we get 
- -jI - -jI - - - -{A,,A J\{I = ArA s \{I = A,t5s \{I = {A r ,t5,}\{I, r,s = 1,2. 

Further simplification of Eqs. (1.6) is achieved via 
transformation D f--+D (/J: = T/JT f- I on the space AN' 
where Tf is the operator of multiplication by the 
function [ p,<p,z] f--+ f (p,<p,z): (pz) - 1/2 exp ! (p2 + r). 
Let \{lEg vac and cP; = Tf\{l; then one gets, with the help of 
Eqs. (2.3), (2. Sc ), and anticommutation relations for matri­
ces A, B, e, D, 

TfE\{I = E(/JCP = (zip) sin <pC p cot <p ap - alp )CP, 
(2.7) 

TfH\{I =H(/Jet> (zaz -pap)et>, 

TfN \{I = N(f)et> = (2 + pap + z az )CP, 

TfE \{I = E <f)et> = (plz)sin <p [z cot <p az 

(2.8a) 

(2.8b) 

- (alp + i® U) ]CP, (2.9) 

with U: = - !({B,D} + 2AB). The expressions (2.7) and 
(2.8) do not contain matrices and hence each of equations 
E<f)et>J =OandH<f)et>J = Jet>J' where 

(2.10) 

represents an uncoupled system of N identical equations for 
components (et> J ) a of the vector function cP J' The general 
solution can be found by the method of characteristics. 7 A 
function cP JEe N (M) satisfies E (/Jet> J = 0 iff 

et>J(p,<P,z) =uJ(psin<p,z), (2.lla) 

where UJ is any C<N)-valued function whose components be­
long to e 00 ( 0,00 ) X (0,00 ) }. Let us now insert this solution 
into H(/Jet>J = Jet>J; by using Eq. (2.8a) and setting 
x: =psin<p, we get (zaz -xax -J)uJ O. The general 
solution reads 

(2.11b) 

V J being any function of the single variable y: = xz = p sin <p 
such that v JEe N (0, 00 ). Further specification of v J will be 
obtained from Eq. (1.6b) which can be replaced in view of 
(1.8b) by 

NI\{IJ = !(N - H)\{IJ = vl\{I" 

wherevJ is some non-negative number. Using Eqs. (2.8) and 
denotingy: = xz = pz sin <p, we find that the function v J sat­
isfies the following equation: 

yvJ( y) = (VI - l)vJ ( y). 

The solution reads 

vJ(y) =yv,-I®cJ , 

where CJ is a constant vector from CN. 
Next we pass to the condition (1.6c); we insert 

\{I J ( p,qJ,z) = (pz) 1/2 exp( - ( p2 + r)12}z' 

X (pzsin<p)V, I®CJ 
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(2.12) 

into (A I ± A 2 ) \{I J = 0 and make use of the relation S 
= Be AD + 1, where S is a diagonal matrix.6 This leads 

to the following pair of equations for C J : 

ScJ = 4(1 - VI - J 12)cJ , 

(S+2AD-2J-2)cJ =0. 

(2.13a) 

(2.13b) 

The second equation can be transformed with the help of 
2D = [S,A] and A -I = A (see Ref. 4) to 

(S - 2J - 2)AcJ = O. (2.14) 

Let us finally consider the first of conditions (1.6a), i.e., 
(E(/J)J+let>J =0. From (2.9) and (2.12) one finds, for 
k = 1,2, ... , 

(E <f»ket>J pkz' - k(pZ sin qJ)V, - I ®Mi/)(qJ)cJ, 

(2.ISa) 

where the matrix-valued functions ({Jf--+M iJ
) (<p) are given by 

M~J)(<p): = J cos <p - sin <p (alp + iU) and 

MiJ)(qJ):= [(J k+ l)cos<p-sin<p(alp +iU)] 

XMiJ":'1 (<p), k = 2,3, .... 

With the help of the relation 

[alp +i(U+a)]{(p+ 1)cos<p 

- sin qJ [alp + i( U + a + P>]} 
= {p cos qJ - sin <p [alp + i( U + a + P + 1)]} 

X [alp + I(U +a 1)], 

which holds for any a, PEC, we get 
J 

M:,1d<p) (-isin<p)J+1 II (U+J-21). 
1=0 

The condition (E (f»J + let> J = 0 is thus equivalent to 

J 

II (U+J 2l)cJ =0. (2.1Sb) 
1=0 

By Eq. (2.12) one sees that \{I J is nonzero if and only if 
- k • 

CJ #0. Then the vectors E \{I J, for k = 0, 1, ... ,J, are hnearly 
independent; this assertion easily follows from 
H \{I J J \{I J, E \{I, = 0, and commutation relations for E, 
E, and H. Now cJ#Oifand only ifAcJ#O and thus we can 
conclude the analysis of necessary conditions as follows. 

Proposition 2.1: For given non-negative integer J and 
positive even N the vector function \{I J fulfills Eqs. (1.6) if 
and only if it has the form (2.12), where VI>O, CJECN is an 
eigenvector of Swith eigenvalue 4(1 - VI - J 12) satisfying 
Eq. (2.1Sb), andAcJ is an eigenvector of Swith eigenvalue 
2J+2. 

This proposition represents restriction for the param­
eter Je. on which the matrices A, U, and S depend, and selects 
in this way from among the members of the family {ON} a 
subset {ON}J of admissible representations: a nontrivial 
HW vector \{I, does not exist unless OdfiNh. Since the 
matrices A, U and S are known for any even N, the subset of 
admissible representations can be explicitly specified for all 
values of Nand J. 

One immediately sees that the HW vector does not exist 
for any fiE{04m+2}' m = 1,2, .... In fact, in this case the 
only positive eigenvalues of S are 2m - 1 ± i1(Je), where 
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liJ(x) 1< 1 (see §3 of the second part of Ref. 4), which is not 
equal to 2J + 2 for any J = 0,1, .... In this way the families 
{nN} are excluded for N = 6,10,14, .... The case N = 2 will 
be considered in the next two sections and the remaining 
cases N = 4m, m = 1,2, ... , in Sec. V. 

III. IRREDUCIBLE REPRESENTATIONS ON THE SPACE 
OF TWO-COMPONENT VECTOR FUNCTIONS 

Here and in the next section only the family 
{nz}=={niX): xe[ - ~,oo)} will be considered. Each repre­
sentation niX) is determined by eight matrices that are ex­
pressed via Pauli matrices and a real iJ related to x by 
iJ 2 = 2x + 9 (see Ref. 4, Appendix to the second part): 

A = - 0'2' B = - jO'I' C = 0, D = - iiJO'I' 

T= V = 0, U = (iJ - 0'3)/2, S = 1- iJ0'3' 
(3.1) 

Let us find by Proposition 2.1 the set of admissible rep­
resentations {n2} J for J = 0,1, .... The spectrum of S is de­
generated just for x = -~, i.e., for iJ = 0; then S = I, so that 
2J + 2 is not its eigenvalue for any J and, consequently, 
ni - 9/2) is not admissible. If iJ #0, then S has two nondegen­
erated eigenvalues 1 - iJ and 1 + iJ. Accordingly, there are 
two cases: in the first one we set 4( 1 - VI - J 12) = 1 - iJ 
which implies CJ = [6] (up to a nonzero factor). Then 
ACJ = [0 ;] anqEq. (2.14) yieldsiJ= 2J + LByinserting 
this value into 4(1 - VI - J 12) = 1 - iJ, we get VI = 1; 
further we find UCJ = JcJ , i.e., Eq. (2.15b) is satisfied. The 
corresponding HW vector, which will be denoted 'I'} +), is 
given by 

'I'} + l(p,q;,z) = (pZ)I/2z' exp( _ r ~p2)® [~]. (3.2) 

Now one gets from Eq. (2.15a), by induction for k = 0, 
1, ... ,J, 

(E k'l'} + » (p,q;,z) 

= [J!/(J - k)!]( plz)kr ik<P\ll} + l( p,q;,z). (3.3) 

Similarly,thesecondcase4(1 - VI - J 12) = 1 + iJ leads to 
iJ= - (2J + 1), 

'I'} - l (p,q;,z) = (pz) 112z' exp( _ r ~ p2) ® [~] , (3.2') 

and Ek 'I'} - l = lJ!/(J - k)!]( plz)keik<P\ll} -). Thus for 
eachJ = 0,1, ... theset{nz}J consists of two representations 
with iJ = ± (2J + 1). 

Let us denote by A r ( ± J) the operators we obtain by 
inserting matrices (3.1) with iJ = ± (2J + 1) into Eqs. 
(2.3). It is convenienttointroduceforlL = ± 1 matrices 0'1': 

= ! (0' 1 - iIL0'2); then 

AI(J) =AI( -J) = -2- 1
/
21] L lLe- ip

", 

1'= ±I 
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A,(J) =A'( -J) = - 2- 1
/
21j L lLe-iP<P 

1'= ±l 

x(ap -p- !+;'" )®O'P, 

(3.4a) 

A2(±J)= -2- 1
/
21] L IL 

1'= ±l 

x [az + z - ~ ( ± (J + ~) - i a", )) ® 0'1', 

A~(±J)= _2- 1
/
21j L IL 

1'= ±l 

x [az - z - ~ ( ± (J + ~) - i a", )] ® 0'1'. 

(3.4b) 

These formulas and Eqs. (3.2) and (3.2') imply that any 
'l'e§)}±l = ~(Ar( ±J), A~( ±J):r= 1,2)'I'}±) [cf. Eq. 
(1.7)] depends on the variable q; as follows: 

'1'( p,q;,z) = L eimtp L 'I'~)( p,z) ® Ill), (3.5a) 
meZ" 1'= ±I 

where Z", is a finite set of integers, 'I'~)eC OC( (0,00 ) 
X (0,00») and 

I + ): = [~], I - ): = [~J . (3.5b) 

Thus §)}±) is a subspace not only in C i (.M) but also in 
Ci(Mext ) with Mext : = ([p,q;,z]: p,ze(O,oo), <pEe -1T, 
1T) }. This extension of M is possible owing to special proper­
ties of matrices (3.1): they cause that the functions 'I'}± ) do 
not depend on q; and in Eqs. (3.4) no terms containing cot q; 
occur [cf. (2.3) 1. 

The inclusion §)}±) C C i (Mext ) has the following im­
portant consequence. 

Proposition 3. J: Let J be any non-negative integer and 
1T}±) be the representation of B(0,2) that arises if one re­
stricts n 2 for iJ = ± (2J + 1) to the subspace §)} ± ). Then 
1T(-) - 1'1T(+)1'- 1 where 1'- iR ®O' and R is the 

J - J , -- '" 2 '" 
operator of reflection with respect to the variable q;. 

Proot It is sufficient to verify 'I'} -) = 1''I'} +), 

1'Ar(J)1'- I =Ar( -J),and1'A~(J)1'-1 =A~( -J),for 
r = 1,2. The first relation immediately follows from Eqs. 
(3.2) and (3.2'); the remaining ones are obtained by Eqs. 
(3.4) ifone uses 0'20'1'0'2 = - 0'-1'. • 

It thus suffices to consider representations 1T} + l; the 
upper index will hereafter be dropped, i.e., 1T J == 1T} + ), and 
similarly we set 'I' J == 'I'} + land §) J == §)} + ). Besides Eqs. 
(3.4) we shall also need expressions for even generators. 
~xplicit formulas will be given for xjk : = ~ (bjk - b _ j _ k ) 
+ (i12)(b -jk + bj _ d, with j,k = ± 1, ± 2 and F~k, 
rather than for bjk , since the elements Xjk also span the even 
subalgebra of B(0,2) and the result is for them simpler. By 
using Theorem III.3 of Ref. 4, inserting for the matrices 
A,B, ... from Eq. (3.1) with iJ = 2J + 1 and denoting [cf. 
Eqs. (2.2)] 
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PI: = pl/2 COS qJ app-t/2 - (lip )sin qJ a"" 

P3: = pl/2 sin <p app-1/2 + (lip ) cos <p a"" 

we find that the operators X)k (J) =X)k: = VXjk V -I are as 
follows: 

X_ 2_2 = irfiJI, X_ I _ 2 = ipzcos <pfiJI, 

XI _2 = [z(ap - lI2p) cos <p - (z/p) sin <p a",] fiJI, 

X2 - 2 = (zaz + D fiJI, 
- • 2 -X_1_1=IP fiJI, XI_t=(pap+!)fiJI, 

X2 _ 1 =p(az -lI2z)cosqJfiJI - i(p/z) 

Xsin<p [(J+!-ia",) fiJI-!fiJu3]' (3.6) 

XII = - i[ a; + p-2(a; + 1)] fiJI, 

X2\ = - iPI(az -lI2z) ®I - (liz) P3 

x [( J +! - i a",) ®I -! ®uJ), 

Xn= -i[a;-z-2(J+!-ia",)2]®I 

- iz- 2
( J +! - i a",) ® u 3• 

According to what has been argued in Sec. I, a basis in 
f!jJ J consisting of common eigenfunctions of the operators 
NI and N2 should be found. The corresponding explicit 
expressions can be obtained from Eqs. (3.6) using Nr 

= - (i/2)(Xrr +X_ r _ r ). By Eqs. (2.8b) and (3.2) we 
find N'V J = (2 + J) \II J and then (1. 8b) implies that the 
eigenvalues of Nr and Vr + nr with VI = 1 and V2 = J + 1. 
Now, in view ofEq. (3.5), the sought eigenfunctions can be 
written as eim"'t/J~':',;,I')( p,z) ® IJL), where the functions 
t/J~':',;,I')EC <lO( (0,00) X (0,00») satisfy 

Hp2 - a; +p-2(m2 -1)]t/J~':',;,I') = (l + nt)t/J~':',;,pl, 
Hr - a; +Z-2«(J + m + (l - JL)/2)2 -1) ]t/J~':',;,p) 

= (J + 1 + n2)t/J~':',;2p), (3.7) 

We will select for eachJa set 'iff J of these functions such 
that ('iff J ) lin = f!jJ J and \II JE'iff J' For getting it the same 
functions as in Ref. 1 will be used, viz. 

:JCf--+f~a)(x): = c~a)xa+ 1I2e-x'/2L ~a)(x2), x>O, (3.8a) 

where a> -1, n=O,l, ... , c~a):=(2n!/r(a+n + 1»)112, 

I 
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and L ~a) are the Laguerre polynomials (Ref. 8, §8.97). 
They fulfill 

H - d; +X2 +x-2(a2 -1) ]f~a) = (2n + a + l)f~a) 
(3.8b) 

and obey the following recurrence relations: 

(dx + x - (~ + a)/x)f~a) = - 2nl12 f~a_+..l), 

(dx - x - q + a)/x)f~a) = - 2(a + n + 1)1/2 f~a+ I), 

(3.9a) 

(dx -x - (1 - a)/x)f~a) = 2(n + 1)1/2 f~a+ll). (3.9b) 

Notice that the relations (3.9b) make sense for a > 0 only. 
Let us now introduce for any integer m, non-negative 

integers k,1 and JL = ± 1 the linearly independent functions 
I kim; JL) JEC:; (Mext ), 

Iklm; JL) J (p,<p,z): = f~m'( p) f)J+ m + (l -p)I2I(Z) 

(3.10a) 

and denote 

'iff J: = {Iklm; JL) J: k,l = 0,1, ... , m = 0, ± 1, ... , JL = ± n. 
(3.lOb) 

FromEqs. (3.7) and (3.8b) it immediately follows that each 
element of 'iff J fulfills 

Nt/kim; JL) J = (2k + Iml + 1) Iklm; JL) J (3.lla) 

and 

N 2 Iklm;JL)J 

= (2/ + IJ + m + (1- JL)/21 + l}/klm;JL)J. 
(3.llb) 

Thus I kim; JL) J are common eigenfunctions of NI and N2 
with integer eigenvalues. With the help ofEqs. (3.9) we shall 
now find for r = 1,2 the action o(;t(J) and Ii ~(J) on any 
Iklm;p) J' By taking into account that uplv) = 81'_ v I - v) 
for JL,V = ± 1, we have 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 
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These formulas show that the subspace 
(If J ) lin C C i (Mex!) is invariant under all the operators 
Ar(J) and A ~(J), r = 1,2. Next we shall find with the help 
of them the intersection of (If J ) lin with the vacuum sub­
space V,: = {<I>EC i (Mex!): Ar (J)<I> = 0, r = 1,2}. 

Lemma 3.2: The subspace ~~ac: = (If J )Iin n VJ is 
spanned by linearly independent functions 

E 'IIJ = J! 100 - m; + )J' - m (1Tm! )112 
2(J - m)! 

(3.13 ) 

for m = O,I, ... ,J, i.e., dim ~tC = J + 1. 
Proof By Eqs. (3.12a) and (3.12c) one sees that for 

m = O,I, ... ,J the functions 100 - m; + )J are in ~~ac. On 
the other hand, let 'IIE~~ac, i.e., 

'II = I Cklm I kim; +)J + I dklm I kim; -)J 
kim kim 

andA) (J) 'II = A2 (J) 'II = 0. The first of these conditions im­
plies, with the help of (3.12a), (3.12c), and linear indepen­
dence of Iklm:p,)J' 

'II = I I COlm 101m; + )J + I I dOlm 101m; - )J> 
I m<O I m>O 

and then A2 (J) 'II = ° by (3.12b) and (3.12d) yields 
J 

'II = I Coo_mlOO - m; + )J. • 
m=O 

We shall use shortened notation 
- -II - -II 

% J == %(A) (J), A I (J),A2(J),A 2 (J»). 

Proposition 3.3: ( a) One has ~ J == % J 'II J C ( If J ) lin' 

(b) To each nonzero 'IIE~~ac there exist T,SE% J such that 
'II = l' 'II J and 'II J = S'II. 

Proof: The first statement is due to 
'IIJ =(1T/2)J!)1!21000;+)JEIfJ and to invariance of 
(If J )I;n under Ar (J) and A ~(J) for r = 1,2. By Proposition 
3.4 and Lemma 3.1 of Ref. I and by Lemma 2 one sees that 
Br_ s: = HAr (J), A ~(J)}, r,s = 1,2, generate an irreducible 
representation of gl(2,C) on ~;ac, which is equivalent to 
(b). • 

Lemma 3.4: The projections P ± : = ! ® (l ± 0"3) belong 
to % J' 

Proof It is sufficient to show I ® 0"3E% J' Consider the 
second-order Casimir element C2 ofsp(4,R); it can be ex­
pressed as a biquadratic polynomial function of the odd ele­
ments ar and a _ r = a~, r = 1,2; hence 1TJ (C2)E% J' On the 
other hand, by (3.1) and Theorem II.3 of Ref. 4 one finds 
1Tj (c2 ) = ~ ® (2J + 1 - 0"3)2 - 8 and thus I ® 0"3 is a linear 
combination of the identity and 1TJ (C2 ). • 

Now it is not difficult to show that If J is a basis of the 
subspace ~ J' In view of Proposition 3(a) we only must find 
for each Iklm;p,)J an operator TE% J such that 
I kim; p,)J = 1'1000; + )J' which can easily be done with the 
help ofEqs. (3.12) (see Appendix A). 

We will further prove that ~ J has no proper subspaces 
invariant under Ar(J) and A ~(J) for r = 1,2. This assertion 
holds true if any nonzero 'IIE~ J is a cyclic vector; by taking 
into account that'll J -1000; + ) J is cyclic by the very defini­
tion of ~ J, and making use of ~ J = (If J >Un and of the 
second statement of Proposition 3, one sees that it suffices to 
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find for each nonzero 'liE ( If J ) lin an operator SE% J that 
transforms 'II into a nonzero element of the vacuum sub­
space ~;ac. Moreover, because of Lemma 4, we can assume 
that 'II belongs to one of the subspaces P ± 9 J' Then the 
sought operator S can again be found by applying Eqs. 
(3.12) as is shown in Appendix A. 

The fact that If J is a basis of ~ J facilitates introducing 
a scalar product on ~ J such that the *-condition (1.3) will 
hold. Consider the Hilbert space K: = L 2(Mext ,dp dq; dz) 
® C2 ==L 2 (M.x! ) ® C2 and denote by (- , .) the scalar prod­
uct on K. As If J is an orthonormal basis in K, the relation 
~ J = (If J ) lin means that ~ J is a dense subspace in K. 
Furthermore, invariance of ~ J under all operators in % J 

implies that the *-condition (1.3) is equivalent to 

(klm;J.lJ IAr (J) Ik' I'm'; p,j) 

(3.14) 

for r = 1,2 and all vectors I kim; p,) J, Ik'/ 'm'; p,') JEIf J' This 
condition is indeed fulfilled, as can be checked by a direct 
calculation with the help ofEqs. (3.12) andorthonormality 
relations. 

We have thus derived basic properties of representations 
1T J that can be summarized as follows. 

Theorem 3.5: For each J = 0,1, ... , the map Z~1TJ(Z), 
defined via the operators (3.4) and the Racah basis of 
B(0,2) by 

1TJ (ar ):=Ar (J), 1TJ(a_r):=A~(J) (r= 1,2) 

and 

1TJ (bjk ): = H1TJ (aj ),1TJ (ak )} (j,k = ± 1, ± 2), 

is a *-representation of B(0,2) on L 2(R+ X ( - 1T,1T) 
X R +) ® C2 with domain ~ J = (If J hn given by Eqs. 
(3.10) and projection P + =! ® (l + 0"3)' Moreover, 1TJ is 
algebraically irreducible, its vacuum is (J + 1 )-fold degen­
erate, and the representations 1T J and 1Tj are nonequivalent if 
J#J'. 

Proof: Only the last assertion has not been proved. Sup­
pose 1T,. = U1TJU-); then one has ~;":" = u~;ac (see 
Lemma 2) and hence 

J' + 1 = dim ~~~c = dim ~~ac = J + 1, 

i.e., J = J'. • 
IV. ADDITIONAL PROPERTIES OF REPRESENTATIONS 

A. Essential self-adlolntness 

We have seen that the operators Ar(J) and 
A_r(J) =A~(J), r= 1,2, can be regarded as densely de­
fined operators on L 2 (Mex! ) ® C2 with the common invar­
iant domain ~ J = (If J ) lin • Consequently, any TE% J is 
also a densely defined operator, which is symmetric if I'll 
= 1; this immediately follows by the *-condition (1.3). It 

turns out that the results of Ref. 1 concerning essential self­
adjointness can be generalized for polynomial functions of 
operators Aj (J) withj = ± 1, ± 2. _ 

Lemma 4.1: LetE = 1,2, ... , andBp be a product of any p 
elements of the set {Aj (J):j = ± 1, ± 2}. Then one has for 
each I kim; p,) JEIf J> 
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- p 
IIBplklm;,u)JII2«;;2P II (nkl + Iml +J+ 1 +j) 

j=1 

=2P llkl:.! , (4.1 ) 

where nk/ : = max{k,l}. 
Prooj- Let Bo: = I; then, for p = 0,1, ... , one has 

Bp + I = BpAjp [hereafter we write Aj instead of Aj (J) and 
similarly Iklm;,u) =: Iklm;,u)J]' wherejpE{ ± 1, ± 2}, and 
the assertion can easily be proved by induction using Eqs. 
(3.12). For example, ifBp+ 1 = BpAl' then wegetfor,um> 1 

IIBp+ 1 I kIm; ,u)1I 2 = 2(k + Iml )IIBp I kim -,u; - ,u)1I 2 

«;;2P + l(nkl + Iml)llkl:.!-It' 

Now for ,um> 1 we have 1m -,ul =,um - 1 = Iml - 1 and 
P 

llkl:.!-It < II (n kl + Iml + J + 1 + j) 
l= I 

llU:n+ I) 

=--------nkl + Iml + J + p + 2 ' 

hence 

IIBp+ llklm;,u)112 

(p+ I) 
<2P + 1 IT . 

tJ!. • 
Clearly, there are at most 4P different operators 

B ~r) =:Bp (1 «;;r«;;4P); the above lemma combined with the ar­
gument we have used for proving Proposition 4.5 of Ref. 1 
yields the following assertion. 

Proposition 4.2: For p = 1,2,4 and arbitrary complex 
a I, ... ,a"", let 

_ "" -
P . - '" a B (r) p' - £.. r p • 

r= 1 

Then each I kim; ,u) is an analytic vector of 7\ and P2 and a 
semianalytic vector of P4• In addition, a sufficient condition 
for Pp to be e~sentially self-adjoint (e.s.a.) reads Pp = P! for 
p = 1,2 and pp>o for p = 4, respectively. 

As an important example consider, forj,k = ± 1, ± 2, 
the operators [cf. Eq. (3.6)] 

P~jk)=:i~k: = U/4)({Aj ,Ak} - {A _j,A _ k}) 

-l({A -j,Ak} + {Aj,A -k}) (4.2) 

and 

P Ii) =:1jYJ: = 1j2- 1/2 (Al + iA _j)' 

In view of AJ=A_l one has (Pijk»II=p~jk) and 
(P I j»11 = P p), i.e., all these operators are e.s.a. Conse­
quently, there is a basis in B(0,2) such that the 1TJ images of 
all its elements are e.s.a. operators (see Sec. II of Ref. 1). 

With the help of operators P ilk) we can further con­
struct 

a=:P4 : = L (Pi jk»2 = - L 11 ; 
j,k = ± I. ± 2 j.k = ± I. ± 2 

j;.k j;.k 
as «P ijk) )2'1','1') = liP ijk)'I' 112>0 for any 'l'eii' J, we have 
a>o and, consequently, a is e.s.a. Now a is the Nelson oper-
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ator for the representation of sp( 4,R) -so(3,2) that arises 
by restricting 1T J to the even subalgebra of osp ( 1,4 ). In view 
of the Nelson theorem9 this representation can be integrated, 
which yields a unitary representation of the universal cover­
ing group for the component of unity of SO (3,2). 

B. Reduction of 'frJ with respect to 50(3,2) 

In this subsection the 1T/S are regarded as representa­
tions of the real Lie superalgebra osp( 1,4). By Theorem 3.5 
the operator 1TJ (X) commutes with the projection P + for 
each even element xeosp ( 1,4 ), which means that the restric­
tion of 1T J to the even subalgebra so (3,2) of osp (1,4) is re­
ducible. In order to get the components of1TJ t so(3,2) cor­
responding to the projections P + and P _: = I - P +' let us 
introduce matrices E ± : = (l ± 0"3)/2, so that P ± 

= 1 ®E± ; now eachxeso(3,2) equals areal linearcombina­
tion of Xjk and by inserting 0"3 = l:1t = ± 1 ,uEIt into Eq. (3.6), 
we get 

1TJ (X) = L Tjlt) (x) ®EIt · (4.3) 
It= ± 1 

Here Tj/l) (x) is an operator on L 2 (Mext ) with the domain 
D J + (1 -1t)/2' where, for p = 0,1, ... , we have denoted 

Dp:={lklm)p: l,k=O,I, ... , m=O,±I''''}lin (4.4a) 

with 

Iklm)p (p,rp,z): = f~ml( p)fim + pl(z) [e imtp 1(21T) 1/2] 
(4.4b) 

[notice that for each p the set {Iklm)p: _k,I=O, ... , 
m = 0, ± t, ... } is an orthonormal basis in L 2(M,xt)]. By 
Eq. (4.3) one sees that Xl--+Tj/l) (x) is a representation of 
so(3,2) on L 2 (M,xt ) for both,u = ± 1. 

With the help ofEqs. (3.6) we easily find the operators 
1-j!l)(X); e.g., we get 

Tj/l)(xd = - i[ a; - Z-2(J +! - i arp)2] 

- i,uZ-2(J +! - i arp). 

In general, one has, for any xeso(3,2), 

Tj/l) (x) =a(x) +(J+ (1-,u)/2)f3(x) 

+ (J + (1 - ,u)/2)2r (X), ( 4.5a) 

where a(x), {3(x), and rex) are differential operators on 
L 2 (M,xt) that do not depend on J and,u. It thus holds, for 
J = 1,2, that 

(4.5b) 

Let us further set To: = T& + ); then TJ is, for each J = 0,1, ... , a 
representation of soC 3,2) on L 2 (M,xt ) with the domain D J> 

which is related to T J by [cf. Eq. (4.3)] 

TJ(x)lklm)J ® 1+) = 1TJ(x)lklm; + )J' xeso(3,2). 

This relation implies that T J is a skew-symmetric representa­
tion since all the operators ~k = 1T J (xjk ) are skew symmet­
ric. 

Now the Hilbert space L 2 (M,xt ) ® (;2 can be identified 
withL 2 (Mext ) G'JL 2 (M,xt ); accordingly, thesoughtdecom­
position of 1TJ t so(3,2) reads 
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1TJ tso(3,2) =rJEBrJ+I, J=O,I, .... 

Are the representations r J algebraically irreducible? The fol­
lowing proposition shows that this is not the case for roo 

Proposition 4.3: One has ro = reven EB r odd' where reven 

and r odd are skew-symmetric representations of so (3,2) on 
L 2 (Mext ) with domains Deven: = [(l + R)/2]Do and 
Dodd: = [(l- R)/2]Do, respectively, and R is the unitary 
operator of reflection with respect to cpo 

Proof' Equation (4.3b) yields Iklm)o( p,cp,z) 
=f~ml( p)flm'(z) [eim<p 1(21T)1/2]; thus 

R Iklm)o = Ikl- m)o, 

forallk,l,m. Consequently, DoisR invariant; further, R 2 = I 
implies that (l ± R)/2 are orthogonal to each other and 
hence Do = D even EB Dodd' It remains to verify that 
RrO(Xjk)R -I = rO(xjk ), forj,k = ± 1, ± 2 andj >k; how­
ever, this is obvious by Eqs. (3.6). • 

The problem of reduction of 1T J with respect to so (3,2) 
is completely solved as follows. 

Theorem 4.4: With the above notation one has 

1TJ t so(3,2) = rJ EB rJ + I' 

for J = 1,2, ... , and 

(4.6a) 

1To t 80(3,2) = reven EBrodd EBrl , (4.6b) 

where r even ' r odd' and rJ for J = 1,2, ... are algebraically irre­
ducible skew-symmetric representations of so(3,2) on 
L 2 (Mext ). 

Proof: Since the decomposition (4.6) has been derived 
above, it remains to prove algebraic irreducibility. This can 
be done in the same way as in Theorem 3.S, i.e., for each pair 
of vectors cp, '" belonging to the domain of the representation 
under consideration one finds an operator 

T<p",E%' (r(bjk ): j,k = ± 1, ± 2, j >k) 

such that cp = 1''1'''' ",. However, the .eroblem is more compli­
cated because the "<><!.d" operators A j are no more available; 
in fact, constructing T<p'" explicitly is a tedious business and 
we shall not reproduce it here. 

There is another approach for proving algebraic irredu­
cibility, which is based on essential self-adjointness of the 
Nelson operator a for each of the representations 
1TJ t so(3,2). As a equals the direct sum of the Nelson oper­
ators aT for individual irreducible components r of 
1T J t soC 3,2), essential self-adjointness of a implies that each 
aT is e.s.a., so that r is integrable. Then, with the help of one 
theorem due to Harish-Chandra,1O one can show that r is 
algebraically irreducible if the only bounded operators on 
L 2 (Mext ) that commute with rex) for each xEso(3,2) are 
multiples of identity. Details will be given elsewhere. • 

Remark 4.5: Let r be any of representations r even ' r odd' 

r 1,r2, ••• and denote the domain of r by D. Now r is skew 
symmetric and irreducible and for the central element 

i 1 2 
z: =-2 (b l _ 1 +b2 - 2 ) =- L (x" +x_ r _ r ) 

2 r= I 

of the maximal compact subalgebra kCso(3,2), which is 
isomorphic to u(2) (see Remark 3.2 of Ref. 1), one has 

r( - iz) = ~N t D>O. 

Hence each r is in the Evans list ll and in order to write it 
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down in the Evans notation we only have to find the corre­
sponding weight diagram. To this purpose is needed in the 
first place the direct-sum decomposition of the domain D in 
terms of eigenspaces ff(A.) of !N t D. Since N = NI + N2, 

one finds by Eqs. (3.11), that for J = 0,1, ... the eigenvalues 
of r J ( - iz) read 

A.~J)=JI2+s+ 1: s=O,I, ... , 
and 

dimff(A.!J» = (s+ I)(J+s+ 1). 

In the second place each ff(A. !J» has to be expressed via 
direct sum of representation spaces of irreducible represen­
tations ofsu(2). To this end it suffices to determine the spec­
trum of the operator 

~rJ (b2 - 2 - bl _ l ) t ff(A. !J» = !H t ff(A. !J» 

including multiplicities. This can easily be done and the 
sought decomposition reads 

J/2+s 

ff(AY» = EB v., 
j=Jl2 J 

each J-j being a (2j + 1) -dimensional space that carries the 
irreducible representation of su (2) with the highest weight 
2j. Now the weight diagrams of the representations 
r even ' r odd' and rIo for J = 1,2, ... , can immediately be deter­
mined, and using them we find that these representations 
appear in the Evans list as Pit, pit, and P /i2 + I,J /2' respec­
tively. 

v. FOUR· AND MORE-COMPONENT 
REPRESENTATIONS 

This section deals with the remaining families {fl4m }, 

m = 1,2, .... Let us start with recalling some of their basic 
properties as given in Ref. 4. The representations in {fl4m } 

are labeled by a real {) (Ref. 12) taking values in 

Y m : = (m - 1)/2, + 00). (S.I) 

For each fl(it)E{fl4m } the odd generators Aj({)=Aj 
: = fl (IJ) (aj ),j = ± I, ± 2, are expressed via four 4m X 4m 
matricesA,B,C,D [seeEqs. (2.3) and (2.S)] that depend on 
{); the even generators 

Bjk ({) =Bjk : = fl(it) (bjd = ~{Aj' Ak} 

contain only the following quadratic polynomials of 
A,B,C,D: 

S:BC-AD+ I, T:=H(BC+ 1)2-1], 

U: = - !({B,D} + 2AB), V: = - !({C,D} + 2AC). 

The matrices S, T, U, V are block diagonal and their block 
structure is determined by four orthogonal projections Fa on 
C4m that satisfy l:! = I Fa = I; their dimensions 
ma: = dim Ran Fa read 

m l = m + 1, m 2 = m - 1, m3 = m 4 = m. (S.2) 

One has Fa ZFp = 8 a _ pZ a, where Z = S, T, U, V and 
a, {3 = 1,2,3,4. In particular 

SIal =saFa, (S.3a) 

with 

(S.3b) 

and U (a) has nondegenerated spectrum 0-( U (a» 
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= {2j - 1 - ma:j = 1,2, ... ,ma}. Explicit knowledge of the 
block structure of A will also be needed. It appears that 

A a.fJ=Aa+2. fJ +2=0, a,/3= 1,2, (5.4) 

all the remaining blocks A (y.,s) being n X (n + 1) or 
(n + 1) Xn matrices of rank n: = min(my,m,s) such that 
the following implications hold for the solution ofthe equa­
tion A (y.M C = 0: 

my = m/j + l~c=O, (5.Sa) 

my = m/j - 1 ~ unique normalized solution 

ceRan Ft; exists. (S.Sb) 

Now we are prepared to analyze the necessary condi­
tions according to Proposition 2.1. Let J = 0,1,... and 
m = 1,2, ... be given; we are looking for all {feY m for which a 
vector ceC4m exists such that Ac#O and the components 
c(a): = Fa c, 1 <;a<;4, satisfy 

(0 sacCa) = 4( 1 - VI - J 12)c(a), for some vI;;;'O, 

(ii) sa (Ac) (a) = (2J + 2)(Ac) (a), 

J 

(iii) n (u(a) + J - 21)c(a) = O. 
l~O 

The first condition is fulfilled iff 4( 1 - VI - J/2) is in the 
spectrum of S. According to Eq. (S.3b) there are four possi­
bilities; let us discuss, e.g., the case 

4( 1 - VI - J /2) = - 4{f. (5.6) 

As {f must be positive [see (5.1)), one gets by (i) and (S.3b) 
c(l) = C(3) = O. 

Further, condition (ii) always gives 

(AC)(4) = (AC)(2) = O. 

By Eq. (5.4) the first ofthese equations becomes A (4.2)C(Z) = 0 
(since c(l) = 0), which, with the help of (5.2) and (S.Sa) 
yields d2

) = o. On the other hand, the second equation, 
which can be rewritten asA (2.4)C(4) = 0, has by (S.5b) non­
zero solution c(4). Now, inversing the implication (S.Sa) 
gives C(4)#0~0# (Ac)(J) = A (JA)C(4), i.e., Ac#O, and by us­
ing condition (ii) for a = 1, one has 

J=m-1. 

Hence in the case (5.6) a nonzero c fulfills the conditions 
(i), (ii), andAc#O iff the only nonzero component of cis C(4) 
and J = m - 1. Inserting into (5.6) and using (5.1) yields 
VI = 1 + {f - (m - 1)/2> 1; for the corresponding eigen­
value V of N({f): = O(U)(b l _ 1 + b2_2) one finds by Eqs. 
( 1.8), 

V = 2vI + J = 2 + 2{f. 

Finally, as c(l) = C(2) = d3
) = 0, condition (iii) becomes 

m-I 

II (U(4) + m - 1 - 21)d4 ) = O. 
I~O 

However, the numbers 21 + 1 - m, I = O,l, ... ,m - 1 are just 
all the eigenvalues of U(4) and thus (iii) is fulfilled identical­
ly. 

One can proceed similarly in the other cases when the 
rhs of Eq. (5.6) is replaced by 2m, - 2m, and 4{f, respec­
tively. Our analysis of existence of HW vectors '11 J for the 
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families {04m}, m = 1,2, ... , can then be summarized as fol­
lows. 

Proposition 5.1: (a) For each o.(U)e{o.4m }, i.e., 
() > (m - 1) /2, there exists a HW vector '11~~ Z = '11 m _ Z 

given by 

'11 m _! (p,rp,z) = ( pz) Z12exp( - (p2 + r)12) 

xzm- I ( pz sin rp)u- (m-!)!2®c, 

(5.7a) 

where c(l) = d2) = C(3) = 0, and c(4) satisfies A (2A)c(4) = O. The 
corresponding eigenvalue of N( {f) reads 

V = 2 + 2{f. (5.7b) 

(b) If m;;;'2, then no further HW vectors exist for any 
o.(.1)e{04m}' For o.(.1)e{04} there are two more possibili­
ties: 

(i) 'I1~(p,rp,z) = (PZ)1/2exp( _p2;r) 

X(pzsinq» -'0 m 0<,1<1, 

( S.8a) 

with N({f)'I1~ = (2 - 2{f)'I1~; and (S.8b) 

(ii) 'I1 1(p,rp,z) = (PZ)Z/2 exp( _pZ;ZZ) 

X (psinq>" 0 [ - il Q~ I, 
(5.9) 

withN(1)'I11 = '11 1' 

The following simple argument enables us to reduce the 
case (5.8) and exclude (5.9). Suppose that for given 0.(.1) a 
HW vector '11 J is known and construct the subspace .fiJ J 

according to Eq. ( 1.7). If a scalar product on .fiJ J exists such 
that 0. (.1) ~.fiJ J satisfies ( 1. 3 ), then for any 
Te%,(A ± I ({f).A ±2 ({f») one has, for the norm of 
'11: = T'I1J> 

11'11112 = ('I1J ,T# T'I1J ). (5.10) 

As Tt$ T'I1J = ~JJk '11k, where each Mk is a monomial in 
A ~=A _" r = 1,2 and 'I1 k e.fiJ;ru:=.fiJ J n.fiJ vac,3 one finds by 

-11-Eqs. (Ll), (1.6), and (1.8) that ('I1J ,T T'I1J ) 

= c({f,J)II'I1J I1 2
• The necessary condition (5.10) is not ful­

filled if c( {f,J) < O. For c( {f,J) = 0 this condition is violated 
if T '11 J #0. 

Consider first the case (5.9). Equations (1.8) yield, for 
r= 1,2, 

Nr({f)'I1I=Nr'l1I=!ArA~'I1I=Vr'l1!, vI:=O, v2:=1. 

Further, F'I1z=HAI.AU'I1! =0 and FE'll! ='11 1, where 
E=!{A2 .An [see (1.5) and 0.6)]. Then the relations 

. - -t$-t$ 
( 1.1) YIeld, for T = A 2 A ! , 
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- - - - -11--11 Til T'III =A I(2N2 -A 2A 2)A 1'111 
- - - -II - -11-

= 4N2N I'III -AlA 2 (2E -A IA2)'II1 
- -11- -= - (2F-A 2A I)2E'II1 

-II -- -= - 4'111 + 2A 2 (EA I +AI)'III = - 4'111, 

The necessary condition (5.10) is thus violated; consequent­
ly, the case (5.9) cannot yield any *-representation. 

Let us pass to the case (5.8), for which one has 
NI(il)'II~=N2(il)'II~=(1-il)'II~, and let T 
= ! [ A , ( il),A ~ ( il) ] . Proceeding as above, we find that the 

rhs of (5.10) now equals 2(1- il)(l- 2il)II'II~112; hence 
the case (5.8) yields no *-representation for ilE(!, 1]. Final­
ly, if il = !, a direct calculation using explicit formulas for 
A ~ (p [see Eqs. (2.3), (2.5), and (5.11) below] gives 

(1'1<~)( P.",,,) ~ 4ipz exp( j; Z}sin "') ", ® m 
so that no *-representation can be obtained for il = ~, either. 

By adding these results to Proposition 5.1, we arrive at 
the following conclusion [for a given O("')E{04rn} we set 

(,.,) - - -~rn (A)=~{A±I(il),A±2(il»). 
Theorem 5.2: If for some O("')E{04rn}' m = 1,2, ... , a 

subspace ~ of 4m-component vector functions belonging to 
C OO{R+ X (0,1T) XR+) exists such that 1T=O("') t ~ is an 
irreducible representation of B(0,2) with finite-degenerated 
vacuum and satisfies the *-condition (1.3) for some scalar 
product on ~, then 1T equals to one of the following: 

(a)r;I')=O("') t ~;~ I (A)'IIJ , 

J = O,I, ... ,il>J /2, 

with the HW vector 'IIJ given by (5.7a) and (J + 1)di­
mensional vacuum subspace; 

(b) pC"')=Oc,.,) t ~\"')(A)'II~, O<il<!, 

with the HW vector (5.8a) and nondegenerated vacuum. 
Remark 5.3: The representations listed in (a) are exact­

ly all the massive representations of Ref. 5, the parameters 
Eo and j being related to our il and J by Eo = 1 + il and 
j=J /2. 

The last problem to be solved is conversing the preced­
ing theorem and reducing the representations 1TJ") andpc",) 
with respect to the sublagebra so(3,2). Only the representa­
tions 1T6"') will be considered; the remaining cases can be 
treated similarly, however, detailed calculations have not 
been finished yet. In the rest of this section it is thus assumed 
J = 0, i.e., m = 1, and il>O. 

It turns out to be convenient to transform the 4 X 4 ma­
trices A,B, ... , which are explicitly given in Ref. 4, by a 
unitary matrix R such that T': = R TR - I becomes diagonal. 
The result is expressed via Pauli matrices as follows: 
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A ' = 0"1 ® 0"3' B' = iO"I ® 0"2' 

C' = 2ilO"I ® 0"1' D' = i0"2 ® (0"3 - 2il), 

S' = (1 + 0"3) ®l + 2ilO- 0"3) ®0"3' 

T' = ill ® (il + 0"3)' 

(5.11) 

u' = -!(1 + 0"3) ®O"I' V' = - iil(1 + 0"3) ®0"3' 
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The matrices S', T'. U'. V' are block diagonal. the di­
mensions of the blocks being 2,1.1 [see (5.2)]. The opera­
tors we obtain by inserting the matrices (5.11) into Eqs. 

. - - -II (2.3) and (2.5) wIllbedenotedAr(il)=A r andA "r= 1.2. 
Similarly, 

Bjk (il) =Bjk = ~{.Aj,Ak}' j,k = ± 1. ± 2. 

where A _ r = A ~ for r = 1,2. In particular. for the operators 
Nr=Br_r Eq. (2.6) yields 

N - I [p2 _ J 2 + p-20 ] 1-2 pl. 

N2 = Hr - J; + z- 20 2 ]. 
(5.12a) 

with 

0 1: = - J~ -! + (sin (ji)-2 ® T', 

O2 : = 0 1 - 2iJ", ® U' + icot(ji® V' - 2T' + !S' + 2il 2
• 

(5.12b) 

Our next goal is finding common eigenfunctions of oper­
ators 0 1 and O2 on the space C 4' (0,1T) of four-component 
vector functions that are Coo on (0.1T). Consider for 
m = 0.1 •... and 1<n<4 the following elements ofC 4'(0,1T): 

{

VC"'+ 1/2) ®e n = 1 3 
Im,n),.,: = ~"'-1/2) n' , • 

Vrn ®en , n = 2,4. 
(5.l3a) 

Here the vectors en EC4 are related to the basis (3.5b) by 

e1: = 1 + ) ® 1 +). e2 : = 1 + ) ® 1- ), 

e3:=I-)®I+). e4:=I-)®I-). 
(5.l3b) 

and the functions V<,!)EC 00 (0.1T) are defined for /3> - 1 via 
the spherical functions p~l') or Jacobi polynomials P ~a, fJ) 

(see Ref. 8): 

= (sin (ji )fJ + 1/2 y<,!)m! 

2 r( /3+ m + 1) 

xP <,!' fJ) (cos (ji), (5,l3c) 

where 

C fJ): = [( 2 /3 + 2m + 1) r( 2/3 + m + 2) ] 1/2. 

Yrn (2/3 + m + l)m! 

One has for each m = 0.1, ... and/3> - 1. 

[ - d ~ + ( /3 2 
- !)/(sin (ji)2] v<,!) = (m + /3 + !)2V<,!) 

and 

T'en = [(il- ( - 1)n/2)2 - !len' 1<n<4. 

Then the first of Eqs. (5.12b) gives. for m = 0,1 .... and 
I<n<4, 

0 1Im.n),., = [(m + il- ( - 1)n/2 +!f - !llm.n),.,. 
(5.14 ) 

By using Eq. (5.11). we see that this relation holds also for 
O2 if n = 3.4. whereas for n = 1.2. functional relations satis­
fied by the functions v<,!) (see Appendix B) yield 

0 2 Im,I) tt = [(m + il + 1)2 + a - 2il ] Im.1),., 

+ 2[(m + 1)(2il+ m + 1)]1/2Im + 1,2),.,. 
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0 21m + 1,2)0 = 2[ (m + 1) (U) + m + 1)] 1/2Im,l)o 

+ [(m + t? + 1)2 + ~ + 2t?] 1m + 1,2)0' 

Thus the subspace {Im,l)o, 1m + 1,2)o}lin is invariant un­
der O2; at the same time this is an eigenspace of01 [for the 
eigenvalue [(m + t? + 1)2 - il, see (S.14)]. By taking 
proper linear combinations of Im,l){J and 1m + 1,2)0' we 
find that besides Im,3){J and Im,4){J' m = 0,1, ... , there are 
further common eigenfunctions of01 and O2: 

1m, + ){J: = ( m )1I21m - 1,1){J 
2t?+ 2m 

+ ( 2t? + m )I/Zlm 2) 
2t? + 2m '{J' 

1m, ){J: = ( 2t? + m + 1 )1I2 Im,l) 
2(t?+m+l) {J 

( 
m + 1 )112 

+ 2(t? + m + 1) 1m + 1,2){J' 

m 0,1, .... 

The corresponding eigenvalues of 0 r' r = 1,2, are given by 

A.1(m,j.l) = (m + t?+ 81'+ 1)2 -~, 

A.z(m,j.l)=(m+t?+81'_1)2-!, j.l= ±1, 

A.r(m,n) = (m + t? + 4 - n)2 - a, 
for r = 1,2, n 3,4. 

Now one finds by Eqs. (3.8b) and (S.12a) that for 
k,l,m = 0,1, ... the vector functions 

I kim; j.l) {J ( P,cP,z): = f~m + 0 + b,
-,+ 1\ P )fim + {J + b,,_ 1) (z) 

® 1m, j.l){J (cp), j.l = ± 1, 

® Im,n)o(cp), n = 3,4, (S.ISa) 

satisfy 

[NT - (2jr + m + t? + 381'+ I + j.lr)] I kim; j.l){J = 0, 

[NT - (2j, + m + t? + S - n)J Iklm;n){J = 0, (S.ISb) 

wherer 1,2andjl: k, j2: = I. NoticethattheHWvector 
(S.7a) can be written as follows: 

'110 2- 0- 1(1Tr(2t?+ 1))1!21000;4){J' (S.16) 

The action of the operators A r ( t?) and A ~ (t?), r = 1,2, 
on the vector functions (S.ISa) can be found by direct calcu­
lation. The resulting formulas given in Appendix B show 
that the subspace 

!!P {J = ()f {J)lio' 

)f {J: = {lklm;j.l){J' Iklm;n){J: k,l,m = 0,1, ... , 

j.l = ± t,n = 3,4} (S.17) 

is invariant under all of them and, as l{IoE!!P {J, the domain of 
1T{/) fulfills 

~l{J)(A)l{IoC!!P{J, t?>0. (S.18) 

Moreover, each ofthe vector functions (S.lSa) is in 

L ~ (M): = L 2(R+ X (0,17') XR+) ® (;4. 
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This can be checked with the help ofEqs. (3.8a) and (S.13c) 
showing that 

v;!) (cp) - (sin cp) /3+ l/2p m (cos cp), 

where Pm is a polynomial of degree m; hence v;!)eL 2(0,17') 

for any f3> - 1. In fact, the sets {v;!): m = 0,1, ... } and 
{fia

): k = O,l, .. .} are orthonormal bases in L 2(0,17') and 
L 2(R+), respectively, for all a, f3> - 1 (see Ref. 8, 
§8.904); hence )f {J is an orthonormal basis in L~(M). By 
using this fact and the explicit formulas of Appendix B, one 
easily verifies that n({J) t !!P {J fulfills the *-condition (1.3) 

for the L ~ CM) scalar product. The formulas of Appendix B 
also show that for any 'IIE!!P {J such that Ar I{I 0, r = 1,2, 
one has 1{I-1000;4 > {J (cf. Lemma 3.2), i.e., the representa­
tion n({J) t !!P {J has a nondegenerated Vacuum. 

Let us finally examine questions of irreducibility [notice 
that if one proves algebraic irreducibility of n ({J) t!!P {J, then 
equality will hold in (S.18), i.e., n({J) t !!P {J = 1T~{J)]. Con­
sider the subspaces !!Pif')C!!P {J, a = 1,3,4, where 

!!P~I): = {lklm;j.l){J: k,l,m = 0,1, ... ,j.l = ± Glin , 

!!Pif'): = {lklm;a){J: k,l,m = O,I'''.}lin, a = 3,4. 

AsthematricesS', T', U', V'leaveinvariantthecorrespond­
ing subspaces in (;4, each of !!P ~a) is invariant under all the 
operators Bjk ( t?), j,k = ± 1, ± 2; the representations 
Xl-*O({J)(x) t !!p~a), xEso(3,2), will be denoted 1'~a). 

Proposition 5.4: The representations 1'~a), a = 1,3,4, are 
algebraically irreducible. 

Proof: Let 1000;1){j: = 1000; + ){J and 
({J) - . 

~ I (B): = ~(Bjk (t?), J,k ± 1, ± 2) 

[cf. Eq. (1.7) J. It suffices to find to each nonzero 'IIE!!Pif') 
two operators Sa and TaE~ ({J) (B) such that 

I{I=SaIOOO;a){J' Tal{l=IOOO;a)o' (S.19) 

This can be done with the help of Appendix B [cf. the proof 
of assertions (i) and (ii) in Appendix A J . • 

The relations (S.19) also cover the essential part of 
proving irreducibility of n ({J) t!!P {j' if one can show that the 
projections P a onto the subspaces !!P if'} satisfy 

PaE~({J)(A), a = 1,3,4. (S.20) 

To this end we make use of the following property of the 
second-order Casimir operator fi ({j) (cz) of so( 3,2) that ob­
viously belongs to ~ \{j) (B) (cf. Lemma 3.4): 

O({J)(C2) = I® (S' +" - 4) = I® (S' + 4t?2 - 8). 

(See Ref. 12.) OnehasPa =I®Fa , whereFI projects onto 
the subspace of (;4 spanned by el , e2 and F3, F4 onto sub­
spaces {e3}lin, {e4}lin' respectively. Now Eqs. (S.3) yield 
S' = 2FI + 4t?(F3 - F4 ) and, due to this relation, each Fa 
can be expressed as a polynomial function of S' provided that 
the eigenvalues of S' are nondegenerated, i.e., t? ¥+ Then Pa 

equals the same polynomial function offi({J) (c2 ) - 4t?2 - 8 
so that PaE~({J)(B)C%;{J)(A). However, for t?= ~ we 
only find that P4 and PI + P3 are in % ;{J) (B). Unfortunate­
ly, the fourth-order Casimir operator of so(3,2) does not 
help since its eigenvalues corresponding to PI and P3 also 
coincide for t? = ~. 

Let us conclude this section by summarizing basic prop-
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erties of representations 1T~ ") = n (") t ~ ~ ") (A) for iJ> O. 
Theorem 5.5: (a) Each 1T~") is a *-representation of 

B(0,2) on L 2(JR+ X (0,1T) XJR+) ® (;4 and its domain equals 
Pfi" given by Eq. (5.17), the corresponding grading of 
End Pfi" (see Ref. 1) being determined by the projection PI 
onto Pfi ~I). 

(b) The vacuum subspace of 1T~") is one dimensional, 
spanned by the vector function 

'l'o(p,rp,z) = (pZ)"+1I2 

xexp( - (p2 + r)/2)(sin rp)" ® e4 • 

(c) Each 1T~ ") is algebraically irreducible and with re­
spect to so(3,2) reduces into three algebraically irreducible 
skew-symmetric representations. 

(d) The representations 1T~") and 1T~"') are nonequiva­
lent if iJ =1= iJ '. 

Proof: Only irreducibility of 1T~ ") and assertion (d) have 
not been proved yet. Irreducibility can be verified as in Prop­
osition 5.4: to each 'l'EPfi" one finds 8 and 1'E~ ~") (A) such 
that '1'=81000;4)" and 1''1'=1000;4)". This can be 
achieved by usingEqs. (5.19) and (5.20) and (see Appendix 
B)13 

A ~ 1000;4)" = - 7](2iJ + 2) 1/21000; + ) ", 
A21000; + )" = -7j(2iJ + 2) 1/21000;4)", 

[A~,A~]1000;4)" =2[(2iJ+2)(2iJ+ 1)]1/21000;3)", 

AzAII000;3)" = - [(2iJ+2)(2iJ+ 1)] 1/21000;4)", 

7]: = exp(hrI4). 

Finally, assertion (d) follows from Eq. (5.7b), which gives 
the lowest eigenvalue of N"(iJ) =BI_ I (iJ) + B2- 2( iJ).3 • 

VI. CONCLUDING REMARKS 

To our knowledge, infinite-dimensional representations 
of osp ( 1,4 ) have been treated in Refs. 5 and 14. In the former 
work irreducible *-representations have been classified ac­
cording to how they reduce with respect to so(3,2), and 
divided into four classes. The set {1TJ : J = 1,2, ... }is identical 
with the third class, whereas the representation 1T 0 belongs to 
the second class, which is labeled by a continuous parameter 
Eo>!; 1To corresponds to Eo = 1. The whole set 
{1TJ : J = 0, I, ... } just covers all the massless representations; 
the representation space of each of them are two-component 
vector functions. Similarly, the four-component representa­
tions 1T~ "), iJ> 0, of Sec. V are just all the massive representa­
tions in the second class. Finally, the fourth class is com­
pletely covered by representations {1Tj"): iJ>J 12}, 
J = 1,2, ... , that can be obtained from the families {n4 (J + I)} 
using the HW vector (5.7 a). Construction of these represen­
tations is in progress. 

In Ref. 5 explicit form of the representations under con­
sideration is not given. Progress in this direction has been 
attained in Ref. 14, where special attention has been given to 
representations with nondegenerated vacuum characterized 
by the order of parastatistics p> O. The authors of Ref. 14 
have constructed all the representations belonging to the 
first and second Heidenreich's class by giving explicit formu­
las for matrix elements of the odd generators in a concrete 
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basis. Their case I is for p = 1 equivalent to our 1T 0 and for 
p> 2 to 1T~2P - 4); further the case III, which contains repre­
sentations with degenerated vacuum labeled by q = q,2, ... , 
is equivalent to 1T2q (a counterpart to 1T1, the first member of 
Heidenreich's third class, is missing). The basis used in Ref. 
14 is related to the reduction of so(3,2) with respect to 
so(2,1) $so(2,1) and is quite different from the bases 
(3.10) and (5.17). The resulting formulas for the odd gener­
ators are much simpler in the latter bases; moreover, we give 
basis-independent expressions [see Eqs. (2.3), (2.5), (3.1), 
and (5.11)]. 
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APPENDIX A: ALGEBRAIC IRREDUCIBILITY OF 
REPRESENTATIONS 'lrJ 

In order to complete the proof of algebraic irreducibility 
sketched in Sec. III it remains to check the following two 
assertions (the notation of Sec. III is used, however we omit 
writing down dependence of A r> A r and I kim: fl.) on J). 

(i) For each I kim; fl.)E'lf J there exists 1'E~ J such that 
Iklm;fl.) = 1'1000; +). 

(ii) For fl. = ± 1 and any linear combination 

'1'1-' = I Cklm I kim; fl.) =1=0 (AI) 
kim 

there exists 8E ~ J such that S'l'1-' is a nonzero vector of !iJ ~ac, 
i.e., it equals a linear combination of 100m; + ), where 
-J<m<O. 

Explicit knowledge ofthe action on any Iklm; fl.) of A; 
and A ~2 will be needed. With the help of Eqs. (3.12) one 
finds 

- (i12)A i I kim; fl.) = [k(k + 1m!)] 1/21k - 11m; fl.), 
(A2) 

- (i/2)A ~ I kim; fl.) 

= [1(1 + 1fl.(J + m +!) - W] 1/21kl_ 1 m; fl.), 
(A3) 

(i12)A ~2Iklm; fl.) 

= [(k+ l)(k+ 1 + Iml)] 1/21k+ 1 1m; fl.), (A4) 

(i/2)A ~21 kim; fl.) 

= [(l + 1)(1 + 1 + 1fl.(J + m + !) _ !I)] 1/2 

X Ikl + 1 m;fl.). (AS) 

Now we get, by (A4) and (AS), 
- #2k- #21 A I A2 100m; fl.) = a(k,l,m, fl.) I kim; fl.), 

with some nonzero a (k,l,m, fl.). Hence (i) will hold if we 
find, for each fl. = ± 1 and m = 0, ± 1, ... , an operator 
1'~)E~ J such that 

100m; fl.) = 1'~)IOOO; +). 

Let us consider first the case - J<m<O. One has 

100m; - ) = 7][2(J + m + 1)] -1/2A ~ 100m; + ) (A6) 
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and then T~ +) can be found using Proposition 3.3(b) since 
100m; + )Eg~ac. If m<. - J - 1, we use 

100m; -) = -1j(2IJ + ml)-I/2A2Ioom; +) 

and further 

100m; +) 

= - (i/2)(lmllm +J 1)-1/2A~A ~ 100m + 1; + ). 

With the help of these relations we find that T ~ + ) 
is proportional to (A~A~)IJ+mIT'-+/ and T~-) 
= -1j(2Ij + ml) -1/2A2T~ +). Finally, form> Oweusem 

times 

100m; -) 

= - (i/2)(m(J + m + l))-I/2A~A~loom - 1; -) 

and then (A6) with m = 0, which gives T~-) 
-II-II -II - -- (A 2A I )mA 2' As for T~ +), Eq. (3.12c) shows that A2 

transforms 100m; -) into 100m; +), therefore T~ +) 
=A-T<-) 

2 m • 

For proving (ii) let us denote by k the largest kin (A 1 ) 
and by 7 the largest I for which c,<lm =1= 0. Further let m I (m2 ) 

be the minimum (maximum) of the set {m: CUm =l=0}. Then, 
by using Eqs. (A2) and (A3) and setting Su: = A fA iii, one 
gets 

(A7) 

the coefficients Cm being proportional to CUm' Let us consid­
er first the case /L = + 1. 

(a) If m2 > 0, then the relation 

i - -
--AzAlloom; +) 

2 

= {- (m(J + m»)1/2 Ioom - 1; +), m>l, 
0, m<.O, 

yields ( - (i/2)A;4dm,'I'~) = ( - l)m'(m21(J + m2)!/ 
1/2 . - - - m-Jl) cm,loom; + ), I.e., one can choose S = (AzAI) 'Su. 

(b) For m2<.0 and m l > - Jwe see that 'I'~)Eg~ac and 
thus only the case m l <. - J - 1 remains. By using 

i - ---AIA2Ioom; +) 
2 

= {- (I(J + mllmi)1/2loom + 1; +), 

0, m> -J, 

m<. -J-l, 

one sees that (AIA2)IJ+m,I'I'~) is proportional to 
loo-J; + )E.@~ac,and thus we setS= (A 1A2)IJ+m,lsu. 

Let us now suppose /L = - 1 in (A7). If Ar 'I'~) = ° for 
both r = 1,2, then 'I'~)Eg~ac, whence S = Su. If A I 'I'~) =1=0, 
we use 

mine -1m2) 

AI'I'~) = L Cm Iml l/2100m + 1; + ), 
m=m. 

and S is obtained by applying (b) to A I 'I'~). Finally, if 
A2'1'~) =1=0, then one has 

A2'1'~)= ~ cm(J+m+l) 1/2 Ioom+l;+). 
m =max( -J,m.) 

Now S = A2SU for m2<'0; otherwise one gets S by applying 
(a) tOA2'1'~). 
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APPENDIX B: EXPLICIT FORMULAS FOR 
REPRESENTATIONS 1T~") 

The action of operators Aj == 1T~ {j) (aj ) and Bjk == 1T~ {j) ( bjk ) , 
j,k = ± 1, ± 2, on the vector functions (5.15a) has been 
found by using Eqs. (3.9) and the following relations for the 
functions v<,!) (see Ref. 8, §§8.733 and 8.735): 

i(2f3 + 2m + 1) 1/2 cos qJv<,!) (qJ) 

=[(m+l)(2f3+ m + 1)]1I2v<P) ( ) 
2f3+2m+3 m+1 qJ 

_ [m(2f3+ m) ]1I2V<p) (m) 
2f3+2m-1 m-I T , 

(2f3 + 2m + 1) 1/2 sin qJv<,!~ I (qJ) 

= [(2f3+m)(2f3+m+ 1)]1I2V<p) ( ) 
2f3+2m+3 m+1 qJ 

+ [ m(m + 1) ]1I2V<p) ( ) 
2f3+2m-l m-I qJ, 

(2f3 + 2m + 1) 1/2 sin qJv<,!!.. I (qJ) 

= [(2f3+ m )(2f3+ m +1)]1I2v<p) ( ) 
2f3+2m-l m-I qJ 

+ m(m + 1) 1I2
V

<p) ( ) 
2f3+2m+3 m+1 qJ, 

[d<p + (f3 - !)cotqJ] v<,!)(qJ) 

= - i[ (m + 1 )(2f3 + m)] I 12v<,!+-/)(qJ) , 

[d<p - (f3 + !)cotqJ ]v<,!)(qJ) 

= - i[m(2f3+ m + 1)] I 12v<'!_+1 1)(qJ). 

It is convenient to calculate the action of operators A I and A ~ 
in the following orthonormal basis: 

~ ~1) == {I kim; /LA.){j: k,l,m = 0, ~ ... , /L,A. = ± 1} 

CL~(M), 

where 

Iklm;/L+ ){j: = Iklm;/L){j, 

I kim; /L - ){j 
:= (2~+2m+ 1-/L)-1/2 

X [(2~ + m +8,.+ I )1/2 Iklm;3+ 8,._1){j 

+ /L(m +8,.+ I )1/21klm - /L;3+ 8,.+ I){j]' 

Similarly, the action of A2 and A ~ will be expressed via 
vectors 

Iklm;/L+ ]{j: = Iklm;/L){j, 

Iklm;/L -]{j 

: = (2~+ 2m + 1 +/L)1/2 

X [(m +8,._1 )1/21klm + /L;3+ 8,._1){j 

+ /L(2~ + m +8,. _ I ) 1/2Iklm;3+ 8,. + I){j], 

which also form an orthonormal basis ~~2) CL ~ (M). By in­
troducing 
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j=O,I, ... , 

with 1]: = exp(hr/4) [notice thatlm.{J(j,p) = 0 iffj = 0 and 
p = 1], one has 

A.! kim; pA lu = Im,{J (k, p) Ik -Dp. _ I>lm; - p, - A ){J' 
-II A I 1 kim; pA){J 

= Im,{J (k + Dp. + I' - p) Ik +Dp. + 1,lm; - p, - A){J' 

A21 kim; p,A ] {J 

= p Im,{J (/, - p) Ik,/-Dp. + I,m; -/-l, - A ] ", 

A ~ 1 kim; p,A]{J = -/-llm,{J(/ + Dp. - I' /-l) 

X Ik,1 +Dp._ I,m; - p, - A] {J' (Bl) 

For proving algebraic irreducibility in Proposition 5.4 and 
Theorem 5.5 the following formulas for Brs=HAr,As}, 
r,s = 1,2, which directly follow from (B 1 ), have been used. 

Bl1lklm; /-lA lu 
= Im,{J (k, /-l )/m,{J (k - Dp. _ I> -/-l) Ik - 1,lm;p,...t~, 

-II --- ---
B 11 I kim; p,A){J = 1m,,, (k + 1, /-l) Im,{J (k + Dp. + I, -/-l) 

xlk+ 1,lm;/-lA}", 

B221 kim; /-lA ] {J 

= Im,{J (1- Dp. + I' /-l) !m,{J (I, -/-l) Ik,/- l,m;.u...t ] {J' 
-II --- ---
B 22 I kim; /-lA] {J = Im,{J (/ + Dp. _ I' /-l) Im,{J (/ + 1, -/-l) 

X Ik,1 + l,m;pA]{J 

BdOOm;/-l){J 

_[m({}+m+l)(2{}+m)]112100 1') 
- {} m - , /-l {J' 

+m 
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BdOOm;n){J 

= [m( {} + m + D3 _ n )(2{} + m - 1 + 2 D3 _ n)] 112 

{} + m - 1 + D3 _ n 

X 100m - l;n){J, n = 3,4. 
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Casimir operators for massless representations of the super-Poincare 
algebra and the reduction of the ten-dimensional massless scalar superfield 
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Invariant operators for the massless little algebra of SP d (super-Poincare algebra in d 
dimensions) are given. They are used to decompose the scalar (massless) superfield in ten 
dimensions. Explicit expressions for the irreducible pieces are obtained after exploiting a 
relevant Cartan subalgebra. 

I. INTRODUCTION 

The obtaining of explicit expressions for irreducible rep­
resentations of the N = 1 super-Poincare algebra in higher 
dimensions SP d by reduction of general superfields has been 
accomplished in the massive case thanks to a complete un­
derstanding of the Casimir operators involved. 1 An excep­
tion to this is the case d = 10 whose special difficulties have 
been pointed olit in Ref. 2. The massive representations in 
four dimensions had been understood long before due to the 
efforts of a number of authors. 3 The massless representations 
of SP 4 for any N have also been completely understood long 
ag04 by use of the method of induced representations. 

In this paper we analyze the massless representations of 
SP d and concentrate on the case d = 10, which is especially 
important in the authors' opinion given the current interest 
in superstring theories. Aside from that, it shares the special 
difficulties of the inassive case in d = 10 and, since the off­
shell extension of the massless case is the massive one, it is 
the only one whose off-shell extension is at present complete­
ly unknown. 

The paper is structured as follows. In Sec. II we estab­
lish our conventions and give the commutation relations of 
the super-Poincare algebra. Then, in Sec. III, we derive the 
little algebra whose representations will be the actual con­
cern of the rest of the paper. The formulas given there will be 
familiar from our knowledge of the four-dimensional case.4 

Section IV is devoted to giving the complete set of Casimir 
operators corresponding to the general case. In Sec. V we 
start our analysis of the massless scalar superfield in ten di­
mensions by giving the particular form of the Casimir opera­
tors suitable for this case as well as their eigenvalues and the 
corresponding SO ( 8) irreducible representations. We also 
give there some necessary field contents. 

We digress a bit in Sec. VI to explain how the Wigner 
method of induced representations works in this case. In Sec. 
VII we stop to give simplified forms of the relevant higher­
order Casimir invariants as well as a derivation of their 
eigenvalues. Finally, we return in Sec. VIII to the main ob­
ject of this paper in order to give explicit expressions for the 
irreducible pieces contained in the massless scalar superfield 
in ten dimensions. 

II. THE SUPER-POINCARE ALGEBRA SP d 

We will start this section by recapitulating some neces­
sary formulas from Ref. 1. The super-Poincare algebra in d 

dimensions SP d is defined by the commutation relations 

[PA,PB] =0, 

[JAB,P C] = - 2il5~ PB J ' 

[JAB,J CD
] = - 4il5[A [C JB J

DJ 
, 

[PA,Qa] =0, 

[JAB,Qa] = - (i/2)rAB
a

p QP, 

{Qa,Q/J} = (PC -I)aP, 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

(2.1e) 

(2.10 

where the Latin indices A,B,C,D run from 0 to d - 1 while 
the Greek indices run from 0 to 2[dI2 J, which is the dimen­
sion of the representation of the Dirac (Clifford) algebra in 
d dimensions [corresponding to the basic spinorial represen­
tation of SO ( I,d - 1) for d odd or the sum of the two basic 
spinorial representations of SO ( I,d - 1) for d even]. Brack­
ets enclosing a set of indices will denote complete antisym­
metrization with strength 1, as usual. The Dirac algebra in 
our conventions is 

{rA,rB} = 21JAB =2diag( + -'" -), 
and r tensors, again as usual, are 

r A,·. 'A n = rIAl r A,.·· rAn) . 

Here Q is a translationally invariant Majorana spinor, which 
can exist in all dimensions except 5, 6, 7 mod 8 (Ref. 5) and 
C is the charge conjugation matrix, Q = Q tr 0 = Q T C. 

The generators of SP d are realized in superspace as fol­
lows: 

P . a 
A=-la~' 

where l:AB represents the external spin operator which acts 
on the external indices of the corresponding superfield and 
(i/2) or AB (a lao) is necessary to describe the internal spin 
part. 

In addition to these generators, in superspace we can 
introduce a covariant derivative which, like Q, is a transla­
tionally invariant Majorana spinor, 

(2.3) 
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but which anticommutes with it, 

{Da,Q P} =0. 

Also 

{Da,D P} = _ (PC-1)afJ • 

(2.4a) 

(2.4b) 

In 2 mod 8 dimensions we can have Majorana-Weyl spin­
ors.5 Thus, in ten dimensions using the Weyl projectors, 

II(±l=!(l±rOl)' rOl) =rOr1•• ·r9 , (2.5) 

we can split Q in two pieces, 

Q (± 1 = II( ± lQ 

and similarly for D, 

D(±l=II(±lD. 

(2.6a) 

(2.6b) 

Here Q ( ± 1 and D ( ± 1 satisfy the Majorana condition. 
Hence we can define two simpler superalgebras,2 SP\o+ 1 and 
SP\o-l, whose gradings are, respectively, provided by Q(+l 
and Q ( - l. An obvious Casimir operator for the algebra 
(2.1) is the square of the momentum operator, 

(2.7) 

Depending on the eigenvalue of P 2, the irreducible represen­
tations of SP d , just like those of the Poincare algebra P d' can 
be separated into four categories (we discard the case 
Po<o): 

(i)p 2 =M2 >0; 

(ii) P 2 = ° but P A not identically zero; 

(iii) p 2 = _ M2 <0; 

(iv) PA = 0, VA. 

The representations that are interesting for physical applica­
tions fall into categories (i) and (ii). Category (i) is com­
posed of the so-called massive representations. 

III. LITTLE ALGEBRA 

We now proceed to look for the little algebra corre­
sponding to categories (i) and (ii). That is, we look for the 
generators ofSP d that leave invariant a particular form of P A 

which we choose to be the one corresponding to a collinear 
frame,4 

PA = poe 1,0, ... ,0, z) (3.1 ) 

with 

z = ~1 - (M IPo) 2 
, O,z,l, 

which clearly satisfies PAPA = M2. The massless limit cor­
responds to 

M .... O =} z .... l, 

while for z# 1, we are in the massive case. The even genera­
tors of SP d which leave invariant Eq. (3.1) are 

Lij=Jij' 

Li,d-l =Ji,d-l + zJOi ' i,j = 1, ... ,d - 2. 
(3.2) 
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They satisfy the commutation relations 

[Lij,L kl] = _ 4i8u[k Ljlll , 

[L L k,d-l] 2'~ kL d-l ij' = - luU j I ' (3.3 ) 

[Li.d_1,Lj,d-l] = -i(1-r)L/. 

Whenz# 1, wecannormalizetheLj,d_l generators to write 

[Lij,L kl ] = -4i8u[kLjlll, 

[Lij, ~lk~-; ] = - 4i8u[k Ljld-l l -..j-l-~-?-' (3.4) 

[
L. Lj,d-l] I,d-l _ -4'8 [jL d-ll 
T1""-::I' T1""-::I - I [i d - 1 I ' 

,,1-,.; ,,1-,.; 

which are the commutation relations of SO(d - 1). When 
z = 1, we cannot do that, rather we get from (3.3) 

[L L kl]- 4'~ [kL II ij' - - luU jI , 

[L L k,d-l] - 2'~ kL d-l ij' - - luU j] , (3.5) 

[Li,d_pLj,d_l] = 0, 

which is the Lie algebra of the Euclidean group in d - 2 
dimensions E(d - 2). This is the Wigner-Inonu contrac­
tion ofEq. (3.4). 

Now we tum to the odd part of the little algebra. Since 
the Majorana charges Q commute with the momentum, they 
will also be part of the little algebra. In order to clarify the 
meaning of the anticommutation relations (2.1f), we tum to 
the light-cone coordinates, 

ft=P rA=l(p r++p r-+p.ri ) r A 2+ - I' 

with 

P± =PO±Pd - 1 , r± =rO±rd- l . 

Then we can introduce the projection operators, 

II ± =!(l ± rO,d- I) . 

(3.6) 

(3.7) 

These projection operators playa very important role in the 
massless case. They satisfy the following relations: 

Making use of II ± we can split Q in two pieces, 

Q±=II±Q, 

which also satisfy the Majorana condition, 

Q ± = Q ± tr 0 = Q ± TC = QII =F 

because of the following properties of II ± : 

(3.9) 

(3.10) 

(3.11 ) 

From (2.1f) we can derive the anticommutation relations 

forQ± ' 
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{Q~ ,Q~ }=!p+(r+c-1)aP, 

{Q~ ,QP_ } = ~ P _(r-C-1)aP, 

{Q~ ,QP_} =pi(rill+C-1)aP, 

{Q~ ,QP+ } = Pi (rill_C -I)ap . 

(3.12) 

This implies that in the collinear reference frame (3.1) we 
have two mutually anticommuting sets of Major ana charges, 

{Q~ ,QP+} =!P +(r+c-1)aP, 

{Q~ ,Q~} =!P _(r-C-I)aP, 

{Q ~ ,Q P_ } = {Q ~ ,Q P+ } = 0 . 

In the massless limit we have 

P _ = 0 => {Q ~ ,Q P_ } = 0 

and since Qt_ r = Q~ (GrO)ar we have 

{Q_,Q t_} = 0, 

which implies 

Q_=O. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

So in a massless representation, we have only half as many 
odd generators in the little algebra as in the massive case. 
This is precisely what happens in four dimensions.4 

Applying the projectors II ± to the superspace coordi­
nates 

which implies 

a a 
--=ll an ± an' 

=F 

(3.17) 

(3.18) 

Then, from (2.2), (3.9), (3.17), and (3.18) we get the fol­
lowing superspace representations for Q ± : 

Q± =i(-1-+J... p ±r±O=F)' 
a0=F 4 

which in the massless case 

P_ =0 => Q_ =i~ 
ao+ 

(3.19) 

(3.20) 

implies that the representation of the little algebra is given by 
a superfield which does not depend on 0 +, 

¢(x,O) =¢(x,O_) , P_¢(x,O_) =0. (3.21) 

In order to complete the structure of the little algebra, we 
have to look at the commutation relations of the even with 
the odd part. In the massive case they are simply the ones 
corresponding to the fact that the Q transforms according to 
the spinorial representation of SO(d - 1 ).1 In the massless 
case we have 

[Jij,Q± ] = - (i/2)rijQ± ' 

[JOi +Ji,d_I,Q+] = - (i/2)r +riQ_, 

[JOi + J i•d _ J>Q _] = O. 

(3.22) 

SotheconditionQ_ = Oisrespected by the E(d - 2) gener­
ators and Q+ provides the grading which is quite similar to 
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the one of the SP d algebra since Q + corresponds to the 
spinor representation of the SO(d - 2) generators Jij and 
commutes with the noncompact ones, 

[Jij,Q+] = - (i/2)rijQ+, 

[JOi +Ji,d_I,Q+] =0, 

{Q+,Q+} = ! P +r+c -I . 

(3.23) 

The representations of the algebra (3.5), (3.23) are labeled 
by a representation of the underlying E(d - 2) algebra 
which serves as a Clifford vacuum for the action of the Q +. 
As indicated before, this representation is in general infinite 
dimensional. Again the interesting representations will be 
the finite dimensional ones corresponding to vanishing "lit­
tle mass." This means that all the noncompact generators 
vanish and therefore they are described by a SO (d - 2) rep­
resentation instead, acting as a Clifford vacuum. These are 
the representations one obtains from taking the massless 
limit of massive representations. When we talk of massless 
representations we mean this type, where not only the mass 
P 2 vanishes but the little mass as well. 

As mentioned in Sec. II, in the particular case of ten 
dimensions, we have Weyl projectors which respect the Ma­
jorana condition. We can apply them also in the massless 
case since they commute with the light-cone projectors 

[ll(±),n±] =0 (3.24) 

so that we can define the Majorana spinors, 

Q~±)=n(±)n±Q. (3.25) 

Since the Q (+) and the Q (-) are mutually anticommuting,2 to 
keep them both would amount to working with an N = 2 
extended super-Poincare algebra, which is not our intention 
here. We will only keep Q(+). SO our massless superspace in 
ten dimensions will include only the anticommuting coordi­
nates, 

o ~- ) = n(-)n_o (3.26) 

and we have the representations 

Q (+) =i(~+J...P r+o(-») 
+ aO~-) 4 + - , 

D(+) =i(~-J...P r+o~-») 
+ aO~-) 4 + , 

(3.27) 

and the anticommutation relations 

{Q ~+ )a,Q ~+)P} = ! P + (n(+)r+c -I )ap , 

{D~+)a,D~+)P}= -!p+(n(+)r+c-1)aP, (3.28) 

{Q~+),D~+)}=O. 

We will call SP\o+'; the ten-dimensional super-Poincare 
algebra whose grading is provided just by Q ~+ ). 

IV. CASIMIR OPERATORS 

The basic object for the construction of Casimir opera­
tors for the massive representations of SP d is 1 

2 E 2 ~~ UAB = JAB + (2/P )P JE[A PB ) + (l/4P ) QrrABQ. 

(4.1 ) 
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This object is singular when p 2 = O. One could consider the 
nonsingular object 

(4.2) 

but there are two problems with this operator. First, the 
contribution from the odd part of the algebra disappears, as 
we can see by using light-cone coordinates and going to a 
collinear frame, 

( lI4p 2 )QPrABQ 

= (liP +)Q+r-rABQ+ + (lIP _)Q_r+rABQ_, 

(4.3) 

which in the limit becomes, by Eq. (3.16), 

lim 1 QPrABQ = P +Q-r+rABQ_ = O. (4.4) 
P'_O 

So VAB only carries contribution from the Poincare subalge­
bra Pd' Second, all the Casimirs, 

(4.5) 

vanish and they do not allow us to distinguish between dif­
ferent massless representations. The same is true for the 
squares of the generalized Pauli-Lubanski tensors, I 

WAi ·· 'A2k+1 =P[A, VA,A, ... VA202k+I)' (4.6) 

This is so because 

VAB = 2P EJE [A PB J (4.7) 

is orthogonal to the momentum, 

pAVAB = 0, 

whenP 2 =0. 

(4.8) 

So these operators are not useful to describe the massless 
representations of SP d as defined in Sec. III. 

What we can do is to describe these representations by 
means of the Casimir operators of the little algebra. Since we 
are interested in representations whose little mass vanishes, 
we would encounter the same problem mentioned above 
should we try to use the Casimir operator for the graded 
E(d - 2) algebra (3.5), (3.23). Instead we will look direct­
ly at the invariant operators ofthe graded SO(d - 2) alge­
bra. In analogy with the massive case, we start by construct­
ing an operator which commutes with Q+, 

Uij =Jij - (i/8P +)Q+r-rijQ+, 

[Uij,Q] =0. 
(4.9) 

Therefore any scalar or pseudoscalar constructed out of the 
Uij will be an invariant operator for the graded SO(d - 2) 
algebra. 

In order to know how many independent operators we 
need, we have to look at the algebra satisfied by the Uij' 

[Uij,U k1 ] = - 4i8(i[k U;/J, (4.10) 

which is precisely the algebra ofSO(d - 2). This is the way 
it should be, because we know that the irreducible represen­
tations of a graded Lie algebra are characterized by an irre­
ducible representation of the even part; therefore, since here 
the representations of the graded SO(d - 2) algebra are de­
scribed solely by objects constructed out of the Uij' it is only 
natural that they obey a SO(d - 2) algebra. Casimir opera-
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tors for the algebra are the traces 

Tr un = U,. i,U,. i, ... U,. " 
'.'2 'n ' (4.11 ) 

which are all scalars while in even dimensions we also have 
the Pfaffian, 

Pf(U) = I 
2(d-2)12(d - 2)/2)! 

X i" ·id - 2U, .. ... u. . 
','2 'd-3'd-2 ' 

( 4.12) 

which is a pseudoscalar. A complete set of independent oper­
ators6 is the following. 

(a) For dodd, 

Cp = Tr U 2
p, P = 1,2, ... ,[ (d - 2)/2] . 

(b) For d even, 

Cp = Tr U 2
p, P = 1,2, ... ,(d - 2)12 - I ; 

C;d-2)/2 = 2(d-2)I2«d - 2)/2)! Pf(U) . 

For the next section we need expressions which are appropri­
ate for d = 10. They are 

Uij =Jij - (i/8P+)Q~+)r-rijQ~+) 

and the complete set of Casimirs is 

Cp = Tr U 2
p, P = 1,2,3; C~ = 244! Pf(U) . 

(4.13 ) 

(4.14 ) 

Finally, let us close this section by mentioning that the eigen­
values of these operators for any irreducible representation 
in terms of the highest weight vector, for all the classical 
groups, have been given in a beautiful series of papers by 
Perelomov and Popov. 7 A translation of their results suitable 
for our needs can be found in Ref. 1. 

V. THE MASSLESS SCALAR SUPERFIELD IN TEN 
DIMENSIONS 

What we can call the Casimir approach to decompose a 
general superfield consists of computing the eigenvalues of 
the Casimir operators by writing the appropriate representa­
tion for the operators JAB [i.e., l:AB in Eq. (2.2)] and then 
finding the representations corresponding to those eigenval­
ues. 3 Different irreducible pieces can be separated by either 
using appropriate projection operators or solving equivalent 
differential equations. In four dimensions these procedures 
have been explained in the papers of Ref. 3, for instance, 
while in Ref. I they have been applied in detail to II-dimen­
sional case. 

The simplest case corresponds to the scalar superfield, 
which means 

l:AB = 0 (5.1) 

in Eq. (2.2). Then from Eqs. (4.9), (2.2), and (2.3), one 
finds (let us remember that P, = 0 in our reference frame) 

Uij = - (i/8P +)D+r-r ijD+ (5.2) 

in the general case while, by using Eq. (4.13) instead of 
(4.9), we get 

Uij = - (i/8P+)D~+)r-rijD~+) (5.3) 

in ten dimensions. 
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The first Casimir is then 

C = Tr U 2 = (- _i_)215 (+>r-r .. D(+ > 
I 8P + y+ 

+ 

x15 ~+ >r-rjiD ~+ > . (5.4) 

This operator can be manipulated by successive Fierz trans­
formations, as described in Appendix A to obtain 

CI =-14. (5.5) 

There are three irreducible representations of SOC 8) which 
correspond to this eigenvalue which are precisely the three 
eight-dimensional ones. They are tabulated in Table I along 
with the eigenvalues of all the Casimir operators (4.14). 

For dimensional reasons, only two of these representa­
tions are included in the massless scalar superfield. It is also 
clear that one of the representations must be bosonic (true) 
while the other must be fermionic (spinorial). So we either 
have [1] E9 rHm or [1] E9 [m - ~]. We will see below how 
to resolve this ambiguity. 

Here again we encounter the fact that C I is a number, 
just like in the massive case. 2 This implies that CI cannot be 
used to separate the irreducible pieces and one must resort to 
higher Casimir operators or some other method to separate 
them. This is a reflection of the fact that there is no scalar or 
pseudoscalar operator quadratic in D ~+ >, unlike the II-di­
mensional case where we have 15D for instance. 

In order to resolve the ambiguity in the decomposition 
of f/J (x,e ~- > ), we will derive a relation between C2 and C.4. 
By a Fierz transformation, one can derive the identity 

15( + >r-r .. D (+ >D (+>r-r .. D (+ > 
+ '1'2 + + ' 3'4 + 

(5.6) 

Antisymmetrizing in the indices i l ,. •• ,i4 the first term vanish­
es due to the Majorana condition. Furthermore, the identity 

r[ .. rmnr . . J = r .... mn + 4<5[. mo· nr .. J (5.7) 'I'l '3'4 '1'2'3'4 '1'2 '3'4 
implies 

315 (+ >r-r .. D (+ >15 (+ >r-r .. D (+ > 
4 + [1 1'2 + + IJ l 4 ] + 

-iD-(+>r-r. . D(+>15(+>r-rmnD(+>. 
-~ + 'I"' "'4mn + + + 

(5.8) 

Now from the definition of r (II> we get 

D-(+>r-r D(+> 
+ i l " • -i4 mn + 

= 1 E. . .. 15 (+ >r-rj,j'D (+ > 
2 'I" "'4mn}lh + + 

(5.9) 

TABLE I. Casimir eigenvalues for irreducible representations of80(8). 

Dimension C, C2 C3 C' • 
[I] 8 -14 308 - 14714 0 

fHHl 8 -14 JP -¥ 2520 

[m-~] 8 -14 JP -¥ -2520 
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and substituting in (5.8) we get the self-duality condition 
for U[i,i, Ui,i4 

J' 

(5.10) 

This self-duality property allows us to express the pseudo­
scalar operator C.4 in terms of the scalar ones C I and C2, 

(5.11 ) 

where we have expanded the product of the two Levi-Civita 
symbols and made use of the commutation relations (4.10). 
The Casimir Tr U 3 is not independent. In fact, for the group 
SOC p), we have the identity 

TrU 3 = [(P-2)/2]iTrU 2
• (5.12) 

So for us Tr U 3 = 3; C I and we get finally 

C.4 = 8CI
2 

- 240CI - 16C2 

= 4928 - 16C2 • (5.13) 

According to Table I, Eq. (5.13) is satisfied by the represen­
tations [1] and [HH] but not by [m - !]. So f/J(x,e ~- » 

contains [1] and [HH]. The field content of each of the 
irreducible pieces is given in Table II. As will be clear in the 
next section, the result is obtained by reducing the Kron­
ecker products shown in the table. Let us note that the irre­
ducible superfield [1] contains precisely the physical states 
of the supergravity multiplet in ten dimensions and nothing 
else. 

For completeness, we will give the field content of the 
general massless chiral superfield, 

8 

f/J(x,e~-» = L e~->a, ... e~->a"Fa, ... a.cx) (5.14) 
n=O 

separated by powers of () ~- > in Table III. 
For n > 4, we have the same representations as for 8 - n. 

Comparing Tables II and III, we see that the main difference 
between the two irreducible pieces lies in the 
e ~- la, ... e ( - >a. sector, where one of them inherits the 
field [2] of f/J(x,e ~- » and the other one inherits [1111]. 
There are four possible choices of f/J(x,() ~± ». Ifwe consider 
f/J(x,e ~+ », the field content is again given by Tables II and 
III, where now entries correspond to e ~+ >n, and Eqs. 
( 5.10), (5.13) remain unchanged. Instead, if we consider 

TABLE II. Field content of the irreducible pieces in t/J(x,8 c...- ». 

Irreducible 
superfield 

[1] [1] X [I] 
[1]X[HHl 

[HHlX[m!] 
[HH]X[I] 

Fields 

[2],[ 11],[0] 
mm, [m-!] 

[1111], [11], [0] 
rum, [!H-!] 
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TABLE III. Field content of ;(x,e <...- ». 

n 

o 
I 
2 
3 

4 

SO(8) representations 
in Fa," . -a" 

[0] 
[H!-!] 

[11] 

BBn 
[2], [1111] 

t/J(x,(} ~+» and/or t/J(x,(} ~-» we have to make in Tables 
II and III the interchanges [HH] - [m - !], 
[HH] - [HH - !], [1111] - [111-1] and there is an 
overall minus sign in (5.10) and (5.13). Finally, let us men­
tion that, in spite of the above identification of fields power 
by power in () ~- ), we are still unable to write explicit expres­
sions for the irreducible pieces since we do not know how the 
fields in the jth power of () ~- ) (j < 4) are related to those in 
the (8 - j)th power. We will address this question in Sec. 
VIII. 

VI. WIGNER M£THOD OF INDUCED 
REPRESENTATIONS 

It is very instructive to look at the Wigner method of 
constructing the states of the representation in order to gain 
a better understanding of the problem. The first step is to 
divide the Q ~+) (D ~+» operators in Eq. (3.27) in two 
groups q,qt (d,d t) whose anticommutation relations corre­
spond to a Clifford algebra in standard form. Since Q ~+ ) has 
eight independent components, we will have four q and four 
q t operators arid similarly in the D sector. Then one proceeds 
to construct a representation of the little algebra 
(3.5),(3.23) as usual: from an irreducible SO(8) represen­
tation 10) acting as a Clifford vacuum, ("10) = 0, one ob­
tains the ~emaining states by repeated application of the 
"creation" operators qt until all possibilities are exhausted. 
These states form an irreducible representation of (3.5), 
(3.23) which we call 10), 

(6.1 ) 

The dimension of Iii) is 

dim 0 = ± (~) dim 0 = 24 dim O. (6.2) 
j=O ] 

When we refer to the scalar superfield, then 10) is just the 
trivial representation ofSO(8) and dim 0 = 16. 

Now one can proceed to apply the creation operators d t 
to im irreducible representation 10) of the little algebra, 
which now satisfies the new vacuum condition dalO) = 0, 
in order to generate a general superfield 10), 

whose dimension is, of course, 

dim 0 = 28 dim 0 . 
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(6.3) 

(6.4) 

We can see, just as in the massive case in Ref. 2, that we 
cannot obtain the irreducible representations involved by 
taking antisymmetrized Kronecker powers since the opera­
tors ql (or d l ) do not form an irreducible representation of 
SO(8) (this group has no four-dimensional irreducible rep­
resentations). So the alternative procedure followed in Ref. 
1 does not work here and, even though one might guess the 
answer by playing with dimensions, only the Casimir ap­
proach provides an unambiguous solution. 

The complete set of states' of t/J (x,() ~ - » will be given by 
the above procedure taking 10) as the trivial representation 
ofSO(8): 10), and it is displayed in Table IV. We have sepa­
rated the states corresponding to the irreducible pieces [1] 
and [HBJ, which, of course, must be done at the "d level." 
Since d l is a fermionic operator, it is clear that the bosonic 
representation described by the "superweight" 1 [1] must 
contain only states with an even number of d l while the 
fermionic one, with superweight [BH], must contain the 
states with an odd number of d l. This will become relevant 
in Sec. VIII. 

The even powers of d ~ (eight operators in total) span 
the representation t 1] ofSO(8) while the odd powers (also 
eight in total) span the representation [HH 1 instead. On the 
other hand, the set of powers of ql (even and odd, 16 opera­
tors in all) span the reducible representation [11 e [HHl of 
SOC 8). Thus in Table IV we just have the states correspond­
ing to the Kronecker products given in Table II. 

VII. SIMPLIFIED FORMS OF THE CASIMIR OPERATORS 

In this section we will present some simplifications of 
the Casimirs C2 and C ~ which will give us the means to 
compute their eigenvalues directly. Let us call 

AI/ = (- 8P +/i)U/ 

= D ~+ )r-r/D ~+) 

= (cr-rln(+» D (+ )a,a2 
, a 1Q 2 + , (7.1) 

where we have used the definition D ~+ )a,' . ·a. 

= D ~+ )[a, ••• D ~+ )a.l. Using the formulas of Appendix 
A of Ref. 1 to reduce the D ~+ ) tensors we get 

k j . . 2~ . 
Ali AI k = AI (2)/ - 24P +AI/ + 112P + u/ (7.2) 

if we define, in general, 

AI(n/ = (cr-r/2n(+»a,a2 X ... 

X (cr-r. jn(+» D (+ )a," ·a,.. (7.3) 
'n a2n _ t a 2" + 

TABLE IV. States of ;(x,e <...- » separated into the irreducible pieces. 

[1] 

In) 

1 
q~ 

ql,ql, 

q~,ql,ql, 

ql,q~,ql,q~. 

P. Kwon and M. Villasante 

In) 

10) 

565 



                                                                                                                                    

Taking the trace ofEq. (7.2) and using (5.12), we get 

JI(2)/=O. (7.4) 

Multiplying (7.2) by JI/ and using (5.12) again we get also 

JI(2)/JI/ = JI/JI(2)/ = O. (7.5) 

Squaring (7.2), taking trace of the result, and making use of 
(7.4) and (7.5), we arrive at 

Tr Jl4 = Tr JI~2) + 616 44SP~ (7.6a) 

or 

Tr U 4 = ( - i/SP +)4 Tr JI~2) + ~ . (7.6b) 

Note that the constant J¥! appears in Table I. Again we can 
reduce the product of D ~+ ) tensors appearing in Tr JI~2) to 
get after some algebra 

TrJl~2) = TrJl(4) + SXS!P~ . 

Therefore we have for C2, 

C2 = ( - i/SP +)4 Tr JI (4) + 2f! ' 
where, according to (7.3), 

(7.7) 

(7.S) 

X (cr-r. i'n(+» D (+ )a," ·a,. (7.9) 
'4 a7a S + 

A similar treatment for the operator C ~ gives in turn the 
result 

C ~ = ( - i/SP + )4J1(4) + 1260 (7.10) 

with 

JI' = ~". 'i'(cr-r. n(+» X··· 
(4) '1'2 a,a2 

(7.11 ) 

There are only eight nonvanishing operators D ~+ )a that by 
choosing an appropriate representation of the Dirac algebra 
(see Appendix B for details), we can make correspond to the 
values a = 1, ... ,S. In that case all objects with eight totally 
antisymmetrized a indices will be proportional to the Levi­
Civita symbol. Thus we have 

D (+ )a," 'a, _ ...a," 'a'D (+ )123"'8 
+ -c; + ' (7.12a) 

(7.12b) 

(7.12c) 

The constants A and A ' can be calculated and their values are 

A=27, A'=211
• (7.13) 

Therefore we have 

C2 = (liSP +)427 X S!D <++) 123· . '8 + 2f! 

= (1260/P + 4)D ~+ )123' . '8 + ~ (7.14) 

and 

C ~ = (liSP + )4211 X S!D ~+ )123' . '8 + 1260 

= (20 160/P + 4)D ~+ )123"'8 + 1260. (7.15) 
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The eigenvalues of D ~+ )123"'8 can be obtained from very 
simple considerations. First, we note that if two operators 
d,d t satisfy 

{d,d t} = P +' {d,d} = {d t,d t} = 0 , 

then the operator C = Hd,d t ] satisfies 

C 2 = (P +/2)2. (7.16) 

Since D ~+ ) 123· . ·8 is the product off our such operators made 
out of four independent, mutually anticommuting such d a , 

it satisfies 

(7.17) 

and from this we obtain the eigenvalues of C2 and C ~ 

{
30S, 

C2 = ~; C~ = {2520, 
O' , 

(7.1S) 

which are precisely the values of Table I. Expressions 
(7.14), (7.15) for C2 and C~ are considerable simplifica­
tions over the initial definition of these operators. 

VIII. IRREDUCIBLE COMPONENTS OF +(x,8~» 

We devote this section to the irreducible pieces of 
tP (x,(J '-- » and give explicit expressions for them. In princi­
ple this is straightforward if we use projection operators3 

constructed out of Casimir operators since we know the 
eigenvalues. The result of this procedure is 

c - 301 
", = 2 "2 "'(x(J(-» 
'I'[IJ 30S-~ 'I' , -

C~ - 2520 (_) = "'(x (J ) - 2520 'I' , - , (S.l ) 

", C2 - 30S", Ll ( _ ) C ~ ", ( Ll ( _ » 
'I'[!!!!J = 'I'(x,v _ ) =--'1' X,v _ . J¥! - 30S 2520 

The projection operators in terms of C2 or C ~ are simple 
since they contain only one factor. But even so, this proce­
dure is not practical given the fact that both C2 and C ~ are 
very complicated operators containing eight covariant de­
rivatives, even with the simplifications of the previous sec­
tion. The usual alternative procedure of solving equivalent 
differential equations is not at all different here, since the 
equations to solve are 

and 

C2tP[IJ=30StP[1J or C~tP[IJ=O (S.2a) 

C2tP[lB!l = ~ tP[!!!!l or C ~ tPU!! I J = 2520 tP[lll!l . 
(S.2b) 

We recall again the fact that there is no simpler operator in 
this case, like DD in other dimensions. 

In this paper we will follow a different approach which 
makes use of the Cartan subalgebra of ( 4.10), whose genera­
tors are 

HI = U2I _ I ,2I' 1= 1, ... ,4. (S.3 ) 
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From basic group theory, we know that simultaneous eigen­
states of the operators HI will also be eigenstates of the Casi­
mir operators. These eigenstates I¢') satisfy 

HI¢') = wi¢') , (8.4 ) 

where H = (H I ,H2,H3,H4 ) is a vector operator and 
w = (W I,W2'W3,W4 ) is called a weight. The eight weights of 
the vector representation [11 of SOC 8) are 

( ± 1,0,0,0), (0, ± 1,0,0), (0,0, ± 1,0), (0,0,0, ± 1) 

(8.5) 

and the weights of the spinorial representation lHm are 

(±!,±!,±!,±P (8.6) 

with an even number of + and/or - signs. 
Let us start with the eigenstate corresponding to the 

highest weight (1,0,0,0), 

(8.7) 

Following Ref. 1 we will use a Grassman-Gaussian as an­
satz: 

ii(-)r8(-) e - - (8.8) 

with r = It iir + r ii' the exponent is the most general bilinear 
in () <..:-) as defined in (3.26). 

ApplyingD~+) [given in (3.27)] to (8.8) we get 

D ~+)a eii~- )r8(_-) = 2i(r(} ~- »a eii~- )r8(_-) 

_ (i/4)P + (r+() ~- »a l~- )r8~-) . 

(8.9) 

We will now show thatthe solution of (8.7) is given by (8.8) 
with It ii = alii (ili/( and will determine the value of a. In this 
case Eq. (8.9) becomes 

= 2ia(r+r
l
,2() ~ - »a eaii~- )r+r,.28~-) 

_ (i/4)p+(r+(}~-»aeaii~-)r+rl.28~-). (8.10) 

Next we will split D ~+ )a with the projection operators, 

n 1± =!(l±irl ,2) (8.11) 

and define 

d±=nl±D~+). (8.12) 

They satisfy the anticommutation relations 

{d +a,d -P}= -!p+{n1+n<+)r+c-I}aP, 

{d-a,d+P}= -!p+{nl-n<+)r+c-I}aP, (8.13) 

{d +a,d +P} = {d -a,d -P} = 0, 

which show that d - and d + are, respectively, the creation 
(raising) and annihilation (lowering) operators of a fer­
mionic Clifford algebra. Now if we apply n l ± to Eq. (8.10) 
we obtain 
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(8.14) 

Choosing a = + (i/8)P + we derive 
_ -(i/S)P ii(-)r+r 8(-) d e + - 1.2 - = a , 

d +e(i/S)P+ii~-)r+r'.28~-) = O. (8.15 ) 

Therefore 
-r(i/S)P ii(-)r+r 8(-) -r(i/S)P ii(-)r 8(-) Hle-r + - 1.2 - = ± e-r + - 1.2 - , 

( 8.16) 
-(i/S)P ii(-)r+r 8(-) (i/S)P ii(-)r+r 8(-) so e + - 1.2 - and e + - 1.2 - are the 

eigenstates corresponding to the highest and lowest weight, 
respectively. They are also the Clifford highest and lowest 
state, respectively, of the algebra spanned by d + and d - . 
One can use either state to generate the rest of the representa­
tion. For definiteness we will use the highest state 

- (i/S)P ii( - )r+r 8( -) . . . 
e + - 1.2 - . We can obtam the remammg states 
by applying an even number of d - to the highest state for a 
total of 

.f (24.) = 1 + 6 + 1 = 8 
}=o 'J 

states. This is equivalent to use the lowering operators E of 
the SO (8) algebra in the Cartan basis since they are quadrat­
ic in d -, as explained in Appendix C. We note that if we 
apply an odd number of d - to the highest state we will get 

± (.4 )=4+4=8 
j=1 2J-1 

fermionic states (at the d level) which together will form the 
mHl representation (see Sec. VI). 

Of course in order to have a representation of the super­
Poincare algebra SP\o\) , we must also apply all possible op­
erators Q ~+ ). These can also be split 

q ± = n I ± Q ~+ ) , 

which satisfy 

± -ru/S)P ii(-)r+r 8(-) q e -r + - 1.2 - = a , 

( 8.17) 

(8.18 ) 

as opposed to Eq. (8.15). Therefore we have the expressions 
4 2 

and 

ct>(1 J = L L d +a, ... d +a21q - f3 , . 
k=Oj=O 

-13 -(i/S)P ii(-)r+r 8(-) X q ke + - 1.2-

4 2 

ct>[!!!!J = L L d +a, ... d +a21-lq-f3, . 
k=Oj= I 

-13k -U/S)P ii'-)r+r 8(-) X q e + - 1.2-
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each with 24 X 8 = 128 components. 

and 

In order to proceed further we note that 

d ±a_ 'n±a ±(i/8)p+8~-lr+r'.28~-1 
-l I pe 

a TU/8)P o(-Ir+r 8(-1 X-_--eT + - 1.2-

ao ~p) 

a ± (i/S)P o( - 'r+r 8( - 1 X -_-- e + - 1.2 - • 

ao ~p) 
Replacing this in Eq. (8.19a), we get 

(8.20a) 

(8.20b) 

y , , 'y,j3 , , '6 () 
XH ' "(0 _- ) Fa", 'a2;.!3," 'P, (x) , 

(8.21 ) 

where here the Grassmann Hermite polynomials' are 

H Y'" 'Y'(O ~-» 

(i/4)P 0 ( - 'r+r 8 (- 1 a a = e + - 1,2 - __ -- ••• __ _ 

aO(-) aO(-) 
- Yl - Yn 

-(i/4)P 8(-lr+r 8(-1 Xe + - 1,2 - , (8.22) 

and, finally, after an obvious field redefinition, we can write 

A.. _ -(i/S)p+8~-lr+r,.28~-I~ ~ 'k+2j 
'I"[l} -e k k l 

j,,"Ok=O 

a ' "a P" 'p () .1. 
XH' 2J' '(0 _- )'f'a", 'a2f P," ,p, (x) , 

(8.23) 

where the tPa" , 'a2fP,' , 'P, (x) satisfy 

n;-apytPa,"'ap"'a2j;p" , ,p,(x) =0, p= 1, ... ,2j, 

n,+P'ytPa", 'a,;P," 'P'-' 'p, (x) = 0, r = 1, ... ,k. 
(8.24) 

In a similar way 

( '/S)P -(J(-Ir+r (J(-I 2 4 
4>[!l!!J =e-' + - 1.2 - L L i k + 2j

-
1 

j= I k=O 

xHa" , 'a2j_ I;P,' , ,p'(O ~- » 

XtPa"'a ,p",p,(x), 
I 2j- I' I 

(8.25 ) 

where the tP fields satisfy the restrictions above. 
From formulas (8.23) and (8.25) we see that also in ten 

dimensions the irreducible superfield are expansions in 
terms of the eigenfunctions of a Grassmann oscillator. S 

The expressions (8.19) and (8.23) are asymmetrical in 
the sense that one of the elements of the Cartan subalgebra 
(namely H,) is privileged. In order to obtain more symmet­
rical expressions we look for more general Gaussians. If we 
take 

(K) A,ij 8(-lr+r,A(-1 X ± = e (K, ± 1 - I/" - (8.26) 

with 
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A YK, ±) = =f U/8)P +81:" _,81K' K = 1,2,3,4, 

it is easy to show that 

H 1X<;) = U21 -,,21X<;) = ± 81
KX<;) . (8.27) 

Thus the X<;) give us all the eigenstates of the Cartan subal­
gebra corresponding to the weights in (8.5) and therefore 
span the whole representation [1]. 

The appropriate projection operators now are 

nK ± = ~(l ± ir2K _ 1,2K) , (8.28) 

which we can use to split Q <.r+ ). 

q ±-n±Q'(+) 
K - K + 

± (i/S)P 8(-lr+r ,,,q(-I X e + - 2K-I,2KV - • (8.29) 

The q K ± satisfy 

qK ± X<;) = 0 (8.30) 

for every K = 1, ... ,4. There is no point in splitting D <.r+ ) 
since we have already considered all the states of the repre­
sentation [I] whose weights are (8.5) and not only the one 
corresponding to the highest weight. Then the superfield 
4>[1 J will be given by 

4 4 

4>[1J = L L qx a, . .. q;a'x!f)F~~':,~.cx) 
K= I n=O 

4 4 

+ L L qt a, ... q;a,X<!) F~~'~~,(X) 
K=' n=O 

( 8.31) 

and using Eq. (8.29) 
4 4 

4>[, J = L L;n nxa,p, ... n;a'p,x!f) 
K=ln=O 

4 4 
+" "inn + a, '" n + a, X(K) 
~ ~ K p, K p, -

K""' n=O 

(8.32) 

where 

H<;)P," ,p'(O ~-» 

T(i/4)P o(-Ir+r ,A(-I a a = e' + - 2K-I.2K'" - ___ ••• __ _ 

ao(-) ao(-) 
-p, -P, 

(8.33 ) 

Redefining indices 

{
K, 

(K, + )->k = 
- 8-K+ 1, 

for (K, +), K = 1, ... ,4, 

for (K, -), K = 1, ... ,4, 

( 8.34) 

we get finally 

(8.35) 
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where the fields tfJ17!. 'P
n 
(x) must satisfy 

n(k) Pp ytfJ1~!. A . 'P
n 
(x) = 0, p = l, ... ,n . (8.36) 

IX. CONCLUSION 

In this paper we have analyzed the massless representa­
tions of the super-Poincare algebra with particular emphasis 
on the ten-dimensional case. We have used the Casimir ap­
proach to obtain explicit expressions for superfields which 
are irreducible under the corresponding little algebra. 

Due to the fact that we have used the massless condition 
p 2 = 0 from the beginning, these are on-shell superfields: 
they carry physical field components but no auxiliary fields. 
A simple comparison of the number of components of ifJ[ I ] 

with the number of degrees of freedom of the supergravity 
multiplet in ten dimensions9 quickly illustrates this point. 
This is a well known fact. 10 In order to study the auxiliary 
field structure, one must relax the condition P 2 = 0, i.e., one 
must look at the massive case. In doing so, one must enlarge 
our superspace to include 0 ~- ) and in the expansion 

4> (x,O ~ - >,0 ~- ) ) 
g 

= ~ o(-)a'···O(-)an.m(n) (xO(-» 
~ + +..., a l " . 'an ,- , 

n=O 

the superfield 4>(0) (x,O ~- » carries the physical fields while 
the other ones carry the auxiliary fields. 10 

The techniques we have applied here to decompose the 
massless scalar chiral superfield ifJ (x,O ~- » into its irreduci­
ble components can be extended to the massive case and the 
results will be shown elsewhere. However, knowing the 
structure of the massless field must be important in its own 
right if one wants to know which irreducible pieces of the 
massive case are the off-shell extension of each massless 
piece and also if we want to write Lagrangians for them. 
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APPENDIX A: FIERZ REARRANGEMENTS 

We have the general Fierz identity, 

QIMQ2Q3N Q4 

1 . - -
= - - I A(j)QIM OjNQ4Q30jQ2 

a j 

+~ I A (j)QIMOjNQ4 Tr[Oj(2S23)c- l
] a j 

- ~ IA(j)A , (j)QIMOjN(2S24)COjQ3 a ) 
1 -+ - I A (j)QIMOjN(2S34)COjQ2 , a j 

(AI) 

where QI, ... ,Q4 are Majorana spinors which satisfy 
{Q~,Qn = 2S~:, a,b = 1,2,3,4, OJ is a complete set of 
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a x a matrices which are orthogonal under trace, 

Tr[ OiOj] = !l.A(j)6ij , 

and finally 

(CO})T = A , (j)COj . 

If we take the basis {OJ} to be made out of r tensors, we 
have, in ten dimensions, 

D~+)OjD~+J =0 

unless 

OJ =rO,rd_l,rOrij,rd_Irij 

or r (II) times the same matrices. Therefore one can write 

D (+ )MD( + JD( + JND (+ J 
+ + + + 

= (l/2a)D (+) Mn(+)r+r .. ND (+) 
+ ','2 + 

XD ( + )r-ri,i'D ( + ) 
+ + 

- (P +/4)D ~+ ) Mn(+)r+ ND ~+) 

+ (2P la)D (+ JMn(+)r+r .. Nf'i,i'D (+) 
+ + './2 +' 

where we have used 

D~+)r-D~+) = - (p+/4)a. 

Here a is the dimension of the Dirac matrices, 

a = 32. 

(A2) 

(A3) 

IfweputM = N = r- in (A2), we get, after some arithme­
tic, 

D( +)r-r .. D (+ )D( + )r-ri,i'D (+) 
+ '.'2 + + + 

= - 14x (8P +)2 

which immediately gives 

C I = -14. 

(A4) 

(AS) 

APPENDIX B: A PARTICULAR REPRESENTATION OF 
THE DIRAC ALGEBRA 

Let us start by denoting with a subindex to the left the 
space-time dimension of the r algebra and the associated 
charge conjugation matrix. Thus 

nr, nC are 2[nI2]X2[n12] matrices. 

Then a particular representation in ten dimensions is 

C=SC®i(72' r o =sI®(7I' 

r) = Srj ®i(73' j = 1, ... ,8, 

r 9 =gI®(-i)(72' 

where, if we keep descending, 

sC = 6C ® I, sri = I ® (7 I , 

grl = 6rl ® i(72' 1= 2, ... ,7 , 

grg = 6rg ® ( - i)(72' 6r g = 6r2 ..... ' , 

and 

6C=4C®( -i)(72' 6r2=4I®i(71' 

6r m = 4r m ® (72 , m = 3, ... ,6 , 

6r, = 4I ®i(73' 

with 

P. Kwon and M. Villasante 569 



                                                                                                                                    

4C = 2C®I, 2C = iu2, 

4r3=2I ®(-i)u l , 4r 4=UI® iu2' 

4r6 = z!®iu3 • 

In this decomposition we have 

Srj2 = sI, j = 1, ... ,S, 

6r / = - J, /= 2, ... ,7, 

4r m 2 = - 41, m = 3, ... ,6 , 

2 

2kC2kr2kC-1 = (- )\krT, k = 1, ... ,5. 

The constants A and A ' in 

(cr-r. i'n<+» ... (cr-r. i'n<+» 
'. [a.a2 '4 Q7(l'S J 

=AEa , .. ·aK ' 

E. . (cr-ri,i'n<+» ... (cr-ri7i'n<+» 
',"' "'s [a,a2 (1'7a 8] 

=A 'Ea."' oaK ' 

can be computed by contracting the indices with 

(6r S 6C-1)a,a, . .. (6r S 6C - 1)a7a,. 

The right-hand side gives then 

A X244!Pf(6rS6C-1) = 244!A 

in the first case and 

A '244! Pf(6rs 6C-1) = 244!A' 

in the second. 
The left-hand sides can be computed independently by 

expanding the antisymmetrization. The calculation is quite 
tedious. but one finally gets 

2]] X4! 

in the first case and 

215 X4! 

in the second, so that 

A = 27 , A' = 2]] . 

Now we turn toD ~+). Since it is a Majorana spinor, we have 

D < + lac - D < +)t r r 
+ afJ- + r 0/3 

.......... D(+)t =D(+)a(cr) 

."....,.. + r + Oar' 

This implies 

{D~+)a,D~+)t/3}= _p+(n<+)n+)ap ' 

In our representation 

(sI 
n+ = ° ~) , 
n(+) = (~(sI + Sr(9) ) 

. ° !(sl-OSr(9) J, 
Sr(9) = (~ _OJ)' (J 0 

n+n<+)= ° ° ° :). 
cr,~(~ ° :) 6C 

° So 
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D ~+3)t = - D ~+ )s, D ~+4)t = D ~+ )7 . 

Therefore 

- II4 1..- [D(+)iD(+)t] - + ' +i , 
i=l 2 

as claimed in the text. 

APPENDIX C: EXPRESSIONS FOR THE SO(8) 
OPERATOR IN THE CARTAN BASIS 

Let us start by defining the operators 

nyll=~(/+i1]r2J_I.2J)' J=1, ... ,4, 1]= ±1, 
(Cl) 

and the product 
4 

P II n(-'lJ) 
'1,'12'1,". = J • 

J=I 

With these we can define 

d =p D(+) 
TJ."h"h"14 1'/J ThT/31'J4 + . 

Then, from the commutation relation, 

[Uij.D~+)a] = - (i/2)(rijD~+»a 

one can easily show 

(C2) 

(C3) 

(C4) 

[HJ ,d'1, ... '1.1 =!1]J d'1, ... '1" J= 1, ... ,4, (C5) 

where H J are the operators of the Cartan subalgebra (S.3). 
Clearly d'1, . .. '1. increases or decreases the eigenValues of HJ 

by ! depending on the sign of 1] J' In fact, from (S.11 ), we see 
that d _ ± ± ± can be considered the components of d - and 
d + ± ± ± the components of d +. But these are too many 
since we know that d + and d - have four components each. 
So half of d'1, . .. '1. must vanish identically inourO '---) super­
space. Indeed 

r l ···S = - r(ll) rOr9 {:::} r l ·· .sn<+)n+ = - n<+)n+ . 

(C6) 

On the other hand 

r l···sp p 
'1, ... '1. = 1] '1, ... '1. ' (C7) 

Therefore 

d'1, . .. '1. = P'1, . .. '1. n<+)n+D 

= !( 1 + 1]r l ... s)!( 1 - r l · . . s)P'1, . .. '1. n<+)n+D 

(CS) 

and we conclude 

d'1' .. '1. = ° when 1] = + 1 . (C9) 

The operators corresponding to the root vectors in the Car­
tan basis of the SO(S) algebra are given by 

E( 1]e[ + 1]'eJ ) 

=!( UU_I.2J_I + i1]Uu.2J_I 

+ i1]' Uu _ 1,2J - 1]1]' UU,2J)' I, J = 1,2,3,4 . 

(ClO) 
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Making use ofEq. (5.3), (ClO) then becomes 

(Cll) 

where 

r}'1) = (1Iv'2)(r21 _ 1 +i7Jr2I), 7J= ±1, 1=1, ... ,4. 

(C12) 

The r}'1) matrices anticommute among themselves and also 
satisfy 

(C13) 

Using (C 13) and the orthogonality of n }s), we can express 
E( 7Jel + 7J'eJ ) in terms of ds,' . 'S.' Let us work out, for in­
stance, E(7Jel + 7J'e2 ). Note that 

D~+) = L ll\s,) ... mS·)D~+). (C14) 
Si= ±I 

We have 

E(7Jel +7J'e2 ) = - 8;+ [-tll\s,) ... mS')D~+)rcr-r\'1)ri'l')[tll\s.'>··· mS:>D~+)] 

= _ _ i_" "D < + )n<s,) ... n<S4)r-r<'1)r<'1')n<s,') ... n
4
<s;)D <++) 

8P kk + I 4 I 2 I 
+ Si Sf 

i 
- - " "/j ~ /j ' .. /j .. ,/j ' .. ,/j .... ,/j .... ' 

8P L ~ l1'~1 11 '~2 711 - ~I 11 '~2 ~3'~l ~4'~4 
+ Si Sf 

i " "d- r- -r<'1)-r<'1')d --- k k '1'1's,s. I 2 '1'1'-s,-s.· (C15) 
8P + S. = ± I S. = ± 1 

Let us consider in particular 7J = 1, 7J' = + 1. Then, recalling (C9), we obtain 

E( -e l +e2 ) =E( -1,1,0,0,0) = - (i/8P+)(cr-r\-)ri+»aP(d~ + + + d P_ + __ +d a_ + __ d P_ + + +) 

= - (i/8P+)(cr-r\-)ri+»aP[d~ + + + ,d P_ + __ ]. (C16) 

The E operators corresponding to other root vectors can be computed similarly. Schematically, they are given by 

E(71727374 ) - [d'l,'12'1,'14,ds,s,s,S4]' 71 = !(7Jl + 51)' 1 = 1, ... ,4. (C17) 
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The group theoretical concepts of embedded representations and dynamical structure groups, 
distinct from dynamical symmetry groups, are introduced in order to describe the common 
physical situation in which collective bands of states of a many-body system are well described 
by an algebraic collective model even though the states may not span an invariant subspace of 
the many-body Hilbert space. 

I. INTRODUCTION 

A symmetry group of a quantum mechanical system is a 
group made up of transformations of the Hilbert space that 
commute with the Hamiltonian. Thus the degenerate eigen­
spaces of the Hamiltonian carry representations (not neces­
sarily irreducible) of the symmetry group. 

The value of symmetry groups in physics is well under­
stood. It is also well-known that group and algebraic struc­
tures play vital roles under more general circumstances. In 
particular, dynamical symmetry groups, which do not com­
mute with the Hamiltonian, have recently attracted wide­
spread interest. 1 

A dynamical symmetry group of a quantum mechanical 
system is a group of transformations of the Hilbert space 
whose irreducible subspaces are invariant under the action 
of the Hamiltonian. Dynamical symmetry groups of interest 
often contain full symmetry groups as subgroups and hence 
irreps that, in general, contain sequences (bands) of sub­
irreps of the symmetry subgroup. Thus the irreducible sub­
spaces of a dynamical symmetry group need not be eigen­
spaces of the Hamiltonian. A familiar example is the 
n-dimensional harmonic oscillator which has Sp(n,R) as 
dynamical group and su (n) as symmetry group. 

We point out here that even this generalization can be 
further extended with advantage. We shall define what, for 
want of a better name, we call simply a dynamical structure 
group. The essential ideas underlying the concept are famil­
iar in physics in the context of the adiabatic approximation, 
but, as far as we are aware, the associated group theory has 
not been discussed. To illustrate, consider the rotational 
states of a diatomic molecule. The question arises as to 
whether or not an observed band of rotational states of the 
molecule spans an irreducible representation of a suitably 
defined rotor algebra. It will be shown in this paper that 
nonequivalent irreps of a rotor algebra are distinguished by 
distinct deformation shapes of the system. In the simple ro­
tor model, the deformation of a system is defined by its quad­
rupole moments. A system with a well-defined deformation 
is then one with fixed quadrupole moments in the body-fixed 
(principal axes) frame. However, in practical situations 
there are inevitably vibrational shape fluctuations and, as a 
consequence, the physical states of the system have a distri-

bution of deformations. It follows that they straddle a corre­
sponding distribution of irreps. Nevertheless, if the vibra­
tional frequencies are large in comparison with the 
rotational frequencies, it can happen that the distribution of 
deformation shapes of the system is very slightly perturbed 
by the rotational motion, and that, in the adiabatic limit, a 
simple rotational structure is maintained. One may then ob­
serve sets of states of constant intrinsic structure (i.e., con­
stant distributions of deformation shapes) that are meaning­
fully described as rotational bands and that, in isolation, are 
indistinguishable from states of an irrep of the rotor algebra. 

In such a situation, it is evident that the rotor algebra is 
playing a vital dynamical role in describing the relative prop­
erties of rotational states even though the structure of every 
state may be described very poorly by the states of any single 
irrep of the rotor algebra. We therefore introduce the con­
cept of an embedded representation which expresses this phe­
nomenon in precise algebraic terms. 

The admittance of embedded representations opens up 
the possibility of applying algebraic techniques to much 
more general situations than was hitherto recognized, e.g., 
to situations where one has neither a full symmetry nor a 
dynamical symmetry of the Hamiltonian, but where there is 
an adiabatic decoupling of collective and intrinisic degrees of 
freedom to such an extent that it is a good approximation to 
freeze the intrinsic structure in a description of the relative 
properties of low-lying collective states. 

The analysis of such dynamical structure and embedded 
representations also throws light on the interpretation of the 
significance of a model's success in explaining a limited set of 
physical data. The traditional approach to the interpretation 
of physical phenomena is to make models that fit the known 
data and then to use them to make further predictions which 
can be subjected to experimental test. In doing this it is clear­
ly important to focus on data which provide significant tests 
and which can distinguish different models. The existence of 
embedded representations implies that many predictions fol­
low from the relative dynamical structure of states and, 
hence, that agreement of an algebraic model's predictions 
with the data may not imply the existence of a full dynamical 
symmetry. In other words, the relative properties of a num­
ber of states in isolation may be the same as they would be if 
the states were to belong to an irreducible subrepresentation 
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of a Lie algebra, whereas, in fact, they only belong to an 
embedded representation. 

Similar observations have been used to formulate suc­
cessful theories of relative dynamical structure, such as the 
equations-of-motion formalism. 2 They also explain why 
models are often much more successful than they superfi­
cially have any right to be. For example, many theories based 
on independent-particle approximations, such as the Har" 
tree-Fock and random-phase approximations, are remark­
ably successful even in situations where the independent­
particle approximation has little reason to be good. 

The main objective of this paper is to analyze the cir­
cumstances under which a Lie algebra can exhibit embedded 
representations. We shall analyze in some detail the basic 
rotor and vibrator algebras, which are of fundamental im­
portance in the theory of many-particle collective structure. 

II. COLLECTIVE MOTIONS OF A MANY-BODY SYSTEM 

Enormous simplification can be achieved in the treat­
ment of the collective states of a many-body system if the 
variables can be separated into subsets of collective and or­
thogonal intrinsic coordinates and the many-particle Hilbert 
space factored into a direct product of collective and intrin­
sic Hilbert subspaces. This is possible, for example, for cen­
ter-of-mass motion and, as a consequence, the treatment of 
many-particle center-of-mass motion is trivial. 

However, for collective motions in general it is not pos­
sible. Nevertheless, one frequently observes bands of collec­
tive states that are well described by collective models ex­
pressed in terms of relatively small numbers of collective 
degrees of freedom. Such models are usually justified by the 
argument that collective motions are slow (adiabatic) in 
comparison to the more rapid intrinsic motions. As a conse­
quence, the intrinsic structure of the system may be very 
little perturbed by the collective motions. 

For the purposes of this analysis, a collective model is 
defined as a triple (H COLL,g,rCOLL) of a model Hamiltonian 
H COLL acting on a Hilbert space lHICOLL, a dynamical Lie 
algebra g of collective observables, and a unitary representa­
tion (rCOLL) of g carried by lHICOLL. 

A model will be called "simple" if the representation 
(rCOLL ) is irreducible. 

The spectrum of H COLL is said to consist of collective 
bands, where a band is a set of states belonging to a common 
irrep of the dynamical collective algebra. Thus, by defini­
tion, a simple collective model features a single collective 
band. 

To understand the success of a collective model, one 
seeks to embed the states of the collective model in the mi­
croscopic many-particle Hilbert space of the system. 

Let III be the microscopic Hilbert space for the system 
and suppose that it carries a unitary representation r of g. 
Let r = l:A r(A) be a direct sum of irreps. Let H be the mi­
croscopic Hamiltonian for the system and let H (A) be its 
projection to the irreducible subspace lHI(A) for the irrep r(A). 
Let IAa) be an eigenstate of H(A) of eigenvalue E~a' We 
may assume that the set of states {IAa)} defines an ortho­
normal basis for the Hilbert space. The Hamiltonian can 
then be expressed 
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H=Ho+ V, 

where 

Ho=IH(A) 
A 

and V is defined by its matrix elements 

V _ {(AaIH IA'f3), A =FA', 
Aa.A·/3 - 0, A = A'. 

Since the irreducible H(A) subspaces are invariant under the 
action ofthe HamiltonianHo, it follows, by definition, that g 
is a dynamical algebra for Ho. Furthermore, if ~ is some 
conveniently defined intrinsic energy for H (A) (e.g., for a 
ladder representation, the expectation value of Ho in the low­
est weight state), then collective energies 'iff Aa can be defined 
by 

E~a =~ + 'iff Aa , 

and the Hamiltonian Ho can be expressed 

Ho = H COLL + H INTR, 

where H COLL and H INTR are defined by their matrix ele­
ments 

(AaIH COLL IA'f3) = {)AA'{)a/3 'iff Aa' 

(AaIHINTRIA 'f3) = {)M'{)a/3 ~ . 

The full Hamiltonian is then 

H = H COLL + HINTR + V. 

It is noteworthy that this decomposition of the Hamilto­
nian is obtained without reference to collective or intrinsic 
variables and without factorization of the Hilbert space. 

When there is a multiplicity of equivalent irreps, V de­
pends on the particular combinations selected. If V can be 
made negligible, g is a dynamical symmetry algebra for the 
system and we derive the collective model. 

An interesting question now arises as to whether or not 
the absence of irrep mixing is an essential condition for the 
observation of pure collective states. Is it possible to embed 
collective model states in the microscopic Hilbert space in a 
way that admits the possibility oflarge irrep mixing interac­
tions? 

III. DEFINITION OF AN EMBEDDED REPRESENTATION 

Let g be a Lie algebra and r a (reducible) representa­
tion of g on a Hilbert space lHI. Let r p be the projection of r 
onto a subspace lHIo ofH; i.e., ifXegand {Ia)} is an orthonor­
mal basis for Ill, defined such that a subset of basis vectors is a 
basis for lillo, then, for any la)eHo, 

rp(X)la) = 2: 1f3)(f3jr(X)la). 
f3eHo 

If r p is a representation of g, we call it an embedded repre­
sentation. Note, however, that an embedded representation 
is not generally a subrepresentation. 

For example, given a representation r of g, we may de­
fine a set of sub matrices r p; i.e., for each matrix r(X),Xeg, 
we define a submatrix r p (X) such that 
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(

rp(X) 

r(X) = : 
* 
* 
* 

If r P is a representation, then it is an embedded representa­
tion. 

If, relative to some basis, r is of the block form 

(

rp(X) 

r(X) = ~ 
* 
* 
o 

for all XEg, then r P is a subrepresentation of r. 
If r is of the block form 

* 
rp(X) 

o 
*) * , 
* 

for all X Eg, then r p is the quotient of two subrepresentations 
of r, sometimes called a subquotient representation. 

Any subrepresentation or subquotient is an embedded 
representation. It is possible, however, to find examples of 
embedded representations which are not subrepresentations 
or subquotients, but the requirement that the submatrices 
{r p (X); XEg} be a representation is a strong condition. 

IV. THE ROTOR GROUP AND ITS LIE ALGEBRA 

A dynamical group for the rigid rotor is the semidirect 
product [RS

] SO (3) of an Abelian normal subgroup RS and 
the rotation group SO(3). A group element is a pair (eicu,O), 
where (J) is an element of the RS Lie algebra and 0 is in 
SO(3). 

The R5 Lie algebra is spanned by a set 
{Qv; v = 0, ± 1, ± 2} of quadrupole moments which trans­
form under rotations as the components of an L = 2 spheri­
cal tensor, i.e., 

Qv -+O'Qv = L QI' .@;v(O), OESO(3), 
I' 

where .@Z is an L = 2 Wigner rotation matrix. 
The group product is given by 

(eiCU',OI)' (eiCU"Oz) = (ei(cu, +o"cu'),OIOZ)' 

A. Unitary irreps of the rotor algebra 

Unitary irreps of the rotor group and its Lie algebra are 
easily derived by Mackey's theory of induced representa­
tions,3 as first shown explicitly, to our knowledge, by 
Weaver, Biedenham, and Cusson.4 

Let the elements of as act multiplicatively on the wave 
functions of a Hilbert space of square integrable functions of 
the coordinates of a many-body system by 

Qv'l'(x) = Qv(x)'I'(x), 

where Qv (x) is a quadrupole moment of the many-particle 
configuration x. Let SO (3) act by a representation f!Ii. 

Since RS is Abelian, its irreps are all one-dimensional 
and are carried by a single eigenstate Iq) of the commuting 
RS basis operators, i.e., 

Qvlq) =qvlq)· 
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Let 

IqO) = f!Ii(O)lq), OESO(3). 

Since 

f!Ii(O)Qvlq) = L QI' .@;v(O)lqO) = qvlqO), 
I' 

it follows that 

QI' IqO) = q~ IqO), 

with 

q~ = L .@;v*(O)qv· 
v 

The set of states { I qO); OESO ( 3 ) } constitutes an 
SO ( 3) orbit. We pick a representative point on this orbit 
having the property that q ± 1 = 0, q2 = q-z' We let this 
point be the reference state Iq) and refer to it as the intrinsic 
state. The non vanishing quadrupole moments qo, qz at the 
representative point are likewise referred to as the intrinsic 
quadrupole moments. 

The isotropy subgroup of the intrinsic state is the subset 
of SO (3) rotations that leave Iq) invariant up to phase. If q2 
is nonzero, the isotropy subgroup is Dz, the group generated 
by rotations through angle 1T about the principal axes. If 
qz = 0 but qo ¥: 0, the isotropy subgroup is D 00 , i.e., the group 
of all rotations about the symmetry axis plus rotations 
though 1T about any perpendicular axis. The only other pos­
sibility is that all the quadrupole moments are zero, in which 
case the intrinsic state is rotationally invariant and the iso­
tropy subgroup is the full SO( 3) group. 

We consider first the generic case. It is well-known that 
Dz has four irreps, all one-dimensional, and labeled by E1, 

Ez = ± 1. Thus the corresponding one-dimensional irreps of 
the semidirect product group [RS ]D2 have four labels (qo, 
qz, E1, Ez) and satisfy 

f!Ii(1T,O,O)lq) =E1Iq), f!Ii(O,1T,O)lq) =E2Iq). 

Orthonormal basis vectors for the generic irreps of 
[as] SO ( 3) are given by the set of all state vectors of the 
form 

IqJMK) = J dOlqO)'I'~K(O), 
where 

2J+ 1 
16~(1 +~KO) 

X [.@~K*(O) + Ez( - l)J+K.@~_K*(O)], 

with J, M, K integers and K restricted to either all even or all 
odd values such that ( - l)K = E1• Wave functions repre­
senting these state vectors are given, in Dirac notation, by 

'I'~K(O) = (qOlqJMK). 

Finally, from the actions of R5 and SO(3) on IqO), given 
above, we obtain the induced representations of the 
[R5 ]SO(3) operators, 
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nQIl )\II~K (0) = L q"..@'!" *(O)\II~K (0), 
" 

nw )\II~K (0) = \II~K (w-10). 

For an axially symmetric representation, i.e., q2 = 0, we 
observe that the irreps of [RS]D 00 are labeled by (qo, K, E"2)' 

where K is a positive or zero integer and E"2 = ± 1. Basis 
functions for the corresponding induced irrep of [RS

] SO( 3 ) 
are then given by the set of all wave functions of the form 
\II~K (0), but with K now held fixed. 

The constancy of K for an axially symmetric irrep is 
easily understood, because if q2 = 0, then 

r(QIl) = qo..@'!o*(O), 

and there is no mechanism for connecting wave functions 
\II~K and \II~'K' withK =l=K'. 

For the same reason, one easily shows that the spherical­
ly symmetric irreps, for which all quadrupole moments are 
zero, are characterized by fixed values of J. A spherically 
symmetric irrep of the [RS ]SO(3) group is an irrep of 
SO(3) and a trivial identity representation ofRs. 

B. Embedded representations of the rotor algebra 

If we start with a generic irrep (qO,q2,E"I'€2) of 
[R s] SO ( 3 ) and restrict to a subspace of states of K = const, 
we immediately see by inspection of the results of the last 
section that r ( Qil ) projects 

nQIl)-.rp(QIl) =qo..@'!o*(O). 

Thus the subspace carries an embedded representation (qo, 
K'€2) of [RS]SO(3). 

This extremely simple result is already of considerable 
physical significance. For it expresses the known result that, 
in isolation, bands of states of a triaxial rotor having K as a 
good quantum number are indistinguishable from axially 
symmetric rotor states. In this context we recall that bands 
of states of constant K naturally occur for a triaxial rotor if 
two of its principal moments of inertia accidentally happen 
to be equal, which can happen, as pointed out by Meyer ter 
Vehn, S even though q2 =1=0. 

Consider next the situation in which, instead of a single 
[as] SO (3) irrep, we have a direct sum of a distribution of 
irreps and a basis for the carrier space given by state vectors 

InJMK) = f dO f dqtPn(q)lqll)\II~K(O), 
where {tPn (q)} is a set of weight functions and dq is any 
suitable measure such that 

We now have basis wave functions, again in Dirac notation, 
of the form 

\II~MK (q,O) = tPn (q)\II~K (0). 

The action of [Rs]SO(3) on these wave functions is defined 
by 
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Now restrict to the subspace of states of n = const. This 
restriction can be expressed as a projection 

\II(q,O)-\II(O) = fdqtP~(q)\II(q,O), 
under which 

\II~MK (q,O) -. \II~K (0). 

Under this projection, r (Qil ) projects to r p (Qil ), where 

rp(QIl)\II~K(O) = L (q,,) ..@'!v*(O)\II~K(O), 
" 

with 

(q,,) = f dqq"ltPn(qW· 

Thus, although the subspace of states of fixed n does not 
carry a subrepresentation of r, the projection r p is never­
theless an irrep of the [RS

] SO ( 3) Lie algebra. Therefore r p 

is an embedded representation. 
This demonstrates explicitly the known result that, in 

the adiabatic limit, a soft vibrational rotor can exhibit bands 
of states which, in isolation, are indistinguishable from those 
of a rigid rotor. 

The structure of the carrier space for an embedded rep­
resentation of the rotor algebra is remarkably similar to that 
of a standard sub-irrep. Whereas the carrier space for a sub­
irrep is spanned by the SO (3) orbit 

{Iqll) = ~(O)lq); OESO(3)}, 

the carrier space for an embedded representation is spanned 
by the SO (3) orbit 

{ltPll) = ~(O)ltP); OESO(3)}, 

where 

11,6) = f dqtPn(q)lq)· 

The characteristic feature of the rotor algebra is that the 
matrix elements of its irreps depend linearly on some of its 
irrep labels. Consequently, it becomes possible to mix states 
from irreps with different values of these labels in a way that 
preserves a parallel linear relationship with some average 
representation labels. Evidently, this possibility exists for 
other semidirect sum Lie algebras with Abelian ideals. 

It is of interest to discover if physically significant em­
bedded representations can occur under more general (non­
linear) circumstances. It would seem to be unlikely or, at 
least, that the circumstances would have to be artificially 
contrived. However, for physical applications, one is also 
very interested in situations that closely approximate em­
bedded representations. These appear to be much more 
widespread and relevant for the construction of tractable 
theories based on the adiabatic approximation. 

Consider, for example, a sequence of irreps of a Lie alge­
bra in which the matrix elements vary smoothly as functions 
of the representation labels. It may then be a good approxi­
mation, in some situations, to make a linear approximation 
for the dependence over some relatively narrow range of ir­
reps in order to construct approximate embedded represen­
tations, as for the rotor algebra. 
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In the following we shall illustrate this possibility for the 
Heisenberg-Weyl and symplectic Lie algebras. 

V. THE HEISENBERG-WEYL LIE ALGEBRA 

For simplicity, we consider the first Heisenberg-Weyl 
Lie algebra hw( 1), which is the most familiar dynamical 
algebra for vibrations in a single degree of freedom. The ex­
tension to higher Heisenberg":'Weyl algebras is straightfor­
ward. 

A basis for the complex extension of hw ( I) is given by 
the set of operators {A,B,A} having the commutation rela­
tions 

[B,A] = A, [A,A] = [A,B] = O. 

A. Irreps of hw(1) 

A lowest weight state 1,1. ) for a unitary irrep is defined by 

rCA)(B) 1,1.) = 0, rCA)(A) 1,1. ) = ,1.1,1. ), 

where A serves as a label for the irrep. An orthonormal basis 
for the irrep is defined recursively by the equation 

rCA)(A)IA,n) =~A(n + 1) IA,n + I). 

Thus we obtain the matrix elements for the A irrep, 

(A,m + IlrCA)(A)IA,n) =~A (n + 1)c5mn , 

(A,nlrCA)(B)IA,m + 1) = (A,m + llrCA)(A)IA,n)*, 

(A,mlrCA)(A)IA,n) = Ac5mn · 

The rCA) irrep is seen to be related to the more familiar 
rCA = \) irrep by 

rCA)(A) = .[Tat, rCA)(B) = .[Ta, rCA)(A) =,1.1, 

where 

at = rW(A), a = rC\)(B), 

and I = r(1)(A) is the identity operator. 

B. Approximate embedded representations of hw(1) 

Consider now the situation in which, instead of a single 
hw( I) irrep, we have a direct sum r = l:A rCA) ofirreps and 
an orthonormal basis for the carrier space given by state 
vectors 

1;1',n) = L ;"A IA,n), 
A 

where {;"A} is a set of coefficients such that 

L ;!..t;1'A = c5p ". 
A 

If we restrict to a subspace of states of v = const and put 

,1.=,1.0 + E, 

where 

,1.0 = (A) = + I;"A 1
2
,1., 

we obtain 

(t/J",m + IlnA)It/J",n) 

= c5mn~Ao(n + 1) (1 - (c)/SA ~ + ... ), 
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(t/J",nlnB)It/J1',m + 1) = (t/J",m + llr(A)It/J",n)*, 

(t/J",mjr(A) I;",n) = c5mn Ao, 

where 

(c) = L 1t/J1'A 12(,1. - ,1.0)2. 
A 

It follows that we have an approximate embedded represen­
tation of the hw ( I) Lie algebra provided (c) ..( SA. ~. 

An alternative, and possibly more useful, construction 
of an approximate embedded representation for the Lie 
group HW ( 1) and its Lie algebra hw ( 1 ), which is equiva­
lent to the above to within the limits of the approximation, is 
to construct the carrier space of the embedded representa­
tion as the span of an orthonormal basis of states which satis­
fy the equations 

reB) 1;1',0) = 0, (t/J1',OlnA) 1t/J1"O) = ,1.0' 

nA)It/J1',n) 
I<p",n + 1) = (<p1',nlr(BA)I<p1',n)1/2 

Although in quantum mechanics one is accustomed to 
considering only ,1.= 1 irreps of the Heisenberg-Weyl alge­
bras hw(n), corresponding, with a suitable choice of A, B, 
and A, to the commutation relations 

[x,p] = iliI, 
with Ii fixed at the value given by Planck's constant, other 
representations with A =1= 1 (or, equivalently, with Ii different 
from the Planck value) exist mathematically and could exist 
in physics. It is conceivable that what one sees in physics are 
embedded representations with only mean value of Ii given 
by the Planck value, and that higher energy representations 
exist with orthogonal distributions of Ii. 

Note also that, although the Heisenberg-Weyl algebras 
are the simplest dynamical algebras for describing vibration­
al dynamics, they are not the most appropriate in all situa­
tions. The normal mode vibrations of a composite system 
with internal degrees offreedom may be more appropriately 
described by a symplectic algebra, for example, as we now 
consider. 

VI. THE sp(1,R)-su(1,1) VIBRATOR ALGEBRA 

For example, Sp( I,R) is the appropriate dynamical 
group for a theory of monopole (breathing mode) vibrations 
of nuclei. 6 

A basis for the complex extension of the Lie algebra 
sp( I,R) is given by a raising operator A, a lowering operator 
B, and a u ( 1) operator C with the commutation relations 

[C,A] = 2A, [CoB] = - 2B, [B,A] = 4C. 

A lowest weight state for a unitary irrep ofsp( I,R) is defined 
by 

rCN)(B) IN,O) = 0, rCN)(C) IN,O) = N IN,O), 

where N, a positive integer or (for a spinor irrep) a positive 
half integer, serves as a label for the irrep. One easily shows 
that orthonormal basis states are defined recursively for 
such an irrep by the equation 
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r(N)(A)IN,n) = [4(N + n)(n + 1)}1/2IN,n + O. 
The matrix elements of the sp( 1,R) operators are given in 
this basis by 

(N,m + 1Ir(N)(A) IN,n) = 8m .. [4(N + n)(n + 1) ]112, 

(N,njr(N)(B)IN,m + 1) = (N,m + 1Ir(N)(A)IN,n)*, 

(N,mjr(N)(C)IN,n) = 8m .. (N + 2n). 

Now consider a band of states, 

Ilfn) = L CNIN,n), 
N 

that straddle a distribution of sp( 1,R) irreps. Write 

N=No +2, 
where 

No (N) = L ICN I2N. 
N 

We then easily find that 

(lfm + ,InA) Ilfn) = 8mn [4(No + n)(n + 1)] 112 

X(l - (2 2)/8(No + n)2 + .. 'J, 
(1f .. lr(B)llfm+') = (lfm+,jr(A)llfn)*' 

<If .. jr( C) Ilfn) = 8mn (No + 2n), 

where 

(22) = L ICN I2(N - NO)2. 

N 

It follows that, in the limit of8N ~ large compared with (2 2), 
(2 2)/8(No + n)2 ..... 0 and the set of states {I If .. )} carries an 
embedded representation r(No ) of sp( 1,R). 

We again observe that an alternative, and possibly more 
useful, definition of the (approximate) embedded represen­
tation is to define its carrier space as the span of the ortho­
normal basis states which satisy 

reB) l<Po) = 0, (<Pojr(C) l<Po) = No, 

r(A)I<Pn) 
l<Pn+l) = (<p .. lnBA)I<p .. )1/2' 

where r is the reducible representation ofSp( 1,R) given by 
the direct sum of the irreps r(N). 

These are significant results because they mean that one 
can use sp ( 1 ,R) as a dynamical structure algebra for the 
description of nuclear monopole vibrations, even though it 
may be overly restrictive to assume that the physical states 
belong to a single irrep. More important, however, is the fact 
that the sp ( 1 ,R) Lie algebra is prototypical of richer dynam­
ical structure Lie algebras, such as sp(3,R), which has fea­
tured widely in the theory of nuclear collective states. 7 

VII. DISCUSSION 

We have shown that the success of an algebraic model in 
describing subsets of observable properties of a many-body 
system does not necessarily imply the existence of a corre-
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sponding dynamical symmetry group for the system. It may 
only imply the existence of a dynamical structure group. In 
particular, we have shown that the observation of bands of 
states that accurately obey the predictions of the rotational 
model does not imply that the states of the band belong to an 
irreducible subspace of the rotor algebra. They may belong 
only to an embedded representation. 

It will, of course, be recognized that, given sufficient 
experimental data so that one can extract matrix elements of 
a basis for a Lie algebra between all physical states of a sys­
tem, it is possible to distinguish between an embedded repre­
sentation and a subrepresentation. The indistinguishability 
arises in practice when one considers a restricted set of data 
involving, for example, the states of a single collective band, 
and ignores the often small matrix elements connecting these 
states to other possibly higher energy states. 

Although perhaps not recognized explicitly, these con­
cepts have been implicitly used in physics both in the context 
of the adiabatic approximation, as we have already dis­
cussed, and in what is often referred to as renormalization. 
For example, to take into account the corrections to a model 
due to coupling to neglected states, one often assigns renor­
malized values to the parameters of the model, such as effec­
tive masses or effective charges, different from their physical 
values. 

However, the explicit recognition that one can use dy­
namical structure groups, which are neither symmetry 
groups nor even dynamical symmetry groups, opens up the 
possibility of more extensive applications of group theory in 
physics than hitherto. For example, it has long been main­
tained that the application of Elliott's SU (3) model of nu­
clear rotations8 should be restricted to light nuclei because 
one knows that, in heavy nuclei, the spin-orbit interaction 
mixes SU(3) irreps strongly. As we show elsewhere,9 one 
can in fact admit very large mixing of SU (3) irreps by the 
spin-orbit interaction and still retain the essential properties 
of SU (3) bands. 

In a forthcoming paper9 we investigate the application 
of the concepts of dynamical structure and embedded repre­
sentations to the microscopic description of nuclear collec­
tive structure. 
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30. W. Mackey, Induced Representations o/Groups and Quantum Mechan­
ics (Benjamin, New York, 1968). 

4L. Weaver, L. C. Biedenharn, and R. Y. Cusson, Ann. Phys. (NY) 77, 250 
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5J. Meyer ter Vehn, Nucl. Phys. A 249, 111 (1975). 
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9p. Rochford and D. J. Rowe, "The survival of rotor and SU(3) bands 
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Cauchy surfaces in a globally hyperbolic space-time 
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With the help of volume functions it is shown that a globally hyperbolic space-time possesses a 
Cauchy surface which is a three-dimensional, connected, spacelike C'Ye> hypersurface. 

I. INTRODUCTION 

It is a widely used theorem that every globally hyperbo­
lic space-time M possesses a Cauchy surface which also is a 
Cao hypersurface of M. Sachs and Wu 1 called it "one of the 
folk theorems of the subject," since an elegant proof of this 
statement is still missing. (In fact, there is a proof that every 
globally hyperbolic space-time possesses a Cauchy surface in 
Geroch,2 and also a sketch of a proof of the announced result 
in Ref. 3.) In this paper we will give a proof of the above 
result. We shall use the terminology and notation of 
O'Neill.4 

II. GLOBALLY HYPERBOLIC SPACE-TIMES 

In the following proposition we call a function t: M .... R a 
time function, if 

p<q => t(p) <t(q) (p,qEM). 

If u is a finite Borel measure on M with 

(i) u( U) > 0 (0# Uc;.M) , 

(ii) oiBd l± (p») = 0 (pEM) , 

we call the functions 

t ± (p): = =foil ± (p» (pEM) 

(future or past) volume functions. In Ref. 5 it is shown that 
such a measure always exists. 

Proposition: Let t -, t + be volume functions in M and let 
t: = In( t - It +). The following are equivalent: (i) Mis 
globally hyperbolic; (ii) t is a continuous time function and 
for all causal, inextendible curves y we have Ran (toy) = R; 
and (iii) t -I ({a}) is for all a ER a Cauchy surface. 

The proof may be found in Ref. 6. 
Now we are able to prove the announced theorem. 
Theorem: A space-time (M,g) is globally hyperbolic iff 

a C ao manifold No and a diffeomorphism'll: No X R ..... M ex­
ist with'll (No X {a}) being for all aE R a spacelike, connect­
ed Cauchy surface. 

Proof: "=>" Let t ± be volume functions. Due to the 
proposition the function 

t: = In( - t - It +) 

is a continuous time function. In Ref. 7 it is shown that we 
can smooth a continuous time function receiving a COO -time 
function t with 

I(t - t)(p)1 < 1 (pEM), 

and dt is timelike. It follows that the level surfaces of tare 
spacelike hypersurfaces of M. In fact, they even are Cauchy 
surfaces; for let aE R, Na : = t -I ( {a}), and y be an inexten-

dible, timelike curve. Because t is a time function, y can meet 
Na at most once. Because 

t(p)<lt(p) t(p) 1+ t(p) <a 

t(p»t(p) -It(p) - t(p)1 >a 

[PEt - 1 ({a - 1}»), 

[pEt -I ({a + 1}) J, 
the factthat t -I ({a ± 1}) are Cauchy surfaces, and the con­
tinuity of t, y must meet Na at least once. 

To construct'll we need a lemma. 
Lemma: The mapp: M .... No, which takes eachpEM to 

the unique point on the Cauchy surface No, at which the 
integral curve of the timelike C'" -vector field grad t through 
p meets No, is a submersion. 

Proof of the lemma: Let pEM. The integral curve ap 

through p meets No in a unique point a p (u). Because the 
maps 

~±u(·):=~(·,±u), 

where ~ denotes the flow of grad t, are diffeomorphisms, 
N: = ~ _ u (No) is a hypersurface throughp. Moreover, N is 
transversal to grad t since 

d~u(gradtp) = [~u oap]'(O) 

= [~(~(p,U),.)]'(O) 

= a;(p) (0) = grad tp(p) . 

Since we also have grad tp #0, there is a chart (x,U) at p, 
such that grad t = al on Uandx(N) C (u l

) I ({O}), where 
ul is a natural coordinate function on R4 (see O'Neill8

). 

Obviously we have 

p t u =~uoX-I01TOX, 

where 1T: R4 
.... (u 1 ) - 1 ( {O}) denotes the natural projection, 

which shows that p is a submersion. .. 
Now we construct the inverse of'll: The cao map 

iii: M .... NoXR, p .... (p(p),t(p») 

is bijective and, because t andp are of maximum rank, even a 
diffeomorphism. Since M is connected and 

No = 1Tolli(M), 

where 1T: No X R ..... No denotes the projection, No is also con­
nected. The map'll: = iii-I has all required properties. 

" <=" A space-time possessing a Cauchy surface is glo-
bally hyperbolic.9 

• 
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Diffeomorphisms, orientation, and pin structures in two dimensions 
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A set of generators for the modular group of a surface with boundary, both in the orientable 
and nonorientable cases is given. All inequivalent pin structures are constructed and their 
transformations under these generators are computed. 

I. INTRODUCTION 

In Ref. 1 we solved the following problem: given a com­
pact, connected, orientable, two-dimensional Riemannian 
manifold ~ without boundary, compute the action of the 
orientation preserving diffeomorphisms of ~ on the set of 
inequivalent spin structures on ~. Since isotopic diffeomor­
phisms induce the same transformation on spin structures, it 
is sufficient to determine the action of one particular repre­
sentative in each isotopy class. The group of isotopy classes 
.n+(~) = 1ToUi\I'I'+~), which we call the modular group 
of~, has a finite set of generators, for which representative 
diffeomorphisms are known (the Dehn twists). Therefore 
the problem of determining the action of an arbitrary diffeo­
morphism on spin structures is reduced to that of determin­
ing the action of a finite number of diffeomorphisms. 

In this paper we address the analogous problem for an 
arbitrary compact, connected manifold (henceforth called a 
surface). Since we are going to discuss orientation reversing 
diffeomorphisms and nonorientable surfaces, we do not 
work with spin structures, but rather with pin structures 
[i.e., prolongations of the bundle of orthonormal frames to 
the double covering of the full group 0 (2) ]. This is ex­
plained in more detail in Sec. II, where we also collect some 
basic facts on the topology of surfaces. In Sec. III we consid­
er the case of an orientable surface with boundary and com­
pute the action of the full diffeomorphism group on pin 
structures. In the rest of the paper we discuss the case of a 
nonorientable surface N, possibly with boundary. In Sec. IV, 
we give explicit representatives for the generators of the mo­
dular group .n (N). In Sec. V we give a complete description 
of all pin structures on N. The group 0 (2) has two inequiva­
lent double coverings Pin + (2) and Pin - (2), which have to 
be treated separately. For instance, we will find that depend­
ing on the topology of N, pin structures exist for one of them, 
but not for the other. In Sec. VI we compute the action of the 
generators of .n (N) on pin structures and we find the orbits 
of this action. In the two appendices we collect some supple­
mentary topological results on nonorientable surfaces. 

The motivation for this work came from the problem of 
modular invariance in superstring theory. Surfaces with 
boundary occuI'in the Feynman integral representation of 
the vacuum amplitUde for open strings and of the scattering 
amplitude of closed strings. Nonorientable surfaces appear 
in the theory of nonoriented strings. 

a) On leave of absence from I.F.T., Uniwersytet Wroclawski, Poland. 

II. PRELIMINARIES 

In this section we recall some basic facts on the topology 
of surfaces, their diffeomorphism groups, the double cover­
ings of the linear and orthogonal groups in two dimensions, 
and pin structures. 

We denote ~g an orientable surface without boundary 
of genus g; it is homeomorphic to a sphere if g = 0 or to the 
connected sum of g tori if g> 1. Removing from ~g n disjoint 
open disks DI, ... ,Dn we obtain a surface ~g,n with boundary 
consisting of n circles dl,. .. ,dn • Every smooth compact, con­
nected, orientable surface is homeomorphic, and actually 
diffeomorphic, to ~g,n for some g,n. We will always work 
with a specific realization of~g as a surface embedded in R3

, 

symmetrically with respect to the plane reflections K; 
(i = 1,2,3) which invert the jth axis (see Fig. 1). The first 
homology group is HI (~g,Z) = Z2g and HI (~g,n ,Z) 
= Z2g + n - I for n> 1; the generators are the cycles a A ,b A for 

A = 1, ... ,g drawn in Fig. 1 and the cycles dh for h = 1, ... ,n, 
with the relation 

n 

I dh =0. (2.1) 
h=1 

We denote Ng (g> 1) a nonorientable surface without 
boundary of genus g; it is homeomorphic to the connected 
sum of g real projective planes. Removing from Ng n disjoint 
open disks DI, ... ,Dn we obtain a surface Ng,n with a bound­
ary consisting of n circles dl, ... ,dn • Every compact, connect­
ed, nonorientable surface is homeomorphic,2 and actually 
diffeomorphic, to Ng,n for some g,n. For our purposes it will 

x' 
(a) 

x' __ --fo. 
0, 

g 

(b) 

x'_-40 
0, 

2 ... R:!. i!:1 ~ ... 1-1 g 
2 2 2 

FiG. I. The surface l:. for (a) geven and (b) g odd. 
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be convenient to use an alternative picture of a nonorientable 
surface. Let J = KIK2K3 be the total inversion in R3

, i.e., 
J(xI,x2,x3) = (-xl, _x2, _x3 ). Consider the surface 
~g _ I (g> 1) embedded in R3 as before (see Fig. 2) and 
remove 2n disks Dh with h = 1, ... ,2n such that J(Dh) 
= D2n _ h + I' Then J restricts to an orientation-reversing, 
fixed point-free diffeomorphism of ~g _ 1,2n' which generates 
a group Z2 = {Id, J}. The quotient ~g _ 1,2n IZ2 is a compact, 
nonorientable surface with boundary consisting of n circles. 
It can be thought of as the part of ~g _ 1,2n with Xl >0 subject 
to the identifications (0,x2 ,x3

) = (0, - x 2
, - x3

). This is the 
connectedsumof~( g_ 1)/2 and a projective plane, ifgisodd, 
or ~(g_ 2)/2 and a Klein bottle if g is even, with n disks 
removed in both cases. We show in Appendix A that these 
spaces are homeomorphic to Ng,n' Therefore 

~g_ 1,2n/Z2 = Ng,n . 

The natural projection 1T: ~g-I,2n -Ng,n is a double cover­
ing. The first homology groupisHI (Ng,Z) = Zg-I EDZ2 and 
HI (Ng,n ,Z) = zg+ n - 1 for n> 1. We shall use the same sym­
bol for a loop on ~g _ 1,2n and the projection onto Ng,n ofthe 
part of that loop which lies in the half-spacexl>O. Then, the 
generators of HI (Ng,n ,Z) can be listed as follows: 
a l, ... ,a(g_I)/2' b l ,· .. ,b(g_I)/2' C(g_I)/2' dl,· .. ,dn with the 
relation 

n 

2(C(g_1)/2 -a(g_I)/2) + L dh =0, (2.2) 
h=1 

ifgisodd, andal> ... ,agI2' b l , ... ,bgI2 , dl, ... ,dn with the relation 
n 

2ag/2 + L dh = 0 , 
h=1 

(2.3) 

if g is even. The orientation reversing generators are 
c( g_ 1)/2 for g odd and bg/2 for g even. 

Let D( ~g,n) be the group of diffeomorphisms of ~g,n . 
We have two chains of inclusions 

DO(~g,n) C Da (~g,n) C DB (~g,n) C D(~g,n) 

and 

Da (~g,n) C D + (~g,n) C D(~g,n) , 

where Do, Da, DB' and D + denote the subgroups of D con­
sisting of diffeomorphisms which are isotopic to the identity, 

<a) @~i~fu 
1 ... .i::L ~ ... , 

2 2 

(b) 

~J;&;[0 
' ... -'1 {- 'I.' ., 

FIG. 2. The surface 1:'_1 for (a) godd and (b) geven. 
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leave the boundary pointwise fixed, map each connected 
component of the boundary to itself, or preserve the orienta­
tion, respectively. Here and in the following by isotopy we 
always mean smooth isotopy, i.e., homotopy through diffeo­
morphisms. We denote 

n(~g,n) = 1To(D(~g,n») = D(~g,n )IDo(~g,n) 
and, with obvious notation, we have inclusions 

na(~g,n) C nB(~g,n) C n(~g,n) 

and 

na (~g,n) C n+ (~g,n) C n(~g,n) . 

Similarly, for a nonorientable surface, we have 

Do (Ng,n ) C Da (Ng,n) C DB (Ng,n) C D(Ng,n ) 

and 

In all cases, n will be called the modular group. 
In two dimensions, every homeomorphism is continu­

ously isotopic to a diffeomorphism and furthermore, if two 
diffeomorphisms are continuously isotopic, they are also 
smoothly isotopic. Therefore, the modular group of a sur­
face can be identified with its homeotopy group (the group 
of continuous isotopy classes of homeomorphisms). This 
will allow us to use known results on the homeotopy groups 
of surfaces. 

A spin structure on an oriented n-dimensional Rieman­
nian manifold M is a prolongation of the bundle of oriented 
orthonormal frames to the group Spin (n), the double cover­
ing ofSO(n). As discussed in Ref. 1, in order to define rigor­
ously the transformation of spin structures under orienta­
tion-preserving diffeomorphisms, it is necessary to use 
instead the prolongations of the bundle of all oriented frames 
to the double covering of G L + (n ). If / is an orientation 
reversing diffeomorphism of M, or if M is not orientable, 
then the derivative T/is an automorphism of the bundle of 
all frames. To define spinors on M and their transformation 
under/in these cases, it is necessary to use a prolongation of 
the bundle of frames to a double covering of GL(n). The 
group GL(n) is retractable to its maximal compact sub­
group O(n) and its two double coverings are retractable to 
the double coverings of 0 (n ) , denoted Pin + (n ) and 
Pin - (n). This is easily established using the I wasawa de­
compositions ofGL(n) and its double coverings. 

The general discussion in Secs. II and III of Ref. 1 can be 
repeated in this more general case, the only modification 
being the non uniqueness of the double covering of GL (n). A 
prolongation of the bundle offrames to a fixed double cover­
ing ofGL(n) exists if and only ifthere exists a prolongation 
of the bundle of orthonormal frames to the corresponding 
double covering of O(n) (i.e., a pin structure). Further­
more, when they exist, there is a bijective correspondence 
between prolongations of the bundle of frames to a fixed 
double covering ofGL(n) and prolongations of the bundle 
of orthonormal frames to the corresponding double covering 
of O(n). The topological conditions for the existence of 
Pin + (2)- and Pin - (2 )-structures are, respectively, 

(2.4 ) 
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where WI and w2 are the first and second Stiefel-Whitney 
classes of M. Furthennore, when pin structures exist, they 
are classified by H I (M,'l2) = Hom(HI (M,'l),'l2)' In prac­
tice, the transfonnation of prolongations under diffeomor­
phisms can be computed working almost all the time with 
the groups Pin ± (n), so in the following we will always talk 
about pin structures rather than prolongations of the bundle 
of frames. In this paper we shall use the charts and local 
trivializations of the bundle of frames of ~g which were in­
troduced in Sec. 4 of Ref. 1. In order to be able to give a 
unified treatment for all genera g>O we have to define the 
chart U also in the case of the sphere [this was not needed in 
Ref. 1 because S 2 admits only one spin structure and 
.n + (S 2) = 1]. This we achieve by declaring the equator to 
be the loop Co and introducing a coordinate neighborhood Zo 
of Co with coordinates ( ~o,zo). Then we define an atlas of F 
on the open covering U, U', U", where U = Zo, U', and U" 
are the northern and southern hemispheres and the fields of 
frames e,e',e" are defined by Eqs. 4.10, 6, 7 in Ref. 1, respec­
tively. This ensures that the transition functions of F have 
even winding number and have lifts to the group Spin (2). 

Finally, we describe the double covers of 0(2). To the 
Euclidean space R2 are associated two Clifford algebras 
C ± (2), which are generated by two elementsYI,Y2, with the 
relation 

YiYj + YjYi = ± 28ij (i = 1,2) , 

respectively. We shall use a 2 X 2 matrix representation with 

Yi = Ui [for C + (2)] or Yi = -r=T Ui [for C - (2)], where 
U i are the first two Pauli matrices. The group Pin ± (2) is a 
subgroup of C ± (2), respectively, consisting of two con­
nected components. The identity-connected component 
Spin(2) consists of elements of the fonn exp(sYIY2) with 
O";;S..;;21T; the other component is obtained by composing ele­
ments ofSpin(2) with YI' The covering homomorphismp: 
Pin ± (2) --+0(2) is defined by 

p(a)Yi = aYia- 1 , 

P(Yla)Yi= -y1aYia-IYI-1, foraeSpin(2), 

where the Yi are regarded here as a basis for R2C C ± (2). 
Notice that O";;S";;1T parametrizes an open path in Spin(2) 
joining I to - 1, which covers a loop in SO(2) starting and 
ending at 1. 

III. DIFFEOMORPHISMS AND PIN STRUCTURES ON :Ig,n 

The group .n + (~g) and its action on spin structures 
have been discussed in Ref. 1. A set of generators for .n (~g ) 
is given by a set of generators for .n + (~g) plus (the isotopy 
class of) an orientation-reversing diffeomorphism. In the 
presence of a nontrivial boundary there are additional gener­
ators. It is convenient to regard ~g,n as a subset of ~g and 
represent the generators of .n(~g,n) by diffeomorphisms of 
~g; some of them will be isotopic to the identity on ~g, but 
not on ~g,n' since an isotopy on ~g,n must consist of diffeo­
morphisms which map the boundary to itself. Consider the 
loops a A ,b A which wind around the A th handle, for 
A = 1, ... ,g; 100pscA whichconnecttheA thand the (A + 1)­
st handle, for A = 1, ... ,g - 1; loops rAh , SAh which intersect 
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Dh and wind around the A th handle, for A = 1, ... ,g and 
h = 1, ... ,n; loops th which intersect Dh and Dh + I' for 
h = 1, ... ,n - 1 (see Fig. 3). 

Let t'denote anyone ofthese loops. We introduce local 
coordinates in a tubular neighborhood U[ 1"] of c: by choos­
ing an orientation preserving diffeomorphism of U[ 1"] onto 
the open annulus {zeC! 1 - £ < Izl < 1 + £} in such a way 
that the oriented loop I" is mapped onto the clockwise orient­
ed circle Iz I = 1. In the case ofthe loops a A>b A ,C A these co­
ordinates are related to those introduced in Ref. 1 by U [ a A ] 

=XA, U[bA] = YA, U[cA] =ZA, Izl-l =XA'YA,ZA' 
- arg z = X A' {} A' ~A' respectively. In the case of the loops 
rAh , SAh we assume also that the disk Dh is mapped onto the 
disk Iz + 11 < £/2 and furthennore in the case of the loops t h 

the disk Dh + I is mapped onto the disk Iz - 11 <£12. For 
each I" we define a diffeomorphism 1 [ 1"] called the twist 
around I" as follows: it is the identity in the complement of 
U[ 1"] and on U[ 1"] 

f[t']: ~z'exp[ -2-r=TA(lzl-l)/£)], 

for 1"= aA,bA,cA , (3.1 ) 

1[1"]: ~z.exp[ _2r-TA(2Izl-£I+£) 

_ 2r-T A ( _ 2 Izl -£1 - £ )] , 

for 1"= rAh , SAh , (3.2) 

f[t']: ~z.exp[ --r=TA (2 Izl-: +£) 

(3.3 ) 

where A is a smooth function such that A(S) = 0 for s";;O, 
A(S) = 1Tfor S> 1, and dA /ds>O. This definition agrees with 
the one given in Ref. 1 for 1 [ a A ] ,J [ b A ], and 1 [ C A ]. The 
effect of these twists on the annulus is shown in Fig. 4: the 
spiraling lines are the images under the twists of the intersec­
tion of the real axis with the annulus. 

For the orientation-reversing generator we take (the 
isotopy class of the restriction to ~g.n of) the reflection K 3, 

assuming that the disks D1, ... ,Dn are placed on ~g in such a 
way that K 3 (Dn) =Dn' Notice that the total inversion J 
would not work for odd n. 

It was proved in Ref. 3 that .n(~g.n) is generated by the 
following set: {/[aA],J[bA] for A = l, ... ,g; l[cA] for 
A = 1, ... ,g-l;/[rAh ],/[sAh] for A = 1, ... ,g, h = 1, ... ,n; 

FIG. 3. The twists on :I •.•. 
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(a) 

(b) 

(e) 

FIG. 4. The twists (3.1), (3.2), and 
(3.3). 

I[th ] for h = 1, ... ,n - 1; K 3 }. In the special cases g = 0, 
g = 1 or n = 0, n = 1, some of these generators are not de­
fined and o (l:g,n ) is generated by the remaining ones. We 
observe that this is not a minimal set of generators; for in­
stance it was proven in Ref. 4that/[ aA ] withA = 3, ... ,gcan 
be expressed as combinations of the remaining I [ a A ], 

I [ b A ], and I [ C A ]. It can also be seen that I [ r A,h + , ] and 
I[SA,h+'] are isotopic to l[th]-Y[rA,h]/[th] and 
I[th] -y[SAh ]/[th ]. 

The generators for the subgroups 0 + (l:g,n ), 0 B (l:g,n ), 
and Oa (l:g,n) are obtained from those of o (l:g,n ) byomit­
ting the generator {K 3}' the generators {I [ t h] for 
h = 1, ... ,n -l} and the generators {K3; I[th ] for 
h = 1, ... ,n - l}, respectively. 

On l:g,n (n> 1) there are 22g + n -, inequivalent spin 
structures labeled by (2g + n)-tuples of numbers 
(i" ... ,ig; j" ... ,jg; k" ... ,kn ) , each equal to ° or 1 and with 
the relation 

m 

L kh =Omod2, (3.4 ) 
h=' 

which derives from (2.1 ~ All spin structures on l:g,n have 
the same S~n(2) bundleF, which is the restriction to l:g,n of 
the bundle FofRef. 1. In place of4. 12-4. 16 in Ref. 1 we now 
have bundle morphisms TJlJk: F ..... F defined by 

TJlJk(e(x») = e(x)rijk (x) , (3.5) 

where r IJk: U ..... SO (2) are such that composed with the loops 
aA,bA,anddh (regarded as mapsS ' ..... l:g) they have wind­
ing numbers iA' jA, and kh, respectively. This can be 
achieved by placing the disksD" ... ,Dn inZoifg = o and Y, if 
g> 1 (see Fig. 5, where Y, has been slightly extended) and 
modifying the functions rlJ on the shaded strips in such a way 
that crossing the strip between Dh and Dh + " the function 
rlJk rotates by 21Tqh with qh = l:~ =, k m • 

Every spin structure (ijk) extends uniquely to a 
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'f 0, 
O2 

V, " " 
V, ~, 

Ii ~ On 

I 1 (}, -nl -n/2 n/2 l:f 

FIG. 5. Extension of the chart Yo in the presence of boundary. 

Pin+(2) and a Pin-(2) structure, both of which will be 
denoted again (ijk). In particular, having fixed the structure 
group, the pin bundle is the same for all pin structures. 

The transformation of pin structures under 0 (l:g,n ) can 
be determined counting the winding numbers of the three 
terms on the rhs of (4.22) in Ref. 1. For this to work it is 
necessary that the homology generators and their images 
under I be contained in U; this is true for I [ a A ] , I [ b A ] , 
I[ CA ], andK3, and will also be true fori [ rAh ],J[ SAh]' and 
I [ t h ] provided we deform the loops r Ah , S Ah' and thin such a 
way that they are entirely contained in U. We observe that 
the middle term in (4.22) is the only function which has 
values in GL(2) and in general not in 0(2); however, it can 
be deformed into a function which has value in the subgroup 
0(2) without altering its winding numbers. In practice, the 
winding number of hot'is determined counting how many 
times the vector tangent to lot' winds with respect to the 
frames e on U. 

Most of the labels (ijk) are invariant under the action of 
the generators, so for each diffeomorphism we list only the 
labels which are changed, 

l[aB]:jA~jA +8ABiB , 

l[bB]: iA ~iA +8AB jB' 

I [ C B ] : j A ~ j A + (8 AB + 8 A,B + , ) (f B + i B +, + 1) , 

l[rBm ]: jA ~jA +8AB km , 

I[SBm]: iA ~iA +8AB km , 

l[tm]: kh ~kh + (8hm +8h,m+,)(km +km+,)· 

Since K3 leaves all pin structures invariant the orbits of 
O(l:g,n) are the same as the orbits of 0+ (l:g,n)' For n = 0, 
they are characterized by the invariant 

g 

tp(i,j) = L (fA + 1)(jA + 1); (3.6) 
A=' 

the pin structures with tp = 0 (resp.1) are called even (resp. 
odd), For n>1 and k = 0, the orbits are the same as in the 
case n = O. Ifk#O there are [n12] orbits (where [ ] de­
notes the integer part of a number) which are characterized 
by the integer 

n 

K= L k h • (3.7) 
h=' 

Because of (3.4) the labels kh that are equal to 1 must occur 
in pairs, so K is even. 

. In Table I we list all the orbits of 0 (l:g,n ), together with 
their invariants, cardinality, and a representative pin struc­
ture for each. We recall that 2 [nI2] denotes the largest even 
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TABLE I. Orbits ofn(~g.") and n+(~g."). 

K rp Standard form Cardinality 

° ° (0, ... ,0; 1, ... ,1;0, ... ,0) 2g- 1(2g+ 1) 

° 1 (0, ... ,0; 1, ... ,1,0;0, ... ,0) 2g- 1(28_1) 

2 (0, ... ,0; 1, ... ,1;0, ... ,0,1,1) 228(~ ) 

2m (0, ... ,0; 1, ... ,1;0, ... ,0,1, ... ,1) 228 (2"m) 

2[n/2J (0, ... ,0; 1, ... ,1;8(n + 1),1, ... ,1) 2
2g 

(2inn) 

integer which is <on and we use the abbreviation O(n) 
= n - 2[nI2] [i.e., O(n) = 0 for n even, and 1 for n odd]. 

The groups n B (.Ig•n ) and na (.Ig.n ) have the same or­
bits, because they have the same set of generators except for 
K 3 , which leaves all pin structures invariant. Here k itself is 
invariant. Ifk=O, tp(i,j) is also invariant and there are 
again two orbits corresponding to even and odd pin struc­
tures. If k =I- 0, there are r - I orbits, characterized by k. In 
Table II we list all the orbits of n B (.Ig•n ); the invariant vec­
tors k are ordered as if they were binary numbers. 

IV. GENERATORS FOR O(Ng,n) 

We saw in Sec. II that the double covering of Ng•n is 
.Ig_ 1.2n' Every diffeomorphism of N n.g lifts to two diffeo­
morphisms of.Ig _ 1,2n which commute with J. One of these 
preserves the orientation and the other, being obtained from 
the first by composition with J, reverses the orientation. 
Conversely, every diffeomorphism of .Ig_I,2n which com­
mutes with J factors to a diffeomorphism of Ng,n . Thus there 
is an isomorphism between D(Ng,n) and D + (.Ig _ 1,2n ) 
nC(1:2), where C(1:2 ) denotes the centralizer of 
1:2 = {Id, J} in D(.Ig_I,2n)' There follows that the genera­
tors of n(Ng,n) can be represented by diffeomorphisms of 
.Ig _I,2n which are isotopic to diffeomorphisms which com­
mute with J. On the other hand, if we have a diffeomorphism 
I such that supp/n J(supp/) = 0 and which does not 
commute with J, we define a "symmetrized" diffeomor­
phism), 

f= fJfJ· 
Since supp JIJ = J (supp I), I commutes with JIJ and f 
commutes with J. 

Consider first the twists around the following loops 
(which do not meet the plane Xl = 0): aA for A = 1, ... ,[ gl 

k rp 

0, ... ,0 ° 
0, ... ,0 1 
0, ... ,0,1,1 
0, ... ,0,1,0,1 

1, ... ,1, 
8(n + 1) 

Standard form 

(0, ... ,0; 1, ... ,1;0, ... ,0) 
(0, ... ,0; 1, ... ,10;0, ... ,0) 
(0, ... ,0; 1, ... ,1;0, ... ,0,1,1) 
(0, ... ,0; 1, ... ,1;0, ... ,0,1,0,1) 

Cardinality 

2 g -
1 (2 g + 1) 

2 8 - 1(2 g -1) 
228 

22g 

(0, ... ,0; 1, ... ,I;I, ... ,1,8(n + 1») 22g 
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2]; bA for A=I" .. ,[(g-1)/2]; CA for A=I, ... ,[(g 
- 2)/2]; TAh for A = 1, ... ,[ gI2], h = 1, ... ,n; SAh for A 
= 1, ... ,[ (g - 1)/2], h = 1, ... ,n, and th for h = 1, ... ,n - 1. 

The corresponding symmetrized diffeomorphisms 

f[ aA ],/[ bA],/[ CA ]'/[TAh ]'/[ SAh]' andf[ th ] project 
onto the diffeomorphism of Ng,n which will be denoted again 
I [aA ], I [b A ], I [CA ], I [TAh ], I [SAh ], and I [th] since 
they are twists and can be described in local coordinates on 
Ng,n by Eqs. (3.1 )-( 3.3). Indeed, Ng,n can be identified with 
the intersection of.Ig _ 1,2n and the half-space XI;;;.O with cer­
tain identifications if Xl = O. Therefore every symmetrized 
diffeomorphism of.Ig _ , ,2n whose support does not intersect 
the plane Xl = 0 can be immediately regarded as a diffeo­
morphism on N~,n . 

Now consider the loop tn' which we draw as in Fig. 6. 
The twist I [tn ] can be chosen to commute with J, but its 
support crosses the plane Xl = 0 and it does not project to a 
twist on Ng,n' The diffeomorphism of Ng,n defined by I [ t n ] 
will be denoted (Tn and called a "slide," since it can be de­
scribed as sliding Dn through a Mobius strip and back to its 
original'position (see Appendix B); notice that (Tn reverses 
the orientation of the boundary d n' Similarly the composi­
tion o~ twists f[th]-'" ·f[tn-d-1[tn]/[tn-d 
X ... I[th ] projects onto a slide (Th that reverses the orien­
tation of dh • 

Next, consider the twists around the remaining loops 
TAh and SAh' It can be shown that for 
A = [( g + 2)/2], ... ,g - 1; h = 1, ... ,n,f[TAhJ andf[sAh] 
project o~to transformations isotopic to (T;; 1°1 [ T g _ A,h ] O(T h 
and (T;; IAol [Sg_ A,h ] O(Th, respectively. For geven, the projec­
tion of I[ SgI2,h] is isotopic to (T;. So these twists do not 
produce any new generator of n (Ng,n ). 

The only generators of n(.Ig _,,2n) that have not been 
used until now are the twists around the loops that cover the 
orientation-reversing loops, namely I [ C (g _ 1)/2] for g odd 
and/[ bgl2 ] for g even. They cannot be symmetrized and 
have to be replaced by a new type of transformation, called 
"Y diffeomorphisms." Since they appear already in the case 
when there is no boundary, we begin by assuming n = O. The 
support of a Y diffeomorphism is any closed subset W C Ng 

homeomorphic to N2" (a Klein bottle without a disk); in 
particular this implies that Y diffeomorphisms exist only if 
g;;;'2. For any such subset Wone can define, up to isotopy, a 
Y diffeomorphism, in a way which is described in Appendix 
B. For our purposes, it will be more useful to have a descrip-

Z 8,_1 Z . -, 
-.- --r 

(a) Dn o. D, 

~ I 
tn cr:::~ J:::.:a I 

; .-, • 2 -.-
°nt-1 D'n 

(b) 
V ... 

Dn D, 

r 
V ... 

I tn et::: J:-::~I 
• 

.. oi} .... 
pam • 

On +1 D'n 

FIG. 6. The loop t" and the (dashed) region where the functions rijk haveto 
be modified in the presence of a boundary. 
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tion of the lift of a Y diffeomorphism to l:g _ 1 ; furthermore, 
we can restrict our attention to a Y diffeomorphism with a 
fixed support, since all the others can then be o,l>tained by 
composition with twists. Consider the subset Wof l:g_1 
which is bounded by the curvesf and J( f), if g is even, and e 
and J(e) if g is odd (see Fig. 2). These subsets are homeo­
morphic to l: 1,2 (a torus without two disks) and project onto 
subsets WofNg whicharehomeomorphic.1oN2,1' We~efine 
diffeomorphisms y of l:g _ 1 with support W. Regard Was a 
subset ofl:1 embedded in]R3 as in Fig. 7. 

The diffeomorphism y is defined by 

y=JoToK3 , 

where Tis a rigid rotation by 1T of the disks DI and D2 in the 
direction of the arrows, joined smoothly to the identity on 
the region which is bound by t~ dashed lines. Since y is the 
identity on DI and D2, when W is regarded as a subset of 
l:g _ 1 , this transformation can ~e extended smoothly by the 
identity in the complement of W. 

The diffeomorphisms y commute with J and therefore 
project to diffeomorphisms of Ng with support W which are 
shown in Appendix B to be Y diffeomorphisms in the sense 
of Ref. 5. It can be seen that y is isotopic to the following 
combinations of twists: 

y= (f[ c( g_1)/2]0 f[ b( g_I)/2]-1 

of[b(g+I)I2]-1)20f[e]-I, g odd, 

y= (f[ bg/2] 0 f[ Cg/2 ] 

of[C(g_2)/2p20f[f]-I, g even. 

However, these combinations of twists do not commute with 
J and y cannot be expressed as a combination of twists on 
Ng •

6 

In the case of surfaces with nonempty boundary, it is 
convenient to choose the support of y in such a way that y 
does not move the boundary. In addition, in order to apply 
the method of Ref. I to the transformation of pin structures 
on Ng,n' it is necessary that the support of every diffeomor­
phism of l:g_I,2n representing a generator of n(Ng, .. ) be 
contained entirely in the domain of a local trivialization of 
the bundle of frames (specifically, U). These two require­
ments can be met by deforming the curves e and f of Fig. 2 in 
such a way that they run parallel and sufficiently close (at a 
distance < EI2 in the charts X, Y,Z) to the curves b ( g _ 1)/2' 
C(g_I)/2' b(g+1)/2 and C(g_2)/2' bg/2, Cg/2' respectively. 

x3 

X'~_~ 

FIG. 7. The support of the diffeomorphismy. 
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Then, W can be regarded as a tubular neighborhood of these 
curves. 

For n = 0, it was shown in Refs. 6 and 7 that n (Ng ) is 
generated by the following set {f[ aA ],J[ bA ] for 
A = 1, ... ,( g - 1)/2; f[CA] for A = 1, ... ,( g - 3)/2;y} 
forgodd{f[aA] for A=I, ... ,g/2; f[bA] for 
A = 1, ... ,( g - 2)/2;/[ cA] for A = 1, ... ,( g - 2)/2;y} for 
geven. 

Using the results ofScott8 it can be shown that n(Ng,n) 
is generated by the sets given above plus the following: 
{f[rAh] for A=I, ... ,[g/2]; h=I, ... ,n; f[SAh] for 
A = 1, ... ,[ (g - l)/2],h = 1, ... ,n;f[th ] forh = 1, ... ,n - 1; 
U h for h = 1, ... ,n}. In the special casesg = lor n = 0, n = 1, 
some of these generators are not defined and n(Ng,n) is gen­
erated by the remaining ones [in particular n(N1,o) is triv­
ial]. 

The generators for the subgroups n B (Ng, .. ) and 
na (Ng, .. ) are obtained from those of n(Ng,n) omitting the 
generators {f[ th ] for h = 1, ... ,n - 1} and the generators 
{f[th ] for h = 1, ... ,n - 1; Uh for h = 1, ... ,n}, respectively. 

V. PIN STRUCTURES ON Ng,n 

The main result of this section will be the following. 
Proposition: A nonorientable surface of odd genus and 

without boundary admits only Pin- (2) structures. In ali 
other cases Ng,.. admits both Pin - (2) and Pin + (2) struc­
tures. 

In the course of the proof we shall explicitly construct 
all the inequivalent pin structures on Ng,n as quotients of pin 
structures on the double covering; this will provide a natural 
way of labeling them and we shall see that their number 
agrees with the general cohomological result. 

Let p: F - Ng, .. be the bundle offrames of Ng,n and Pl: : F l: 
-l:g _ 1,2.. be the bundle of frames of l:g _ 1,2n' There is a 
canonical isomorphism of Fl: to the pullback 1T* F = {(x,e) 
El:g_ 1,2n XFI1T(X) = p(e)} given by e~(pl: (e),T1T(e»). 
Let Z2 be the subgroup of Aut Fl: generated by TJ. There is a 
canonical isomorphism of the quotient F l: IZ2 to F given by 
[e] ~ T1T( e). In the following we shall identify objects which 
are related by these canonical isomorphisms. 

If (F,r]) is a Pin+(2)-or a Pin-(2)-structure on 
Ng, .. , we can constru5t, respectively, a Pin+(2)-or a 
Pin- (2)-structure (Fl:,'1h) on l:g_I,2n as follows: 

Fl: = 1T*F= {(x,e)El:g_ 1,2n XFI1T(X) = jJ(e)} 

withP = pOT/ and T/l: (x,e) = (x,T/(e»). This pin structure is 
invariant under J, in the sense that there exists a lift of J to an 
automorphism TJ of Fl: such that T/l: oTJ = TJoT/l:' and 
furthermore 

(5.1) 

For instance, we can take 

TJ(x,e) = (J(x),e) . (5.2) 

We observe that since (TJ)2 = IdF the only other possibil-- ~ -
ity is (TJ)2 = y, the automorphism of Fl: given by right 
multiplication with -1. Conversely, if a Pin+(2)-or 
Pin-(2)-structure (Fl:,T/l:) onl:g_ I,2n is invariant under 
J and (5.1) holds, we can define, respectively, a Pin + (2)-
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~r P~-L2)-struc!ure (i,'TJ) En Ng,n as follows:_we take 
F= F~/Z2 where Z2 = {IdF1 ,TJ} and define 'TJ: F-F by 
'TJ ( [e) z, ) = ['TJ~ (e) ] z,' This gives us a method to construct 
pin structures on Ng,n from pin structures on :'£g _ 1,2n' _ 

The quotient of the pullback of a pin structure (F,'TJ) 
under the group Z2 generated by (5.2) is identical to (i, 'TJ). 
It follows that every pin structure on Ng,n can be obtained by 
the method described above from some pin structure on 
:'£g-I,2n' 

The quotient of inequivalent pin structures on :'£g-I,2n 
yields inequivalent pin structures on Ng,n . This will be seen in 
each specific case later on and can be proven using covering 
space methods.9 As discussed in general in Ref, 1, there exist 
precisely two lifts of J, which differ by composition with y. If 
(5.1) holds for one of them, it also holds for the other, so 
they generate two different subgroups of Aut F~ which we 
denote Zit') with tE{O,l}. Taking the quotient ofa symmet­
ric pin structure by these two subgroups yields inequivalent 
pin structures on Ng,n' It can be seen, however, that the bun­
dlesF~/Zi') for t'= 0,1 are isomorphic as pin bundles. The 
problem of the isomorphism between the pin bundles corre­
sponding to different pin structures will be discussed else­
where. 

The action of J on pin structures can be determined 
again using the method of Ref. 1. We have to extend the 
bundle chart on U to a bundle chart on UUJ( U). This can be 
done in a straightforward manner by choosing the frames on 
J(XA. ) to be given by 

(-1 0) e(J(p»)=TJ(e(p») ° 1 

for pE XA.' For the pin structures we assume rlJk (p) = 1 for 
pE J( U) \ U. In thechartZ( g-I)/2 (forgodd) and Yg/2 (for 
g even) the function rlJk have to be modified in such a way 
that when composed with the loops b(g_I)/2' b(g+I)/2' 
d l , ... ,d2n they have winding numbers j( g-I)/2' j( g+ 1)/2' 
k l , ... ,k2n (for g odd) and when composed with the loops 
bg/ 2 , ag/ 2 , d l , ... ,d2n they have winding numbersjg/2' ig/ 2 , 

kl> ... ,k2n (for g even), with the relation :,£in= I kh = ° mod 2 
in both cases. This is achieved by changing r IJk on the shaded 
strip in Fig. 6 in such a way that crossing this strip between 
dh and dh+ I the function rlJk rotates by 2'1T'qh with qh 

=:'£~=Ikm' 
Counting winding numbers, we find that the action of J 

is iA. ......... ig_A.; jA. ......... jg-A. + (15A.,(g_I)/2 + 15A.,(g+O/2)qn; kh 
......... k 2n _ h + I for g odd and iA. ......... ig_A. + 15 A.,g/2Qn; jA. ......... jg- A.; 
kh ......... k2n _ h + I forgeven. Thereforethesymmetricpinstruc­
tures, i.e., those which are invariant under J, are character­
ized by 

n 

jA. =jg-A. + (15A.,(g_I)/2 + 15A.,(g+ 1)/2) L kh , 
h=1 

kh = k2n - h+ I , 

for g odd, and 

586 

n 

iA. = ig-A. + 15A.,g/2 L kh , 
h=1 

jA. =jg-A. , 

kh = k2n _ h + I , 
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(5.3a) 

(5.3b) 

for g even. In particular, the first equation in (5.3b) written 
for A = gl2 implies that for g even 

n 

Qn = L kh =0. (5.4) 
h=1 

We now examine which invariant pin structures satisfy con­
dition 5.1. This will determine whether Pin+(2)-or 
Pin - (2 )-structures exist on Ng,n' _ 

In local trivializations of F~ and F~ over U defined by 
frames e and e, the lifts TJ and TJ are locally represented by 
functions hand h which, due to our choices of trivialization, 
have values in 0(2) and Pin ± (2), respectively. Condition 
5.1 then reads 

h (J( p»)h( p) = 1 (5.5) 

[the case (T J) 2 = Y corresponds to having - 1 on the rhs] . 
Since we have a choice between two possibilities, it will suf­
fice to check (5.5) at a single point. 

If g is odd, let p be the point whose coordinates in the 
chart Z( g_ 1)/2 are (;,z) = (0,0) [see Fig. 6(a)]. In this 
chart J: (;,z) ......... (; + 'IT', - z), so J( p) = ('IT',O) , h(O,O) 
=h('IT',O) = ("0 1 ?), and h(O,O) = ±YI' h('IT',O) 
= ±YI' 

The relation between the sign of h at the two points has 
to be determined by continuity. We begin by considering the 
case n = 0. Using (4.10) in Ref. 1 we find 

h(;,Q) = (01 0) 
-1 

X R ( - U (; + 'IT' - £) - U (~) - 'IT') . 
'IT' - 2£ 'IT' - 2E 

(5.6) 

Using (4.14) and the coordinate transformation (4.2), 
(4.3) in Ref. 1, we have 

rlJ (;,0) = R (2i( g_ 1)/2,A. ( - :) + 2i( g+ 1)/2,A. (; ~ 'IT')) . 

Since the pin structure is symmetric, we can put i ( g _ 1)/2 
=i(g+I)/2' Then from (4.21) in Ref. 1 writtenfor/=J, 

p(h(;,O» 

= rlJ (; + 'IT',O) -lh(;,O)rlJ (;,0) 

= (~ -~) 
XR (-u(; + 'IT'-£) - U (~) -'IT') 

'IT' - 2£ 'IT' - 2E 

XR(2i(g_I)/2[,A.(:)+,A.( - :) 

+,A.(;~'IT')+,A.( _;~'IT')]). (5.7) 

If i( g_ 1)/2 = ° the second rotation is the identity matrix; if 
i( g_ 1)/2 = 1 it rotates by 2'1T'and backas;grows from Oto 'IT'. 
Therefore, in both cases, this is a path in SO(2) which starts 
and ends at the identity and is homotopically trivial. How­
ever, when; grows from ° to 'IT', the argument of the first 
rotation decreases by 2'1T', and therefore h must change sign: if 
h(O,O) = YI then h('IT',O) = - YI and vice versa. So 

L. Ol}browski and R. Percacci 586 



                                                                                                                                    

hClT.O)h(O.O) = - (YI)2 and condition (5.5) holds for the 
group Pin-(2). Therefore. if g is odd. Ng admits only 
Pin - (2) structures. (See Ref. 10 for g = 1.) 

Now consider the case n"> 1. If qn = 1:: = I kh = 0 then 
(5.6) and (5.7) remain valid and we obtain aPin- (2) struc­
ture on Ng,n' If qn = 1. the second rotation matrix in (5.7) 
will have to be modified for those values of ; such that 
( ; + 1T.0) is in the shaded strip in Fig. 6(a); as a result of 
this modification. it will rotate by 21Twhen; grows from 0 to 
1T. Altogether the rhs of (5.7) rotates by 41T. so h( 1T.O)h(O.O) 
= (Y I) 2 and condition (5.5) holds for the group Pin + (2) . 

If g is even. let p be the point whose coordinates in the 
chart Yg12 are (1?,y) = (1T/2.0) [see Fig. 6(b)]. ThenJ( p) 
has coordinates (- 1T/2.0) and the function h: Yg12 
-GL(2) which represents locally TJ is h(1? y) = (b _? ). 
Using (4.14). (4.16). (4.21) of Ref. 1 and (5.4) we have 

p(h(1?O») = rijk (1? + 1T.0) -lh(1?O)rijk (1?O) 

In particular pC/'( ± 1T/2.0» = (b _?) so ii(1T/2.0) 
= ± Y2 and ii( -1T12.0) = ± Y2' To see how the sign of h 

at 1? = - 1T 12 is related to the sign at 1? = 1T 12 we use again a 
continuity argument. Ifjg/2 = O. p(ii(1?O») is constant and 
therefore also ii is constant. So h( -1T/2.0)h(1T/2.0) 
= (Y 2) 2 and condition (5.5) holds for the group Pin + (2) . 

Ifjg/2 = l.p(ii) rotates by 21T as 1? grows continuously from 
-1T/2 to 1T/2 and therefore h must change sign. So if we 

choose h(1T/2.0) = Y2 we must have h( -1T/2.0) = - Y2 
and vice versa; there follows that ii( -1T/2.0)ii(1T/2.0) 
= - (Y2)2 and the condition (5.5) holds for the group 

Pin - (2). Altogether. we find that if g is even. a symmetric 
Pin+ (2) structure on !.g-I,2n projects to a Pin+ (2) struc­
ture on Ng,n only ifjgl2 = 0 and a symmetric Pin - (2) struc­
ture on !.g-I,2n projects to a Pin- (2) structure on Ng,n only 
if j gl2 = 1. This completes the proof of the proposition. 

We now count the pin structures that we have con­
structed. We consider first the case n"> 1. If g is odd the sym­
metric pin structures on !.g-I,2n have labels (il.· ... ;( g-I)/2' 
;(g-I)/2 ... ·.;I; jl ... ·.j(g-I)/2.j(g-I)/2.· ... jl; kl ... ·.kn• 
kn ..... k l ) with !.;:= I kh = 1 for Pin+(2) and 1:;:= I kh = 0 
for Pin - (2). Thus there are 2 g + n - 2 symmetric Pin + (2) 
structures and 2 g + n - 2 symmetric Pin - (2) structures. If g 
is even. the symmetric pin structures on !.g-I,2n have labels 
(il.· ... "( g - 2)12 ';g/2';( g - 2)/2 ... ·."1; jl ... ·.j( g - 2)12 .jg/2' 
j(g-2)/2 ..... jl; kl ... ·.kn.kn ... ·.kl ) withjg/2 =0 for Pin+(2) 
andjg/2 = 1 for Pin-(2). and with the relation (5.4) hold­
ing. Thus there are 2 g + n - 2 symmetric Pin + (2) structures 
and 2g + n - 2 symmetric Pin - (2) structures. From the gen­
eral discussion earlier in this section. each symmetric pin 
structure on !.g _ 1,2n gives rise to two inequivalent pin struc­
tures on Ng,n which differ in the value of the label t:. There­
fore in all cases we will get 2 g + n - I inequivalent pin struc­
tures on Ng,n' If n = 0 there are 2 g - I symmetric pin 
structures of each type on !.g _ I and they give rise to 2 g 

inequivalent pin structures on Ng • 
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Because of the symmetry (5.3). we use as labels for pin 
structures on Ng,n the following: (il ... ·.;( g_ 1)/2; 
j\O' ... j(g-I)/2; kl ... ·.kn;t) with l:h=lkh =0 for Pin-(2) 
and 1:;: = I kh = 1 for Pin + (2). if g is odd. and (ito .... ;gl2; 

jl ... ·.j( g_2)/2;kl ... ·.kn;t) with 1:h = I kh = Oforgeven. The 
labels;A .jA' kh• and tare associated to the homology genera­
tors on Ng,n: a A' b A' dh and the orientation reversing loop. 
respectively. Differences in these labels can be interpreted as 
the value on the corresponding loop of a homomorphism 
from HI (Ng,n.Z) to Z2' 

The fact that for the group Pin + (2) on Ng,n with g odd 
l:;: = I kh #0 shows that the labels (ijkt) cannot be inter­
preted naively as a homomorphism from HI (Ng,n'Z) to~. 
as is usual. The fact that at least one of the labels kh must be 
nonzero is equivalent to the statement that these Pin+ (2) 
structures cannot be extended to the interior of the disks 
DI ..... D n to give Pin + (2) structures onNg • We could correct 
this peculiarity of the labeling using the freedom to perform 
affine transformations (e.g .• redefining kl~kl + 1). In this 
case the (g + n) tuples (ijkt) could be interpreted as a 
homomorphism HI(Ng,n,Z)~Z2' In the following we shall 
stick to the previous notation. 

VI. THE ACTION OF fl(N",n) ON PIN STRUCTURES 

In the previous sections we have described the diffeo­
morphisms and the pin structures on Ng,n in terms of diffeo­
morphisms and pin structures on its orientable double cover 
l:g _ 1,2n' In this section we shall use the results of Sec. III. 
together with some additional information. to determine the 
action of diffeomorphisms on pin structures on Ng,n . 

LetfE1J(Ng,n) and.& E1J(l:g_ 1,2n) be one of its two lifts. 
Given a pin structure (F. 'T/) on ~,n. there is a pin structure 
(F:£.'T/V on 1:g_ I ,2n such that (F.'T/) is its ~otient under a 
group Z2 generated by one of the two lifts TJ. The map f:£ 
transforms (F:£.'T/:£) into some other pin structure (1':£.'T/i); 
so in the following diagram all solid arrows commute: 

'e --rfe-'e 
T1'el "'-.." ---------~ ~t -~, 

Fe ~l-rl£-A IT1 I "-F - rf I ": F 

'~I-r, ) ~,,-I 
N--/' ) N 

(6.1 ) 

The transformed pin structure (F'.'T/') is defined by the re­
quirement that there exists a map 1'f F' -+ F (dashed arrow) 
which forms a commutative square with 'T/'.'T/ and Tf From 
the square on the left-hand side of the upper cube. (F'.'T/') 
must be the quotient under a group Z2 of (F:£.'T/i); but 
(F:£. 'T/i ) projects to two inequivalent pin structures on Ng,n 
which differ in the value of the label Eo so (6.1) does not 
entirely determine the transform of (F.'T/) underf 

To determine the transformation rules of the label Eo we 
observe that since Tf:£ commutes with T J we must have 

1'f:£o1'J= (y)q01'Jo1'A (6.2) 
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withq = Oorq = 1. IfTI:r. commutes with TJ(q = 0), then 
we can define Tlby 

TI( [e]) = [TI:r. (e)] , 

where [ ] denotes equivalence classes with respect to the 
group Z2 generated by TJ; if TI:r. "anticommutes" with TJ 
(q = I) the same definition works provided the equivalence 
class [e] on the lhs is taken with respect to the group Z2 
generated by the other lift of J, namely, yoTJ. This means 
that underl 

I'r-~ t" = t' + q . (6.3) 

We now consider the transformation properties of pin 
structures on !.g _ 1,2n (not necessarily symmetric) under the 
lifts of diffeomorphisms of !.ig,n' T~e transf~rmati0!1 of the 
labels ijk under the twists I [ a A ] ,f [ b A ] ,f [ C A ] , I [ r Ah ], 
f [ S Ah ],) [ t h ] can be immediately obtained from the results 
of Sec. III (the position of the boundaries on the surface does 
not affect the transformation properties of pin structures). 

The effect of/[ tn] is only to interchange kn with k n + I 

and to transform j(g-1)/2~j(g-I)/2+kn+I' j(g+I)12 
~j{g+ 1)/2 + kn if g is odd and ig/2~igI2 + kn' jg/2~jg/2 
+ k n + k n + 1 if g is even. The support of y is chosen as in 
Sec. IV in such a way that y does not move the boundary. 
Therefore, y leaves k invariant and it transforms i( g _ 1 )/2 

~i(g+1)12 +!.;:=l kh' i(g+I)/2~i(g 1)/2 +!.h=1 kh, 
j( g_ 1)/2 ~ j( g+ 1)12 +!.;: 1 kh' and j( g+ 1)/2~j( g-I)12 
+!.;:=I kh forgoddandig/2~ig/2 +i(g_2)/2 +i(g+2)/2> 
j(g-2)/2~j{g-2)/2 +jgl2 + 1, and j(g+2)/2~j(g+2)/2 
+ jgl2 + 1 for g even. 

These transformations simplify somewhat on symmet­
ric pin structures. In particular, one finds then that for g 
even,jgl2 is invariant and for g odd!,;: = 1 kh is invariant, in 
accordance with the fact that the structure group Pin ± (2) 

cannot be changed. 

I[ aB ]: 

I[ bB ]: 

jA~jA +8AB iB, B= 1, ... ,(g-I)/2, 
iA~iA + 8AB jB' 

To determine the transformation of the label t'we re­
write (6.2) in the local trivialization of1':r. over U, 

hf(J(x»)hJ(x) = ( - )qhAI:r. (x»)hf(x) , (6.4) 

wherehfandhJ are the local representativesofTI:r. and TJ, 
respectively. Since we have a choice between two possibili­
ties, it is sufficient to check this formula at a single point. All 
our generators are such that there exists a point pe U which is 
not in the support of/:r. and such that r IJk (p) = 1 for all ijk. 
Then hf ( p) and hAJ( p~) must be either 1 or _- 1, and fur­
thermore hAA (p») = hJ (p). The value of hf at p can be 
fixed arbitrarily to be 1; the value of hf atJ( p) is determined 
by continuity. In particular, if there exists a path in Ujoining 
p to J( p) which lies entirely in the complement of the sup­
port off, then hf ( J( p» = hf ( p) = 1 and therefore q = O. 
Direct inspection shows that this is the case for all our gener-
ators except f [ ag/2 ] for g even. ~ 

To determine the transformation of t' underl [ ag/2 ] we 
choose the point p to have coordinates ({t,y) = (17'12,0) in 
the chart Y gl2 as in the discussion of Sec. V. Then we have 

~J(p) =hAf[agld(p))=r2 ~d hf(p) = ± 1, 
hf(J(p» ± 1. The relative sign ofhfatp andJ(p) is the 
winding number of the function 

p(hf(x») = rlJk(i[ agl2 ] (x»hf(x)rlJk (x) 

along the path ~(t1,y) (-s,O) with -1T/2<.s<.:rr/2. 
This winding number is igl2 , so we get hAJ(x»)hJ(x) 
= ( - )ig/2r2 and hAf[ agl2 ] (x»)'hf(x) r2' Comparing 

with (6.4) we find q = ig/2 . We now collect the transforma­
tion rules for pin structures on Ng,n under the generators of 
n(Ng,n) which were listed at the end of Sec. IV. We use the 
labeling of pin structures which was discussed at the end of 
Sec. V. Since most of the labels are invariant, we only list 
those which are changed. For g odd, 

I[ cB ]: jA~jA + (8AB + 8A,B+ I) (fB + iB+ 1 + 1), B = 1, ... ,( g - 3)12, 

y: 

l[rBm ] : 
I [SBm ]: 
l[tm]: ' 
u h : 

and for g even 

I[ aB ]: 

l[hB]: 
I[ ag/2]: 
I[CB]: 
I[C(g_2)/2]: 

y: 

f[rBm ]: 
I[SBm ]: 
f[tm] : 
uh : 

n 

i( g_I)/2~i( g- 1)/2 - L kh , 
h=1 

jA~jA + 8AB k m , B 1, ... ,( g - 1)/2, m = I, ... ,n, 
iA~iA +8ABk m , 

kh~kh + (8hm + 8h,m+ 1 )(km + km+ I)' m = I, ... ,n - 1, 
j( g-I)/2~j( g-I)/2 + k h , h = 1, ... ,n, 

jA~jA + 8ABiB, B = 1, ... ,( g - 2)/2, 
iA~iA + 8Aa.iB' 
t'~t' + ig/2 , 
jA~jA + (8AB +8A,B+1 )(iB +iB+1 + 1), B= 1, ... ,(g-4)/2, 
j(g-2)/2~j(g-2)/2 +i(g_2)/2 +ig/2 + 1, 
. {j( g_ 2)12 + I, for Pin+ (2), 

1< g- 2)/2~ • ~ P' - (2) 1< g- 2)/2' lor 10 , 

jA~I4 + 8ABk m, B 1, ... ,( g - 2)12, m = 1, ... ,n, 
iA~iA + 8AB k m, 
kh~kh + (8hm + 8h,m+ I) (km + km+ I)' m = I, ... ,n - 1, 
igl2~ig/2 + k h , h = 1, ... , n. 
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(6.5a) 

(6.5b) 
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We now discuss the orbits of the action of o (Ng, .. ) on 
pin structures, We begin with the case n = 0. If g is odd, Ng 

only admits Pin - (2) structures, and they are all quotients of 
even pin structures on ~g_I' i.e., pin structures for which 
qJ(i, j) = ° with qJ(i, j) defined as in (3.5). So there is no 
invariant coming from the parity of the pin structure on the 
double cover. However, t'and 

(g-I)/2 
tP(ij) = L (i.o4 + l)(j.o4 + 1) 

.04=1 

are invariants. Using the method of Sec. IV, Ref. 1, it can be 
seen that for the values (tP,t') = (0,0), (0,1), (1,0) and 
( 1,1 ), it is possible to transform the Pin - (2) structures to 
standard forms which are given in Tables III and IV. So for g 
odd there are four orbits. 

Ifgiseven,ig/2 isinvariant;infactigl2 + 1 =qJ(ij),i.e., 
the pin structures on Ng with ig/2 = ° (resp.l ) are quotients 
of odd (resp. even) pin structures on ~g_I' In addition, if 
ig/2 = Oalsot'isinvariant. For (ig/2't') = (0,0) and (0,1) it 
is possible to bring the pin structures to standard forms. If 
ig/2 = 1, the situation is different for Pin+ (2) and Pin- (2). 
All Pin+ (2) structures with ig/2 = 1 can be transformed 
into each other. For Pin - (2) structures with ig/2 = 1 there 
is a further invariant 

(g-2)/2 
tP(ij) = L (i.o4 + l)(j.o4 + 1) . 

.04=1 

Every Pin-(2) structure with (ig/2,tP) = (1,0) and (1,1) 

TABLE III. Orbits ofO(N .. o ) for good. 

ForPin (2) 
K 

0 
0 
0 
0 
2 
2 

2m 
2m 

2[n/2] 
2[n/2] 

ForPin+(2) 
K 

2m+ 1 
2m+ 1 

2[(n + 1)/2] 
2[(n + 1)/2] 

I' 

0 
0 
1 
1 
0 

0 

0 
1 

I' 

o 
1 

o 

o 

'" 0 
1 
0 
1 
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can be brought to a standard form. Altogether, if g is even, 
there are three orbits for the action of O(Ng ) on Pin + (2) 
structures and four orbits for the action on Pin - (2) struc­
tures. 

Next we discuss the case with nonempty boundary 
(n>I). If g is odd, every Pin-(2) structure must have 
~~ = 1 kh = ° mod 2. If k = 0, the structure of the orbits is 
the same as in the case without boundary. Ifk =1= 0, tP( ij) is no 
longer invariant but t' remains invariant. Thus there are 
2[nI2] orbits with k=l=0, labeled by t' and by K defined in 
(3.7). For g odd, every Pin+ (2) structure must have ~~= 1 

kh = 1 mod 2, therefore at least one coefficient kh must be 
equal to one. Again tP is not invariant, but t' remains invar­
iant. There are 2 [ (n + 1) /2] orbits labeled by t' and K. If g is 
even and k = 0, the structure of the orbits is the same as in 
the case without boundary. If k =1= 0, neither ig/2 nor t nor tP 
are anymore invariant. So there are [nI2] orbits labeled by 
K. In Table III we collect the standard pin structure and the 
cardinality of each orbit. The orbits for n = ° are the same as 
for K = 0 (i.e., k = 0). 

Finally we discuss the subgroups OB (Ng, .. ) and 
Oa (Ng, .. ). In OB (Ng, .. ) we lack the twists! [ til] which gen­
erate permutations of the boundaries, hence k is an invar­
iant. The structure of the other invariants is the same as for 
the group o (Ng, .. ); only the number and the cardinality of 
the orbits is different. For k = ° everything is as in the case of 
o (Ng, .. ); for k =1= ° we have the following situation: for g odd 
and Pin - (2) there are 2 (2" - 1 - 1) orbits labeled by k and 
c: each containing 2 g - 1 pin structures; for g odd and 

Standard form 

(0, ... ,0; 1, ... ,1; 0, ... ,0;0) 
(0, ... ,0; 1, ... ,1,0; 0, ... ,0;0) 
(0, ... ,0; 1, ... ,1; 0, ... ,0;1) 
(0, ... ,0; 1, ... ,1,0; 0, ... ,0;1) 
(0, ... ,0; 1, ... ,1; 0, ... ,0,1,1;0) 
(0, ... ,0; 1, ... ,1; 0, ... ,0,1,1;1) 

(0, ... ,0; 1, ... ,1; 0, ... ,0,1, ... ,1;0) 
(0, ... ,0; 1, ... ,1; 0, ... ,0,1, ... ,1;1) 

(0, ... ,0; 1, ... ,1; (J(n + 1),1, ... ,1;0) 
(0, ... ,0; 1, ... ,1; (J(n + 1),1, ... ,1;1) 

Standard form 

(0, ... ,0; 1, ... ,1; 0, ... ,0,1;0) 
(0, ... ,0; 1, ... ,1; 0, ... ,0,1;1) 

(0, ... ,0; 1, ... ,1;0, ... ,0,1, ... ,1;0) 
(0, ... ,0; 1, ... ,1;0, ... ,0,1, ... ,1;1) 

(0, ... ,0; 1, ... ,1; (J(n),I, ... ,I;O) 

(0, ... ,0; 1, ... ,1; (J(n),I, ... ,I;I) 

Cardinality 

2g -
'
(n 

2a-'(~) 

2a - ' U:"+,) 
2a - ' U:"+,) 

Cardinality 

2< a- 3)/2(2< 6- 1)/2 + 1) 
2< a- 3)/2(2< a-l)/2 - 1) 
2< g- 3)/2(2< a-l)/2 + 1) 
2<a- 3)/2(2<6- 1)/2 _ 1) 

2a- ' (n 
2a-'(~) 

2a - ' G:") 
2g - I (20m) 

2 a- 1 (2Inn]) 

2a- I
(21n12]) 

2
g

- ' (2i<o+,)/2]) 
2·- 1(1[<0+ 1)/2]) 
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TABLE IV. Orbits ofO(Ng •• ) for geven. 

K 

0 
0 
0 
0 
2 

2m 

2[n/2] 

K 

0 
0 
1 
1 

o 
1 

o 
1 

Standard fonn 

(0 •...• 0; 1 •...• 1; 
(0 •...• 0; 1 •...• 1; 

(0 •...• 0.1; 1 •...• 1; 
(0 •...• 0.1; 1 •...• 1.0; 

(0 •...• 0; 1 •...• 1; 

0 •...• 0;0) 
0 •...• 0;1) 
0 ..... 0;0) 
0, ...• 0;0) 

0 •...• 0.1.1;0) 

(0 •...• 0; 1, ...• 1; 0 •...• 0.1 •...• 1;0) 

(0 •...• 0; 1 •...• 1;8(n + 1).1 •...• 1;0) 

Standard fonn 

Cardinality 

2 g - 2 

2g - 2 

2( g-2)12(2( g-2)12 + 1) 
2( g-2)/2(2( g-2)12 _ 1) 

2 g (2 ) 

Cardinality 

o 
o 
o 
2 

o 
o 
1 

o 
1 

(0 •...• 0; 1 ..... 1; 
(0 •...• 0; 1 •...• 1; 

(0 •...• 0.1; 1 ..... 1; 
(0 •...• 0; 1 •...• 1; 

0 •...• 0;0) 
0 •...• 0;1) 
0 •...• 0;0) 

0 •...• 0.1.1;0) 

2g - 2 

2g - 2 

2 g - 1 

2g(~ ) 

2m (0 •...• 0; 1 •...• 1; 0, ...• 0.1 •...• 1;0) 

2[n/2] 

Pin + (2) there are r orbits labeled by k and t, each contain­
ing 2 g - I pin structures; for g even there are 2n 

- I - 1 orbits 
labeled by k#O, each containing 2g pin structures, indepen­
dently of the structure group. 

In the case ofthe subgroup fia (Ng•n ) we further lack the 
slides which reverse the orientation of the boundaries. 
Everything is as in the case of fiB (Ng•n ) except for g even 

TABLE V. Orbits ofOa(Ng •• ) for godd. 

ForPin-(2) 
k ~ 

0 ..... 0 0 
0 ..... 0 0 
0 .... ,0 1 
0 ..... 0 1 
0 ..... 0.1.1 0 
0 ..... 0.1.1 1 

1 ..... 1.8(n + 1) 0 
1 ..... 1.8(n + 1) 1 

For Pin + (2) 
k ~ 

0 ..... 0.1 0 
0 ..... 0.1 1 
0 ..... 0.1.0 0 
0 ..... 0.1.0 

1 ..... 1.8(n) 0 
1 ..... 1.8(n) 1 

o 
1 
o 
1 
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(0 •...• 0; 1 •...• 1;8(n + 1).1 •...• 1;0) 

and k#O. In this case, independently of the structure group, 
;g/2 is invariant; in addition, if ;g/2 = 0 also t is invariant. 
For ig/2 = 0 and 1 there are 2(2n

-
1 

- 1) and r- I 
- 1or­

bits, respectively. In Tables V and VI we collect the standard 
pin structures and the cardinalities of the orbits of fia (Ng•n ); 

the invariant vectors k are ordered as if they were binary 
numbers. 

Standard fonn 

(0 ..... 0; 1 ..... 1; 0 ..... 0;0) 
(0 ..... 0; 1 ..... 1.0; 0 ..... 0;0) 
(0 .... ,0; 1 ..... 1; 0 ..... 0;1) 
(0 ..... 0; 1 ..... 1.0; 0 ..... 0;1) 
(0 ..... 0; 1 .... ,1; 0, .... 0.1.1;0) 
(0 ..... 0; 1 ..... 1; 0 ..... 0.1.1;1) 

(0 ..... 0; 1, .... 1; 1 ..... 1.8(n + 1 );0) 
(0, .... 0; 1 ..... 1; 1 ..... 1.8(n + 1);1) 

Standard fonn 

(0 ..... 0; 1 ..... 1; 0 ..... 0.1;0) 
(0 ..... 0; 1 ..... 1; 0 ..... 0.1;1 ) 
(0 ..... 0; 1 ..... 1; 0 ..... 0.1.0;0) 
(0 ..... 0; 1 ..... 1; 0 ..... 0.1.0;1 ) 

Cardinality 

2( g- 3)/2(2( g- 1)/2 + 1) 
2( g- 3)/2(2( g- 1)/2 - 1) 
2(g-3)/2(2(g-I)/2 + 1) 
2( g- 3)/2(2( 0- \)12 _ 1) 

2g - 1 

2 g - 1 

Cardinality 

2 g - 1 

2 g - 1 

2 g - 1 

20 - 1 

(0 ..... 0; 1 ..... I;I ..... 1.8(n);0) 2 0 -
1 

(0 .... ,0; 1 ..... 1;1 ..... 1.8(/1);1) 2 0 -
1 
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TABLE VI. Orbits of na (N ... ) for g even. 

ForPin-(2) 
k ig/2 

0 •...• 0 0 
0 •...• 0 0 
0 •...• 0 1 
0 •...• 0 1 
0 •...• 0.1.1 0 
0 •...• 0.1.1 0 
0 •...• 0.1.1 1 

1 •...• I.B(n + 1) 0 
1 •...• I.B(n + 1) 0 
1 •...• I.B(n + 1) 1 

ForPin+(2) 
k ig/2 

0 •...• 0 0 
0 •...• 0 0 
0 •...• 0 1 
0 •...• 0.1.1 0 
0 •...• 0.1.1 0 
0 •...• 0.1.1 1 

l •...• I.B(n + 1) 0 
1 •...• 1.B(n + 1) 0 
1 •...• I.B(n + 1) 1 
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APPENDIX A: TWO MODELS FOR NONORIENTABLE 
SURFACES 

Given two surfaces M) and M2, one can define a third 
surface, called the connected sum ofM) and M2, by remov­
ing an open disk from M) and one from M2 and sewing to­
gether the resulting boundaries. All surfaces can be obtained 
by forming connected sums of simple building blocks. 

The basic building block of nonorientable surfaces is the 
real projective plane, which can be visualized as a disk with 
the points on the boundary antipodally identified. Removing 
an open disk from a real projective plane we obtain a surface 
with boundary which we call a crosscap. It is convenient to 
visualize a crosscap as an annulus with the points of the 
interior boundary antipodally identified, as symbolized by 
the cross in Fig. 8(a). Cutting along the diameter BPA, 

A A C B 

"'@ (b) 

c ---R ~ R ___ 0 p p 

B BB A 

FIG. 8. A crosscap is homeomorphic to a Mobius strip. 
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Standard form 

(0 •...• 0; 1 •...• 1; 
(0 •...• 0; 1 •...• 1; 

(0 •...• 01; 1 •...• 1; 
(0 •...• 0.1; 1 •...• 10; 

(0 •...• 0; 1 •...• 1; 
(0 •...• 0; 1 •...• 1; 

(0 •...• 0.1; 1 •...• 1; 

0 •...• 0;0) 
0 •...• 0;1) 
0 •...• 0;0) 

01 ••••• 0;0) 
0 •...• 0.1.1;0) 
0 •...• 0.1.1;1) 
0 •...• 0.1.1;0) 

(0 •...• 0; 1 •...• 1; 1 •...• I.B(n+ 1);0) 
(0 •...• 0; 1 •...• 1; 1 •...• I.B(n + 1);1) 

(0 •...• 0.1; 1 •...• 1; 1 •...• I.B(n + 1);0) 

Standard form 

(0 •...• 0; 1 •...• 1; 
(0 •...• 0; 1 •...• 1; 

(0 •...• 0.1; 1 •...• 1; 
(0 •...• 0; 1, ...• 1; 
(0 •...• 0; 1 •...• 1; 

(0 •...• 0.1; 1, ...• 1; 

0 •...• 0;0) 
0 •...• 0;1) 
0 •...• 0;0) 

0 •...• 0.1.1;0) 
0 •...• 0.1.1;1) 
0 •...• 0.1.1;0) 

(0 •...• 0; 1 •...• 1; 1 •...• I.B(n + 1 );0) 
(0 •...• 0; 1 •...• 1; 1 •...• I.B(n + 1);1) 

(0 •...• 0.1; 1 •...• 1; 1 •...• I.B(n + 1 );0) 

Cardinality 

2 g - 2 

2 g - 2 

2( g-2)/2(2( 6- 2 )/2 + 1) 
2( 6- 2)/2(2( 6- 2)/2 _ 1) 

26 - 2 

26 - 2 

2g - 1 

Cardinality 

26 - 2 

26 - 2 

26 - 1 

26 - 2 

2 g - 2 

26 - 1 

straightening out the half-circles, and sewing the segments 
PRP we get a square with two slides oppositely identified, as 
in Fig. 8(b). Thus a crosscap is homeomorphic to a Mobius 
strip: Diameters in Fig. 8(a) correspond to vertical lines in 
Fig.8(b). 

The next simplest nonorientable surface is the Klein 
bottle, which is usually pictured as a square with the sides 
identified as in Fig. 9(a). Cutting along the segment AB, 
sewing the lower dotted triangle to the upper one along the 
side AA, and then straightening everything we get the alter­
native picture in Fig. 9(b), in which the vertical segments 
AB and AMNB are pairwise identified as shown. This figure 
shows that the Klein bottle consists of two Mobius strips 
(dotted rectangles) sewn onto the ends of a cylinder and 
therefore is homeomorphic to a sphere with two crosscaps, 
or equivalently the connected sum of two real projective 
planes. Removing an open disk from a Klein bottle, we ob­
tain a surface with boundary which can be drawn in three 
alternative ways, as in Fig. 10. Figure lO(a) shows a disk 
with two crosscaps; in Fig. lO(b) the sides of the square are 

: )t.\~·{«j>:;(/\r : 
(a) (b) N M 

M :;·;:i:}~i~:~/~;'?!?)~·: N 

A A L--_----'B 

FIG. 9. A Klein bottle is homeomorphic to N2• 
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(aJ "" __________ ', 
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\ I 
\ , 
........... _- ------_ .. ,; 

(cJ __ ~------' , , 
I~ .. _~~_-- __ ) 

• '''E::~~E' 
A P a A 

FIG. to. A Klein bottle with a disk removed. 

identified as in Fig. 9(a). In all cases the boundary is the 
broken line and we have drawn two homology generators a, 
b. 

A nonorientable surface without boundary Ng of genus 
g, defined as the connected sum of g real projective planes, 
can also be thought of as a sphere with g crosscaps. If g;;.3, 
Ng can also be regarded as the connected sum of a Klein 
bottle and Ng _ 2' This is seen by dividing Ng into a region W 
containing two crosscaps as in Fig. lO(a), and its comple­
ment. We can use for W the picture in Fig. lO(c); keeping 
one end of the tube fixed, slide the other through the gth 
crosscap. As a result, we obtain an ordinary handle attached 
to N g _ 2' This shows that N g is also the connected sum of a 
torus and Ng _ 2' This process can be iterated [( g - 1) /2] 
times until one (for g odd) or two (for g even) crosscaps are 
left. Thus Ng is the connected sum of ( g - 1 )/2 tori and a 
real projective plane, for g odd, and ( g - 2)/2 tori and a 
Klein bottle, for g even. For more details see Ref. 2. 

APPENDIX B: SLIDES AND YDIFFEOMORPHISMS 

We discuss in more detail some of the diffeomorphisms 
of a nonorientable surface which were introduced in Sec. III. 
In particular, we describe slides and Y diffeomorphisms di­
rectly on Ng,n' viewed as a sphere with g crosscaps and n 
open disks removed, and relate this to the description of their 
lifts to l:g-I,2n which was given in the text. 

A slide is a diffeomorphism of Ng,n whose support is the 
dashed region in Fig. It( a), homeomorphic to a Mobius 
strip with a disk removed. It can be described as sliding the 

(a) 

F 

F 

FIG. 1l. The slide. 

592 J. Math. Phys., Vol. 29, No.3, March 1988 

(a) 

(b) 

A ...--___ .,.O ___ ---,B 

M 

A.r-____ Cr-__ --,B 

N 

M 

, 
I , 
10 

M 

N 

A~---~----~B 

FIG. 12. The Y diffeomorphism. 

disk through the crosscap and back to its original position. 
The boundary of the disk is mapped into itself with the orien­
tation reversed. Figure 11 (b) shows the effect of the slide on 
the segments EC and OF. Notice that the slide is the identity 
on the path AMNB. 

The support of the diffeomorphism! [ tn ] on l:g_I,2n is 
a cylinder intersecting the plane Xl = 0, with two disks re­
moved, invariant under J, which projects onto a closed sub­
set of Ng,n homeomorphic to a Mobius strip with a disk re­
moved,lt is easy to see that the diffeomorphism (Tn is a slide, 
as defined above. 

A Y diffeomorphism of Ng (g;;.2) has a support W 
which consists of the shaded region of Fig. 11 (a) together 
with a crosscap as in Fig. 8(a) sewn along the boundary 
AOBC. It is a slide joined smoothly to the reflection through 
the diameter AB in the crosscap. In order to relate to the 
definition given in the text, we observe that W is homeomor­
phic to a Klein bottle without a 'disk. Making use of Fig. 
9 (b), we can identify W with the complement of the disk 
HEIGFLH in Fig. 12(a). The effect of the Y diffeomor­
phism is shown in Fig. 12(b): it is the identity on the circle 
HEIGFLH and on the circle ABNMA and reflection 
through the center in the upper rectangle ACBAOB. 

In the case g = 2, n = 0 (the Klein bottle), Fig. 12 rep­
resents the whole surface; the complement of W in N2•0 is a 
disk, with its boundary sewn to W along the circle 
HEIGFLH. In this case there is a smooth isotopy which 
rotates the central disk by t in the clockwise direction, with 
O.;;;t.;;; 1T. At t = 1T we obtain a diffeomorphism which consists 
of reflections through the center in the upper and lower rec­
tangle. Translating back from Fig. 9(b) to Fig. 9(a), this 
corresponds to a reflection through the center of the whole 
rectangle. It can be seen that this is further isotopic to a 
reflection through a vertical axis going through the center, 
which is the description of the Y diffeomorphism of the 
Klein bottle given in Ref. 5. 

The isotopy of the Y diffeomorphism defined above with 
the diffeomorphismy defined in Sec. III is easily established 
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when we observe that since the double covering of the Klein 
bottle is a torus, we can identify the rectangle in Fig. 12 with 
the part of the torus in Fig. 7 with x 3 ;;;.O. 
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The relation between the Nambu-Goto string in D dimensions and the two-dimensional (1' 

model defined on the Grassmannian manifold SO(D - 1,l)/SO(D - 2) xSO(11) is 
investigated. For D = 3 and D = 4 the Nambu-Goto string is identified with a d;finite sector 
of t~~ Grassm~nian (1' model. For D = 3 the remaining sector is again a string model with an 
addItIonal term In the Nambu-Goto action. 

I. INTRODUCTION 

The recent proposal that all superstring theories 1 are 
contained in the purely bosonic string theory in 26 dimen­
sions has made the bosonic string a focus of interest once 
again.2 The bosonic string can be described as a two-dimen­
sional (1' model whose dynamical variables represent the 
world sheet of the string. The action is then proportional to 
the area of the world sheet swept out by the string in space­
time.3 Equivalently one can view the action as a harmonic 
map from the two-dimensional string space into the Min­
kowski space. In the latter formulation, the metric is varied 
independently.4 

This paper is an attempt to describe the string in terms of 
the orientation of the string area element in Minkowski 
space. Just like the area swept out by the string, the orienta­
tion of an area element on the string is a function of two 
string coordinates. The orientation of the area element is the 
same as the orientation of the plane tangent to the string at a 
given point on the D-dimensional Minkowski space and is 
characterized by variables belonging to the Grassmannian 
manifold SO(D 1,1)/[S0(1,1) xSO(D - 2)].5 Here 
SO(1,1) is the subgroup ofSO(D - 1,1) that contains Lor­
entz transformations on the timelike two-dimensional plane 
tangent to the string at a given point, and SO(D - 2) is the 
rotation group acting on the subspace of Minkowski space 
orthogonal to the string area element at that point. Our ac­
tion is again the standard two-dimensional (1' model action, 
whose dynamical variables now represent the orientation of 
the area element of the string. Minimizing the action, we 
obtain the field equations, whose solution set contains all of 
the Nambu-Goto string solutions and more. 

Investigating this model in detail in three dimensions, 
namely starting from the SO (2,1) ISO (1,1) (1' model, we 
note that the equation of motion can be integrated readily. If 
some integration constants are chosen to be zero, then our 
model is equivalent to the Nambu-Got03 string model. It is 
also possible to reverse this process and show this isomor­
phism starting from the string model. For both models, the 
integrability condition turns out to be the Liouville equa­
tion.6 On the other hand, when the integration constants are 
chosen to be nonzero, we get a distinct model, which is dis­
tinguished from the Nambu-Goto string model by the pres­
ence of an additional term in the action, a term somewhat 
reminiscent of the Wess-Zumino term. Again the classical 
isomorphism between these models can also be shown by 

starting from the modified string model action. This time, 
the integrability condition is the cosh-Gordon equation. 

In an attempt to mimic the same process in four dimen­
sions we consider the SO(3,l)/[SO( 1,1) xSO(2) J (1' mod­
el. Again integrating the equation of motion and setting 
some constants of integration to zero, we can identify the 
dynamical variables of the (1' model with the conventional 
string variables. Since our coset space is isomorphic to the 
coset space SO(3,C)/SO(2,C), our model has an intrinsic 
complex structure, which is re8ected in the fact that the 
integrability condition of this model is the complex Liouville 
equation. It is again possible to reverse this process and ob­
tain the (1' model from the string model. 

PolyakovS has shown that the Euclidean string action 
when modified by an additional extrinsic curvature term 
leads to an SO{D)/[SO(D-2)XSO(2)] (1' model pro­
vided some integrability conditions are imposed on the mod­
el. On the other hand we start from the Minkowskian version 
of this (1' model without any additional constraints and show 
that in three dimensions it indeed leads to an additional term 
in the string action. 

II. THE BOSONIC STRING IN A LORENTZ INVARIANT 
GAUGE: A GEOMETRICAL APPROACH 

In the classical bosonic string model, the evolution of 
the string is described by two parameters 01, i = 0,1. The 
dynamical variable is the position X,u (0-<',(1'1) of the string. 
The standard action is 

s=J.l; f hafJ'T/,uv aaX,uafJxv~ -deth d 2(1', (2.1) 

where the metric in the string space h a{J and X are varied 
independently. Since no derivatives of h appear in the action, 
it can be eliminated using its equation of motion. The action 
then becomes the Nambu-Goto action 

S = J.l2 f .J - det h d 2(1', (2.2) 

where 

(2.3) 

The invariance of this action under arbitrary reparametriza­
tions can be used to choose coordinates u and v such that 

X! X~ =0 (2.4) 

and 
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haP = ~(~ ~). (2.5) 

where we have introduced 

~=Xu'Xv' (2.6) 

Here and hereafter sUbscripts denote partial derivatives. 
With the choice in Eq. (2.4), the equation of motion be­
comes linear 

Xuv = O. (2.7) 

The parameters u and v are related to the standard timelike 
and spacelike parameters 7 rand u as 

r = u + v, u = u - v. (2.8) 

Equations (2.4) and (2.7) retain the following reparametri­
zation invariance: 

u --+ u' (u), v--+v' (v). (2.9) 

The geometrical meaning of this invariance is as follows: 
Consider the area swept out by the string in Minkowski 
space. At each point of the string construct a light cone. The 
intersection of this light cone with the timelike string sheet 
defines two directions Xu and Xv, which are arbitrary up to 
reparametrizations described by Eq. (2.9). In some formu­
lations this invariance is used to choose the light-cone gauge 

X+=Xo +X D
-

1 = U + v. (2.10) 

However, for our purposes, a choice of coordinates u and v, 
invariant under Lorentz transformations, will be more con­
venient. 

To this end, consider the dynamical variable x(u,v). 
The first derivative vectors Xu and Xv, as we recall, are the 
lightlike directions on the plane tangent to the string at the 
point (u,v). One of the second derivative vectorsXuv is zero 
due to the equation of motion. The other two, Xuu and Xvv ' 
have components both parallel and perpendicular to the 
string sheet. The perpendicular components 

(2.11) 

are spacelike. The significance of the two vectors 5 and 7] is 
further emphasized upon noting that they are the nonvanish­
ing components of the second derivative tensor Va V px. 
When 5 and 7] are reparametrized using Eq. (2.9), they 
transform in the following way: 

( dU)2 (dV)2 
5 --+5 du' , 7] --+7] dv' . (2.12) 

On the other hand, using the equation of motion we obtain 

5v = -AuvXu' 7]u = -AuvXv' (2.13) 

Using Eq. (2.11) together with Eq. (2.13) we get 

(5 2)v = 25'5v = 0, (7]2)u = 27]'7]u = O. (2.14) 

Therefore 52 is a function of u, and 7]2 is a function ofv only. 
The transformation described in Eq. (2.12) is used at this 
point to choose 5 and 7] as unit vectors. This choice uniquely 
determines the parameters u and v up to an interchange of u 
and v and up to a sign. To sum up, theinvarianceinEq. (2.9) 
is used to set 

52 = - 1, 7]2 = - 1. (2.15) 
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With this choice the Lorentz invariance of the gauge is mani­
fest. 

III. THE SO (0-1 ,1)/[SO(1 ,1)XSO(O- 2)] u MODEL 
AND THE BOSONIC STRING 

The M = SO(D - 1,1)/[S0(1,1) xSO(D - 2)] u 
model in two dimensions can be described starting from the 
action 

s = f tr PuPv du dv = ~ f tr(aum-2 avm2)du dv. 

(3.1 ) 

Here P is the projection operator related to the coset space 
element m by 

m-1um = 1 - 2P, (3.2) 

where u is the involutive automorphism of the symmetric 
space M, and obeys 

(3.3) 

The coset space element m can locally be obtained by expon­
entiating the component ofthe Lie algebra ofSO(D - 1,1) 
orthogonal to the Lie subalgebra SOC 1,1) xSO(D - 2). 
The equation of motion obtained by varying m in the action 
Eq. (3.1) can be expressed in terms of P to yield 

[Puv'P] =0. (3.4) 

Since M is a Grassmannian manifold associated with the 
family of timelike planes through a given point in Minkow­
ski space, the projection operator P can be parametrized in 
terms of two null vectors r and s, 

r = S2 = 0, r s = 1. 

Then P is given by 

pl'V = rl'sV + rVsl'. 

(3.5) 

(3.6) 

A plane can also be characterized by an antisymmetric bi­
vector. Hence we can define the matrix F, 

(3.7) 

and 

F 2 =P. (3.8) 

The equation of motion [Eq. (3.4)] is then equivalent to 

[Fuv,F] = O. (3.9) 

We note that 

FI'V = e- A (X~X~ - X~X~) (3.10) 

satisfies Eq. (3.9) identically, with Xu and Xv obeying Eqs. 
(2.4) and (2.6). We therefore conclude that the solution set 
ofEq. (3.9) contains all the Nambu-Goto string solutions 
and "more." 

IV. THE ISOMORPHISM BETWEEN THE u MODEL AND 
THE BOSONIC STRING MODEL IN THREE DIMENSIONS 

In this section we shall explicitly show how to go from 
the u model to the bosonic string model and back via the 
Liouville equation in three dimensions. To this end we start 
from the SOC 2,1 ) ISO ( 1,1) u model action 

s= f dudv[su'sv -e- A(s2_1)]. (4.1) 
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Here e - A is just a Lagrange mUltiplier and we have the cor­
responding constraint 

S2 = 5" ~ - 5" i - 5" ~ = - 1. (4.2) 

The equation of motion 

Suv = - e-As (4.3) 

can readily be integrated to yield 

(s~ ) v = (s~) u = O. (4.4) 

In the first part of this section we shall be dealing with the 
case 

(4.5) 

This choice will lead to the Nambu-Goto string. Using the 
invariance of the action [Eq. (4.1)] under reparametriza­
tions [Eq. (2.9)], we can choose the right-hand sides ofEq. 
(4.5) to be constants other than zero. The consequences of 
this alternative will be investigated later in this section. 

Noting that the case where S, su' and sv vectors are 
linearly dependent is trivial, we take these three vectors as 
independent. Using a method introduced by Pohlmeyer,8 we 
expand the second derivative vectors suu and svv in terms of 
S, su' and sv: 

Suu = -Ausu' svv = -Avsv' 
Here we have used 

(4.6) 

su·sv = e- A
, (4.7) 

which follows from Eqs. (4.2) and (4.3). Since ~ is an inte­
grating factor for the differential equations (4.6), we find 
that ~ su is a function of v and ~ Sv is a function of u only. 
With the definition 

Xv ==~Su' Xu == - ~Sv, Xuv = 0, (4.8) 

Eqs. (4.6) reduce to the equation of motion of the Nambu­
Ooto string, Eq. (2.7). So with Eq. (4.8) we relate the u 
model dynamical variables Su and Sv to the Nambu-Goto 
string variables Xu and Xv' Furthermore, substituting Eq. 
(4.6) and (4.7) in the identity 

Suv ·Suv = - (Su ·Sv ) uv + Suu ·svv, 
we obtain the Liouville equation 

(4.9) 

Auv = e- A. (4.10) 

Now we want to reverse this process and obtain the u model 
from the bosonic string model. We use the spacelike vectors 
1'1 and S defined through Eqs. (2.11)-(2.15). We further 
note that 

(4.11 ) 

In three dimensions, since the vectors S and 1'1 are both per­
pendicular to the plane tangent to the string at the point 
(u,v), they have to be either parallel or anti parallel. They 
tum out to be anti parallel. Since our metric is ( + - - ), 

s=-1'I, S"1'l=1. (4.12) 

So Eq. (4.12) along with Eq. (4.11) yields the Liouville 
equation. Similarly from Eq. (4.12) and from Eqs. (2.10-
(2.15) we calculate Su' Sv, and Suv' Then we see that su and 
sv are indeed null vectors. Finally using the Liouville equa­
tion6 we obtain Eq. (4.3), whereby we establish the isomor-
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phism between the Nambu-Goto string model and the spe­
cial case of u model in which su and Sv are null vectors. 

Now let us consider the three-dimensional u model once 
more, but this time let us investigate the case where the right­
hand sides ofEq. (4.5) equal some constants. For later con­
venience we start from the following action: 

s = J [Su·Sv + 2 sinhA(s2 + 1) ]du dv. 

The equation of motion 

suv = 2 sinh A S, 

(4.13) 

(4.14) 

when dotted with su and sv will yield Eq. (4.4) after using 
the constraint equation (4.2). Using the invariance of the 
action in Eq. (4.13) under the transformation of u and v as 
specified by Eq. (2.9) one has 

s~ = + 2, s~ = - 2. ( 4.15) 

Note here that the sign difference between s~ and s~ has a 
geometrical meaning. Since Su and sv are both perpendicu­
lar to the spacelike vector S, if one is timelike, the other one 
has to be spacelike. 

Expanding the vectors suu and svv in terms of the three 
independent vectors S, Su' and sv we obtain 

Suu = 2s + Au tanh A su - Au sech A sv, 

svv = - 2s + Av sech A su + Av tanh A sv' 
(4.16) 

When we multiply Eq. (4.16) by sech A and add, after some 
manipulations we get 

(su + ~ sv )/(cosh A»u = «~su - sv )/(cosh A »)v' 
( 4.17) 

We are finally in a position to establish the correspondence 
between the u model variables Su and Sv : the term inside the 
left-hand side bracket in Eq. (4.17) is 2Xv and the term 
inside the other one is 2Xu ' When we substitute the expres­
sions for Suu and svv defined in Eq. (4.16) in Eq. (4.9), we 
get the cosh-Gordon equation 

Auv = 2 coshA. (4.18) 

It turns out that the string action corresponding to this u 
model characterized by the choice in Eq. (4.15) is 

s= J[«Xu.Xv)2_X~X~)1/2+ ~X.XuAXv]. 
( 4.19) 

The additional term is also translationally invariant up to a 
total divergence. It is a parity violating term whose dimen­
sion differs from that of the first term, just like the Wess­
Zumino term,9 first obtained using differential geometry 
methods. 10 The equation of motion is 

Xuv = Xu AXv ' (4.20) 

This equation, together with Eq. (2.4) and (2.6), yields 

X~v = - eU
• (4.21) 

Again we define a spacelike unit vector S perpendicular to 
the vectors Xu and Xv' Since e - A Xuv is also a unit vector 
perpendicular to Xu and Xv, in addition to Eq. (2.11) we 
have 

(4.22) 
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UsingEqs. (4.21), (2.11), and (2.6) along with the identity 

X~v = - (Xu·Xv )uv + X .... ·Xvv , (4.23) 

we obtain Eq. (4.18), the cosh-Gordon equation as expect­
ed. When we calculate Su' Sv' and S .. v from Eq. (4.22) and 
use the cosh-Gordon equation, we get back Eqs. (4.14) and 
( 4.15), thereby proving the isomorphism between the three­
dimensional u model in which the vectors S .. and Sv are not 
null and the modified Nambu-Goto string, this time starting 
from the string action. 

v. THE ISOMORPHISM BETWEEN THE a MODEL AND 
THE BOSONIC STRING IN FOUR DIMENSIONS 

In this section we explicitly show the correspondence 
between the u model and the Nambu-Goto string in four 
dimensions. We again start from the string model in the Lor­
entz invariant gauge. However, since we are in four dimen­
sions, the vectors 5 and "I, both perpendicular to X .. and Xv, 
do not have to be antiparallel or parallel anymore. So we 
define 

cos (J= - 5·"1. (5.1) 

Since Eq. (4.11) still holds, we have 

Auv = - e- A cos (J. (5.2) 

We know from Eq. (2.13) that5v and "I .. are parallel to X .. 
and Xv, respectively. Therefore we expand the other first 
derivative vectors, 5u and "lv, in terms 5, "I, 5v, and "I .. and 
obtain 

5 .. = - (J .. (csc (J)7J + (Jv (cot (J)5 + (sec (J)7J .. , 

"Iv = (Jv (cot (J)7J - (Jv (csc (J)5 + (sec (J)5v' 
(5.3 ) 

When we use the fact that 5v is perpendicular to "I we have 
the identity 

(5.4 ) 

Substituting Eq. (5.3) in Eq. (5.4), we get, after some mani­
pulations, 

(5.5) 

Using this equation together with Eq. (5.2) we obtain the 
complex Liouville equation 

Xuv = -e-x, 

where 

X=A + i(J. 

(5.6) 

(5.7) 

Because the Liouville equation is complex now, it is obvious 
that the u model dynamical variable we have to define in 
terms of the bosonic string variables X .. and Xv has to be 
complex. To this end we define 

(5.8) 

Now we shall start from the SO(3,1)/[S0(1,1) 
XSO(2)] -SO(3,C)/SO(2,C) u model that can be de­
scribed by a complex unit vector. We show that the integra­
tion of this model leads to Eq. (5.8). The u model equation 
of motion is 

Fuv = e-XF. (5.9) 

When dotted with F .. and Fv each, this equation gives 
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(F~)v = (F~) .. =0 

after using the constrrunt 

F2 = 1. 

We choose 

F~ =0, F~ =0. 

(5.10) 

(5.11) 

(5.12) 

Expanding the second derivative vectors F.... and F vv in 
terms ofF, Fu, and Fv we obtain 

(5.13) 

analogous to Eq. (4.6). This eX is an integrating factor for 
Eqs. (5.13) after the use of which Eqs. (5.13) reduce to 

~u = f(v), flv = g(u). (5.14) 

Here f and g are complex functions of the real variables u and 
v, respectively. Because of Eqs. (5.9), (5.11), and (5.12) 
these functions are not arbitrary but subject to the following 
constraints: 

f2=g2=0 

and 

f~=~=1. 

For convenience let us introduce 

R=Re f, JsRe g, Islm f, K = 1m g. 

(5.15 ) 

(5.16) 

(5.17) 

The J, K, R, and I are real three-vectors, in terms of which 
Eqs. (5.15) and (5.16) become 

J2 = K2, R2 = 12,J~ = K~, R~ = I~, 

J·K = I·R = J .. ·K .. = Iv·Rv = O. 
(5.18 ) 

Finally we are ready to define the four-dimensional bosonic 
string variables 

(5.19) 

where t is the time component of the four vector x. The unit 
vector perpendicular to both Rand K is 

~ = ..!!.."....!... X 2 = O. 
tv IRI III' v 

Similarly 

Xu K J 2 

~=IKf"IJf' X .. =0. 

Using Eq. (5.14) we realize that 

Eu=ReFu =e-A(cos(J)R+ (sin (J)I), 

B .. =Im F .. = e-A(cos (J)I - (sin (J)R). 

Analogously 

Ev =Re Fv = e-A(cos (J)J + (sin (J)K), 

Bv =Im Fv = e-A(cos (J)K - (sin (J)J). 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

These last four sets of equations, Eq. (5.20)-(5.23), lead to 
F defined in Eq. (5.8). Hence we have shown the correspon­
dence between the u model variable F and the bosonic string 
variables X .. and Xv in four dimensions. As a result of the 
complex nature of the variables F and X' it was not possible 
to construct the string model related to the choice 

F~ =p(u), F~ =q(v), (5.24) 
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where p and q are arbitrary functions. One can use the repar­
ametrization invariance to choose p and q of unit modulus. 
However the phases remain as functions of u and v. For this 
case, we could not find a consistent definition for the four­
vector X which would enable us to interpret this alternative 
as a distinct string model in four dimensions. 
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A number of Euler integrals involving Meijer's G function with arguments 
[a2(1-x)-1 +p2X-I]-I, Il.x(1-x),and [a2x+p2(1-x)f/[x(1-x)] are evaluated in 
closed form. These results generalize and extend recent work on Bessel-function integrals. As a 
by-product some new closed form expressions for Meijer's G function are obtained. 

I. INTRODUCTION 

The integrals considered in this paper are generaliza­
tions of some recent results obtained by Glasser.l This au­
thor found closed form expressions for the integrals 

cl>v(a,f3) = l' U- 3/2(1 U)-3/2 

X [a2(1 _ u) -I + P2U- I] - vl2 

XJv «(a2(1 U)-I +p2U-llI/2)du, (1) 

\fIo(a,f3) = l' UI/2(1- U)-3/2 

XJo«(a2(1 U)-I +p2U- l lI/2)du, (2) 

Co(a,f3) = l' u- 1/2 (1 u)-1/2 

XJo«(a2(1 U)-I +p2U- llI/2)du, (3) 

where a and p are positive constants; for the integral 

Av= 1'[UO U)](v-3)12Jv(ll.(u(1-u)l-1/2)du, 

v = 0,1,2 (4) 

(where a sign error has been corrected); and for the integral 

These had occurred in a study of impurity screening at me­
tallic surfaces. 

Here the following generalizations will be considered: 

I ':."x"..P,q ( a,f3,a p,b q ) 

= l' u"(I- uy' 

XG;:qn((a2(1 - u) -I + P2U -I)-11 ::)dU, (6) 

J':."x"..p,q(Il.,ap,bq) 

= l' u"(1- U)"'G;:qn(Il.U(1- u) 1::)dU, (7) 

and 

a) Present address: Department of Materials Science and Mineral Engineer­
ing, University of California, Berkeley, California 94720, 

K ':."x~,p,q(a,f3,ap,bq) 

= r' UX (1_U)x'G m,n((a
2
u+p

2
0-u)f labPq)dU, Jo p,q (u(1 - u») 

(8) 

where ap and bq is a contracted notation for {a!> ... ,ap} and 
{bl, ... ,bq }, and will be used throughout whenever no confu­
sion is possible. Integrals of this form over the unit interval 
are known as Euler integrals. The integrals I and J can be 
seen to generalize (1)-(3) and (4), (5), respectively. 

The function in the integrand is Meijer's G function,2.3 
whose properties will be briefly described in the next section. 
In short, the G function is a generalization of the hypergeo­
metric functions, and virtually all special functions of math­
ematical physics are particular cases of it. An extensive list 
can be found in Ref. 2, and some new results have been col­
lected in the Appendix. In this way G functions provide an 
important unifying concept, in the sense that any identity 
involving them immediately applies to a large number of 
special functions. Moreover, since G functions can be ex­
pressed as a loop integral, many results are relatively 
straightforward to prove. It will be seen, for example, that 
the present results, although of a greater generality than 
Glasser's, are much easier to obtain. Besides, it will be clear 
from the derivation exactly which conditions have to hold 
for the parameters x and x' in order for the integral to be 
tractable. 

In view of the relative simplicity of the integrand, the 
present results are potentially very useful in physical appli­
cations (if necessary after a trigonometric substitution). The 
methods applied in this paper also illustrate the power of 
using G functions, defined as a complex contour integral, to 
evaluate definite integrals. The literature on Meijer's G func­
tion and closely related ones is extensive,2-5 and attention is 
drawn to related Euler integrals in Ref. 3 (3.4) and Ref. 5 
(5.2). The present results, however, are not found in these 
references, apart from the J integral, which is included here 
for the sake of completeness. 

II. PROPERTIES OF MEIJER'S G FUNCTION 

In order to make this paper reasonably self-contained, 
some of the G function's major propertieS, which will be 
needed in subsequent sections, will be listed here. Many 
more results concerning this class of functions are known 
and can be found in Refs. 2 and 3. 

Meijer's G function is most conveniently defined as a 
Mellin-Barnes contour integral: 
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G ;'qn( z I ::) 
= (21Ti)-1 

r nj= 1 r(bj - s)nj= 1 r(1- aj + s) 

X JL nJ= m+ 1 r(1 - bj + s)nr=n+ 1 r(aj - s) 

Xz'ds. (9) 

In this expression an empty product is to be regarded as 
unity, O<.m<.q, O<.n<.p, and ah and bh are such that no pole 
in the first product of the numerator coincides with a pole in 
the second product. The path of integration is to be chosen so 
that the former poles lie to the right of it and the latter ones 
lie to its left (for a full discussion of the possible choices, see 
Ref. 2). 

From the definition (9) it can easily be shown that 

Gm.n(zla
p

) = Gm.n(z-Ill - b
q
), 

P.q bq P.q 1 - ap 
(10) 

and 

zUGm.n(zla
p

) = Gn.m(zla
p + U). 

P.q bq q.P bq + U 
(11 ) 

Consequently the standard integral transforms involving 
one G function can also be expressed as a G function. An­
other important result (again, under appropriate condi­
tions) are the Euler integrals 

f~ y-a(Y-1)a-p- 1G;'qn(zyl::)dY 

= r(a -{3)G;:I~qn+ 1 (zli~:)' (14) 

and 

f y-a(1- y)a-p-1G;'qn(Zyl::) dy 

= r(a -{3)G;::tql+ 1 (zl:;~)· (15) 

These three results illustrate why Meijer's G function consti­
tutes an important unification as far as analytical integration 
of special functions is concerned. Many integrals which have 
been evaluated by methods specific to the case at hand tum 
out to be special cases ofthe results (13) - (15) . 

III. INTEGRALS WITH ARGUMENT 
[a2(1_u)-1 + ~2U-1]-1 

It is easy to prove that the integrals in (6) obey the 
recurrence relations 

(16) 
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The integral in (9) can be evaluated by means of the calculus 
of residues. If no two of the parameters bh , h = 1,2, ... ,m, 
differ by an integer or zero, the corresponding poles in (9) 
are simple, and one finds the expression 

Gm.n(zla
p

) p.q bq 

= i nj=1 r(bj -bh)*nj=1 r(1 +bh -aj ) 

h=1 nJ=m+1 r(1 +bh -bj)nr=n+1 r(aj -bh ) 

XZbh F p (- 1)P - m - nz (
1 + bh - a I ) 

p q - 1 1 + b
h 

- b: 
(12) 

valid when p < q, or when p = q and Izl < 1. The asterisks 
denote thatji=h, qi=h, respectively. 

Relatively few integrals containing G functions are 
known, but, as already noted, those that have been proved 
are very important because the parameters can be special­
ized to yield many results concerning the special functions. 
A key result is that the Mellin transform of the product of 
two G functions can be written as a G function (under proper 
conditions, mainly to ensure that the integral is meaningful; 
see Ref. 2): 

(13) 

I ':.~~·p.q(a,{3,ap,bq) = I ':.~~·~ql (a,{3,ap,bq ) 

+ I':::f:ic· (a,{3,ap,bq ), (17) 

and [using (11) ] 

I m•n·p·q(a,/3a b ) =a2I m.n,p,q (a{3a + 1 b + 1) X,x' , p' q X,x' - 1 ,., P 'q 

+ {32I';'.':.'f:ic. (a,{3,ap + l,bq + 1). 
(18) 

This means that, starting from a given couple (x,x'), all inte­
grals with parameters (x + j,x' + k), j,kEZ, can be 
reached. Furthermore, it will soon become clear that only 
integrals with x and x' equal to a half-integer are tractable. 
Hence it will only be necessary to calculate one tractable 
integral, say x = x' = -!, in order to obtain all other trac­
table cases. 

First, however, the discussion will proceed completely 
generally. Substituting the definition (9) of the G function in 
(6) and interchanging the order of integration (assuming 
that both integrals are absolutely convergent), one obtains 

{3-2s f ux +s(1-U)X'+S[I-(I- ;:)u]-SdU. (19) 

This can be written as a hypergeometric formula using 
Euler's formula, so that one finds 

{3-2s r(x+s+l)r(x'+s+ 1) 

r(x + x' + 2s + 2) 

X 2F1 (x + s + l,s;x + x' + 2s + 211 - a 2j{32). (20) 

In general, this cannot be further reduced, but an important 
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simplification would be possible if one could use the result 

2FI (a,a - Palz) = U + !(l - z) 1/2J I 20, (21) 

since then the remaining loop integral can be identified as a G 
function. There are only two cases in which this result can be 
used directly, namely x = -!, x' = -!, and x = -~, 
x' = -!. However, by using the Gauss relations between 
contiguous hypergeometric functions, any function of the 
form 

2FI(a + j,b + k;c + liz) 

can be reduced to a linear combination of 2FI(a,b;clz) and 
one of its contiguous functions, with coefficients that are 
rational functions of a, b, c, and z. This means that all inte­
grals with half-integer (X,x/) values can be reduced to the 
two cases ( - !, - !) and ( - ~, - !). However, by using the 
relations ( 16) and ( 18) it can easily be shown that the latter 
result can be expressed in terms of the former. It is straight­
forward to prove from (20) and (21) that 

I~~'~2~ 1/2 (a,/3,ap ,bq ) 

CGmn+1 ( p)_21!,ap
) (22) = 'ItT p+ I,q+ I a + bq,O . 

In Ref. 1 Glasser conjectured that 

t(J.. + _1_)1I2J(a2(l_ U)-I + {32u- l )du 
Jo u 1 u 

= F(a + {3) . (23) 

The result (22) shows that this conjecture is true for any 
function J that can be written as a finite (or infinite-pro­
vided that the series converges absolutely) linear combina­
tion of G functions. Closed form expressions for some of the 
tractable (x,x') values (x <x') are given in Table I. In par­
ticular, these contain Glasser's integrals (1 )-( 3) as a special 
case. 

From (12) it follows that the behavior of the G function 
near the origin is determined by 

min(bh) h 1 z , = , ... ,m. (24) 

In order for the integral (6) to be convergent one must have 

Re(bh + x + 1) > 0, h = 1, ... ,m, (25a) 

Re(bh +x' + 1) >0, h = l, ... ,m. (25b) 

Moreover, the conditions 

m +n - !(p +q);>O, 

O<.n<.p<q, 

1 <.m<.q, 

(26a) 

(26b) 

(26c) 

must also be fulfilled to justify the previous operations. By 
appealing to the principle of analytical continuation it is pos­
sible to relax these conditions (along similar lines as in Ref. 
2, Sec. 5.6). 

IV. INTEGRALS WITH ARGUMENT J..u(1-u) 

In this case the analysis is much more straightforward. 
One first notes that 

J':'-:,M(A,ap,bq) A - x'J:~'~:~ (A,ap + x',bq + x'), 
(27) 

so that it suffices to put x' = ° in the following. Next, after 
substituting (7) in the definition (9) one needs to evaluate 

(1 uX+S(1- uY du = r(x + s + 1)r(s + 1) , (28) 
Jo r(2s+x+2) 
which is the definition of the E function. Expanding the r 
function in the denominator by the multiplication theorem, 
one finds that the resulting loop integral can be identified as a 
G function, so that the final result, 

J':,&n'M(A,ap,bq ) 

= 2 - (x+ l)jiT 

(
A 10' -x,ap ) 

X G ';..: i,q2+ 2 "4 b
q

, _ xl2, _ (x + 1)/2' (29) 

is valid under the same conditions [( 25 ), (26)] as before. 
Finally, it is worth noting that the J integrals are a special 
case of the I integrals: 

J':,'x,!,p,q(A,ap,bq) = I':,'x,!,p,q(ll A, 1/ A,ap,bq). (30) 

From this one can conclude that Glasser's second set of inte­
grals is included in the first set: Eo = Wo(A,).) and 
Av = AV<l>v (A,).). 

V. INTEGRALS WITH ARGUMENT 
[a2u+pZ(1-u)]2/ [u(1-u)] 

The evaluation in Sec. III depended on the fact that, 
after interchanging the integration over the unit interval and 
the loop integration, the resulting 2FI ( ... ) could be written 

TABLE I. Evaluation of I;';·M (a,p,ap,bq) [defined in (6)] in terms ofG functions. The integrals with x>x', as well as those for other half-integer x,x· 
values. can be derived from the relations (16)-( 18). 

x 

-~ 

-~ 

-~ 
-~ 

-! 

-! 
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x' 

-~ 

-~ 

! 
1 

-! 
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/m.n.p.q 
x,x' 
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as a binomial function. One may wonder if this method can­
not be extended to deal with other cases. An obvious candi­
date is the relation 

2FI ( - a,b;b Iz) = IFo( - alz) = (1 + z)a. (31) 

This leads to the K integrals defined in (8). Working along 
the same lines as before, one obtains the hypergeometric 
function 

2FI (x - S + 1, - 2s;x + x' + 2 - 2s11 - a 2/{32). (32) 

Consequently, when x' = - x - 2, (31) can be used to give 

Km.n.p,q = 2 r:rr(fi)2X G m + I,n (4a2{321 ap,!) (33) 
x, - 2 - x 'V 1. P + I,q + lOb . a , q 

By using the contiguous relations one finds that the integrals 
are tractable for (x' + x)E{ - 2, - 3, ... }. However, it turns 
out that when x' + x = - 1, the contiguous relations give 
rise to an identity 0 = O. In that case the integral is a 
2FI ( - a,b;b + 11' .. ) that is proportional to an incomplete 
beta function. 2 No further simplifications are possible, and 
the same applies when (x' + X)E N. In the present case the 
recurrence relations are 

K ':.~,!'M(a,{3,ap,bq) = K ,;:;.M({3,a,ap,bq), (34) 

K ':.;,,'!.M(a,{3,ap,bq) 

= K':.::·~ql (a,{3,ap,bq) + K':::"f:~' (a,{3,ap,bq), (35) 

K ':.~~,p,q(a,{3,ap,bq) 

- a 2K m,n.p,q (aa{3a I b I) - x+1I2.x'-1/2 "p -2' q-2 

+ {32K':~'fi~,x' + 112 (a,{3,ap - !,bq - p, (36) 

the first two being similar to (16) and (17). The second 
relation allows the calculation of a Kx,x' integral when that 
corresponding to x + x' + 1 is known. The third relation 
does not permit altering the sum x + x' -as opposed to 
(18). The recurrence relation (35) together with (33) gives 
rise to the final result 
Km.n,p,q 

x,-2-x-l 

= 2{iT(tUa)2X[ 1 + !: rG ;:I:q\ I ( 4a
2
{321 ~~;:) . 

(37) 

Again the conditions (25) and (26) are sufficient to ensure 
the absolute convergence of the integrals and may in certain 
specific cases be relaxed. 

VI. FINAL REMARKS 

The results presented here can be generalized in a num­
ber of ways. First, consider the integral 

t uX(1- U)x'Gm,n(( au + b )a) lap duo (38) Jo p.q uP (1 - u)V bq 

It is easy to see that this gives rise to 

2FI (x - aJ-ls + 1, - 2as;x + x' + 2 - 2as(J-l + v) I"'). 
(39) 

Therefore the method used in Sec. III can be applied if 
J-l + v = 2 (x,x' half-integer) while the method used in Sec. 
V can be applied if J-l + v = 1 (x,x' integer";; - 2). The re­
sulting formulas are similar to those already found. Second, 
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it is also straightforward to extend the present analysis to 
deal with the H function of one or more variables.4

•
5 Since 

these cases are less likely to occur in physical applications, 
no explicit expressions will be given here. 

In several places in this paper it has been stated that 
certain conditions must be fulfilled in order for G function 
integrals to be meaningful. The list of possible combinations 
can be made very long and detailed, but they all amount to 
ensuring convergence of the integral. To this end the inte­
grand must be well-behaved throughout the interval of inte­
gration, in particular in the endpoints. In the present case 
this leads to conditions similar to (25) and (26). For the 
Mellin transform (13), these would need to be supplement­
ed by an appropriate restriction to impose proper behavior of 
the integrand at infinity. A very comprehensive discussion of 
this problem can be found in Luke2 (Sec. 5.6). 

APPENDIX: NEW IDENTIFICATIONS OF G FUNCTIONS 
AS NAMED FUNCTIONS 

In the course of this work, some G functions identifiable 
as known special functions, which are not contained in the 
standard lists,2.3 have been obtained. Although these identi­
ties follow from a comparison of the present results (for par­
ticular values of the parameters) with Glasser's, I they have 
been checked by an independent derivation, which will be 
briefly outlined for each case below. 

The first two identities are 

Gf:~(zl~) = {iT erfc(z), (Al) 

Gt~(zI011 ) = -2- si (2../Z), 
'2,0 {iT 

(A2) 

which follow from the integral representation for the func­
tions in the right-hand side and from (14). Note that these 
two results imply that 

L, -I{p-I erfc(ap-I/2)} = _ (2hT)si(2at 1/2) (A3) 

(Eq. 18 in Ref. 1), since the inverse Laplace transform of a G 
function is known [Ref. 2, Eq. 5.6.3 (10), where n + 1 in the 
left-hand side should read n]. Next, one has 

G 3'o(z1P ) =2-[si(2z1/2) +Z-I/2cos(2z1/2)] 
2,4 _ 1 3 0 0 1- ' 2'2' , 'V 1T 

(A4) 

which follows from the definition (9) and the identity 

r( -!-s)r(~-s)r( -s) 

r(1 + s)r(! - s)r(1 - s) 

= _ r(! - s) r( - s) + 2 r( - ! - s) (A5) 
r(1 +s)r(1-s) r(1 +s) 

The resulting G function can be identified by (A2) and the 
known expression of the cosine as a hypergeometric func­
tion. 

The final set of identities is 

L. T. Wille 602 



                                                                                                                                    

G 1,1 (z\! ) 
1,3 (p, + v)/2,(p, - v)/2, - ! 

= 21 -,..[ (p, + v - I)Jv (2z1/2 )S,.._I,v_I (2z1/2) 

- J v _ I (2z1/2 )S,..,v (2z1/2)] 

+ -112 r((1 + p, + v)/2) z , 
r((1 - p, + V)/2) 

Re(p, + V) > - 1, 

(A6) 

GI'I(Z\! ) =z- 1/2r(v) _z- v12J (2z1/2) 
1,3 !,! _ V, _ ~ v - I , 

(A7) 

GI'I(Z\! ) 
1,3 vO- 1 

" 2 

= ..[iir( V + !> [Jv (2z1/2)Hv _ I (2z1/2) 

- Hv(2z1/2)Jv _ t<2z1/2)], Re V> -!. (A8) 

These can be derived from (2), (4), and (5) in Sec. 19.1 of 
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Ref. 6 and the Euler transform (15). It is not unlikely that a 
search in tables of integrals, together with results such as 
( 13 )-(15) might produce more new identifications, but 
such a task has not be undertaken in this work. 
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Bi-Hamlltonian formulation of the Kadomtsev-Petviashvili and Benjamin­
Ono equations 

A. S. Fokas and P. M. Santinis ) 

Department 0/ Mathematics and Computer Science, Clarkson University, Potsdam, New York 13676 

(Received 11 June 1987; accepted for publication 21 October 1987) 

It was shown recently that the Kadomtsev-Petviashvili (KP) equation (an integrable equation 
in 2 + 1, i.e., in two-spatial and one-temporal dimensions) admits a bi-Hamiltonian 
formulation. This was achieved by considering KP as a reduction of a (3 + 1) -dimensional 
system (in the variables x,y I' Y2,t). It is shown here, using the KP as a concrete example, that 
equations in 2 + 1 possess two bi-Hamiltonian formulations and two recursion operators. Both 
Hamiltonian operators associated with the x direction are local; in contrast only one of the 
Hamiltonian operators associated with the Y direction is local. Furthermore, using the 
Benjamin-Ono equation as a concrete example, it is shown that intergrodi1ferential equations 
in 1 + 1 admit an algebraic formulation analogous to that of equations in 2 + 1. 

I. INTRODUCTION 

This paper investigates symmetries, conserved quanti­
ties, recursion operators, mastersymmetries, and the bi­
Hamiltonian formulation of two physically important exact­
ly solvable evolution equations: the Kadomtsev­
PetviashvilP (KP) and Benjamin-On02

,3 (BO) equations. 
The KP equation is a prototype integrable equation in 2 + 1 
(i.e., in two-spatial and in one-temporal dimensions), while 
the BO equation is a prototype singular integrodi1ferential 
equation in 1 + 1. The results presented here fit in the gen­
eral theory developed in Refs. 4 and 5; however, the follow­
ing conceptual aspects are novel. 

(i) Equations in two spatial dimensions (x andy) pos­
sess two recursion operators and two sets of compatible 
Hamiltonian operators. The set associated with the Y direc­
tion was considered in Refs. ~. Here we investigate the 
recursion operator and the pair of local Hamiltonian opera­
tors associated with the x direction. 

Oi) Integrodiff'erential equations in 1 + 1 share many 
common features with equations in 2 + 1.7 This is because 
integrodi1ferential equations are also formulated in terms of 
two space operators, for example a x and H (the Hilbert 
transform) in the case of the BO equation. It is shown here 
that the algebraic formulation of integrodi1ferential equa­
tions is analogous to that of equations in 2 + 1. 

The existence of a double representation, corresponding 
to two recursion operators and two sets of bi-Hamiltonian 
operators, is also a property of integrodi1ferential equations 
in 1 + 1; this will be shown in a separate papers for two 
explicit examples: the intermediate long wave9

,10 and the BO 
equations. 

Hierarchies of infinitely many time-independent and 
time-dependent symmetries and conserved quantities of the 
KP equation have been obtained in Refs. 11 and 12. A recur­
sion operator and a bi-Hamiltonian formulation of the KP 
were found in Refs. 4-6. This was achieved by introducing 
the following extended representation of the KP equation: 

aJ Permanent Address: Universita Degli Studi-Roma, Istituto di Fisica 
"Guglielmo Marconi," Piazzale delle Scienze, 5,1-00185 Roma, Italy. 

(1.1 ) 

where R denotes integration along the real axis, 8 is the 
Dirac distribution, and K12 is some function of ql and 
q2 = q(X'Y2,t)· The introduction of the above form is natu­
rally motivated considering KP as a reduction of a nonlocal 
(3 + 1 )-dimensional system (in the variables x, Yit Y2' and 
t) .5.13 The above extension is necessary in order to bypass the 
Zakharov-Konopelchenko result on the nonexistence of re­
cursion and bi-Hamiltonian operators in the usual (1 + 1)­
dimensional formalism. 14 

Hierarchies of infinitely many time-independent and 
time-dependent symmetries and conserved quantities of the 
BO equation have been obtained in Refs. 12 and 15, via the 
mastersymmetry approach introduced by Fuchssteiner and 
one of the authors (A.S.F.). This approach was subsequent­
ly applied to the KP equation. It was shown in Ref. 5 that the 
mastersymmetry approach is contained in the general theory 
developed in Refs. 4 and 5. 

A. Basic notions 

We consider an evolution equation in its abstract form, 

q, =K(q) , ( 1.2) 

on a normed space M of functions of R; K is a suitable C '" 
vector field on M. We assume that the space of smooth vec­
tor fields on M is some space S of C '" functions on the real 
line or on the plane vanishing rapidly at infinity. By K,[v] 
. we denote the Frechet derivative of K in the direction v, i.e., 

K,[V]*'£"K(q+£lJ)1 . (1.3) at: <=0 

Let S * be the dual of S with respect to the following bilinear 
form: 

(r,u):;: L dxru or (r,u) * L dxdYru , (1.4) 

rES *, aES. Let I: S -> R be a functional, then its gradient is 
defined by 

I,[v] = (gradI,v). (1.5) 

It is well known that the function r is a gradient of a func-
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tional / iff Yf = Y/ ' where the adjoint of an operator L is 
defined by (L +y,CT) = (y,LCT). 

Definition 1.1: (i) A function oeSis asymmetry of (1.2) 
iff the flow q, = CT commutes with the flow (1.2). This im­
plies 

aCT - + CTf[K] - Kr[CT] = O. (1.6) 
at 

(ii) A functional/is conserved by the flow ( 1.2) iff d/ / 
dt=O. Hence 

a/ - + (y,K) = 0, y*grad /, 
at 

and yeS • is called a conserved gradient of ( 1.2). Differentiat­
ing the above equation in the arbitrary direction v it follows 
that y satisfies 

ay +Yr[K] +K/[y] =0, Yf=y/. (1.7) 
at 
(iii) Equation ( 1. 2) is a Hamiltonian system iff it can be 

written in the form 

q,=a/, ( 1.8) 

where/is a gradient function, i.e.,fj = // ,and a is a Ham­
iltonian operator where 

( 1) a is skew symmetric, a + = - a , 

(2) a satisfies a Jacobi identity, (1.9a) 

(a,a'[ab ]c) + cyclic permutation = O. (1.9b) 

A Hamiltonian operator a is associated with the Pois­
son bracket 

{/,H} = (grad/, a grad H) . ( 1.9c) 

(iv) An operator <I> is called a recursion operator or a 
strong symmetry of ( 1.2) iff it maps symmetries of ( 1.2) to 
symmetries of ( 1.2). Requiring that CT and <l>CT are symme­
tries of (1.2), it follows that an operator <I> satisfying the 
operator equation 

( 1.10) 

is a recursion operator of ( 1.2). 
(v) An operator <I> is called hereditary or Nijenhuis iff it 

generates an Abelian algebra. Assume that the flow q, = CT 
commutes with the flows q, = v, q, = <l>v, and that the flow 
q, = v commutes with the flow q, = <l>CT, where CT, v are arbi­
trary functions. Requiring that the flows q, = <l>CT, q, = <l>v 
also commute it follows that 

<l>r[ <l>CT] v - <I><I>f[ <l>V]CT is symmetric w.r.t. CT,V (1.11) 

(we have assumed for simplicity that a<l>/at = 0). 
Exactly solvable evolution equations in 1 + 1 admit infi­

nitely many symmetries. These symmetries are usually gen­
erated by a hereditary recursion operator <1>. An alternative 
approach is to use the notion of a mastersymmetry. A func­
tion r is a master symmetry of Eq. (1.2) iff the map 

[r,·]£> where [r,CTh*rr[CT]-CTr[r] , 

maps symmetries of ( 1.2). Here r is called a gradient master­
symmetry (with respect to the invertible Hamiltonian opera­
tor a) iff a - Ir is a gradient function. 
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Integrable Hamiltonian systems in 1 + 1 have an excep­
tionally rich algebraic structure: They are bi-Hamiltonian 
systems. The existence of two Hamiltonian operators a( i), 

i = 1,2, implies the existence of a recursion operator 
<I> * a(2) (a( I» -I, which generates infinitely many symme­
tries, while <I> + generates infinitely many gradients of con­
served quantities. For example, the two Hamiltonian opera­
tors associated with the Korteweg-de Vries (KdV) 
equation are given by 

a(1) = D, a(2) = D 3 + 2Dq + 2qD, D*ax . 

The KdV can be written as 

q, = qxxx + 6qqx = a(l)y(l) = a(2)y(2) , 

where 

y(2) = q = grad r dx q2 , 
Jft 2 

y(1) = qxx + 3q2 = grad r dx - ~3 • 

Jft 2+q 

Furthermore, <I> * a (2) ( a ( I) ) - 1 is a recursion operator for 
the KdV, i.e., <I> generates symmetries and <1>+ generates 
gradients of conserved quantities. The KdV is the second 
member, n = 1, of the following Lax hierarchies: 

q, = <I>"qx, n = non-negative integer (1.12) 

(throughout this paper n,m,r denote non-negative integers), 
where qx is a starting symmetry. 

Exactly solvable equations in 2 + 1, written in the form 
(1.1), also admit a bi-Hamiltonian formulation.<k> For the 
KP, the two Hamiltonian operators are given by 

og) =D, og) =D 3 + Dql1 + ql1D + qllD -Iqiz , 
( 1.13a) 

where 

D*ax' ql~ *ql ± q2 + a(DI =t=D2 ), 

D; *a
y" 

i = 1,2, 
( 1.13b) 

and q; = q(x,y;,t), i = 1,2. Indeed 

ql, = qlxxx + 6qlqlx + 3a2D -Iqly,y, 

- K - r d £ n (I) (I) _ r d £ n (2) (2) 
- 11 - Jft Y2 Ul2U 12 Y12 - Jft Y2 Ul2U 12 Yl2 , 

(1.14) 

where ~12 = ~(YI - Y2) and y\~, i = 1,2, are suitable ex­
tended gradients, i.e., 

In the above the subscript d denotes a suitable directional 
derivative and ( , ) denotes a suitable bilinear form.4 Fur­
thermore, the recursion operator rPI2 * 0 g) (0 g» -I gener­
ates extended symmetries CT12, while the adjoint rPT2 of rP12 
with respect to ( , ) generates extended conserved gradients 
y 12. Then CT 11> Y 11 are symmetries and conserved gradients of 
the KP, i.e., they satisfy Eqs. (1.6) and (1.7), respectively, 
whereCT, y, K are replaced by CTw YII' Kw andKII is defined 
in (1.14). 
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In analogy with Eq. (1.12), KP is the second member, 
n = 1 (PI = D, of the following hierarchy: 

(1.15 ) 

A 

where MI2 . 1 = (Dqi~ + qi"2D -'q,1) . 1 is a starting ex-
tended symmetry. Actually the operator rfJ'2 admits two 

• A A 

startmg symmetry operators M12 and N 12 *qi"2. They give 
rise to the following two hierarchies of time-independent 
symmetries: 

A A 

(rfJi2 M I2' 1)", (rfJ'UNI2 ' 1)11' (1.16) 

Time-dependent symmetries of order r of the KP are pro­
duced by linear combinations of 

A A 

(rfJi2 M 12 . (YI + Y2)1W (rfJ'UN12 ' (YI + Y2)111 , (1.17) 

and are closely related to gradient mastersymmetries. The 
above hierarchies of time-independent and time-dependent 
symmetries give rise to time-independent and time-depen­
dent conserved quantities.- Finally, there exists a simple 
relationship between rfJI2 and a nongradient mastersymmetry 
T 12: 

TI2 =rfJi2 . b(YI Y2)' CrfJI2 = T'2d +DTT2dD-' , 
( 1.18) 

where C is a constant. The above equations are the two­
dimensional analogs of the following formulas, valid for the 
KdV: 

( 1.19) 

It is well known that the KP equation is associated with 
the linear problem 

Wxx + (q(x,y,t) + a ay)w = 0 . (1.20) 

The recursion operator rfJ12 is algorithmically derived from 
Eq. (1.20).4.6 

B. New results 

(i) The KP equation: In Refs. 4--6 the algebraic proper­
ties of KP were investigated by expanding in terms of 
b(y, - Y2)' Now we expand in terms of b(xi - x2) (Ref. 
16) and write KP in the form 

ql, = L dX2 b(x , - x 2)KI2, ql = q(xI,y,t) , (1.21) 

where KI2 is some function of ql> q2 = q(x2,Y,t). Let sub­
scripts 12 denote dependence on x I' X2' Y; then for arbitrary 
functionsh2' gl2 we define the following bilinear form: 

( 1.22) 

Let the arbitrary operator KI2 depend on the operators q11, 
qii, where 

q,'1"*q,±q2+D i±Di, D,=aXi ' 

q, = q(xj,y,t), i 1,2 ; 
(1.23 ) 

then the dirxctional derivative of K'2 in the direction 0"12 is 
denoted by K 12) 0" d and is defined by 
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( 1.24a) 

where 

O"i:J:ill2* L dX3 (0"13 132 ± 0"32/13) • (1.24b) 

The two Hamiltonian operators associated with the KP 
equation (1.21) are given by 

eg> *DI + D2, eg) = a ay + qi"2 , ( 1.25) 

where q,l are defined in (1.23). The operators elq, i = 1,2, 
are skew symmetric, and satisfy the Jacobi identity 

<aI2,ei~)bdcI2) + cyclic permutation = 0, (1.26) 

where e'2
d 

and < , } are defined by (1.22)-( 1.24). 
It should be stressed that, in contrast to the Hamiltonian 

pair (1.13), both of the above Hamiltonian operators are 
local. The KP is a bi-Hamiltonian system, 

q" = q,x,x,x, + 6q,q, + 3a2D l-'ql 
XI YY 

- K - r dx £ e(i}r(i} " 1 2 
- II - JR 2 U12 '2 '2' =" 0.27) 

where rW are appropriate extended gradients. 
KP is the fourth member, n = 3, of the following Lax 

hierarchy: 

ql, Pn L dX2 b(x i - x2)<I>i2K~2 . 1 , ( 1.28) 

where 

<l>lz*egl(eg»-I, K~2 *a ay + ql2 . (1.29) 

The recursion operation <1>12 admits only one starting sym-
A 

metry operator Kj2' which generates the time-independent 
symmetries (<I>'UK~2 . 1)11' Valuesofmzeroorevencorre­
spond to ( 1.16a), while m odd corresponds to ( 1.16b). Thus 
in the new formulation the two different hierarchies ob­
tained in Ref. 4 are unified. Similarly <l>T2 generates extended 
conserved gradients r:~l, which give rise to conserved gradi­
ents rill'll. 

A nongradient mastersymmetry is given by 

",2 • ab(x i - X2) 
'1"12 . 

aXI 
The recursion operator <I> 12 can also be algorithmically 

obtained from the linear equation (1.20). 

(ii) The BO equation: The BO equation 

qt 2qqx + Hqxx, q = q(x,t) , ( l.30a) 

where H denotes the Hilbert transform (throughout this pa­
per principal value integrals are assumed if needed) 

( 1.30b) 

can be written in the form 

ql, = L dX2 b(x i - x2)K12 , ql = q(xt,t) , (1.31) 

where K'2 is some function of qt, q2 = q(x2,t). Let SUbscript 
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12 denote dependence on Xl' x 2; then for arbitrary functions 
/12' gl2 we define the following bilinear form: 

( 1.32) 

Let the arbitrary operator KI2 depend on the operators qii, 
qi"2, where 

ql1 =:=ql ± q2 + i(DI =t= D 2), D; =:=ax , ' 
(1.33 ) 

q; = q(x;,t), i = 1,2 ; 

then the directional derivative of KI2 in the arbitrary direc-'" . tion U l2 is denoted by KI2d [UI2 ] and is defined by (1.24). 
Two compatible Hamiltonian operators associated with 

the BO equation are given by 

eg> *qi2' eg> = (qii - iqi"2 H 12 )qi2 , (1.34a) 

where the operator H12 is an extended H operator, 

(H12 /)(X I,X2)=:=1T- 1 L ds[s- (XI +X2)]-1 

XF(S,x1 - x 2) , (1.34b) 

and/(x l ,x2 ) =F(x l +X2,x1 -x2). The BO equation isabi­
Hamiltonian system with respect to the above Hamiltonian 
operators. 

The BO equation is a member of the following Lax hier­
archy: 

ql, =Pn L dX2 8(x I - X2)<1>~2qi2 . 1, 

<1>12=:=qii - iqi2 H 12 • 

Indeed, (1.35) with n = 1 and n = 2 yields 

( 1.35) 

( 1.36) 

The operator <1>12 = eg>(eg»-l generates the time-inde­
pendent symmetries of the BO equation (<1>;';qi2 . 1)11' 

Similarly, <1>t2 generates extended conserved gradients r\~>· 
The above recursion operator <1> 12 can be derived algo­

rithmically from the associated linear problem of the BO 
equation. 

This paper is organized as follows. In Sec. II we derive 
the second representation of the KP class and we investigate 
the algebraic properties of the associated recursion operator 
and bi-Hamiltonian operators. In Sec. III we derive the ex­
tended representation of the BO class and we investigate the 
algebraic properties of the associated recursion and bi-Ham­
iltonian operators. In addition we discuss the connection 
with the mastersymmetries theory of the BO equation and 
with the complex Burgers hierarchy. 

II. THE KP EQUATION 

A. Derivation of the second representation 

Proposition 2.1: The linear equation 

is associated with the Lax hierarchy 
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(2.1 ) 

ql, = Pn L dX2 8(x l - x2)<1>~zK~2 . 1 

= Pn L dX2 8(x l - X2) (DI + D 2) 'I1~t I . 1 , (2.2) 

where P n are constants, D; *ax ., i = 1,2, and the opera­
tors <1> 12' '11 12, K ~2 are defined b~ 

<1>12 * (a ay + qii ) (DI + D 2 ) -I , 

(DI + D 2)'I1 12 = <1>dDI + D 2) , 

'" ql1 = ql ± q2' K~2 = a ay + qii . 

(2.3a) 

(2.3b) 

Remark 2.1: (i) q2 = qt, where * denotes the adjoint 
with respect to the bilinear form (1.22). 

(ii) '11 12 = <1>tz' 
(iii) Equation (2.2) with n = 0,1,2,3 and PI = -t, 

P2 = -h P3 = -t implies 

ql, = 0, ql, = qlx,' ql, = aqly' 
(2.4) 

ql = ql + 6qlql + 3a2D I-Iql . 
t XtXtXI XI YY 

Thus both the x-translation and they-translation hierarchies 
of the KP are generated by the same extended starting sym-

"'0 metryK I2 . 1 =ql-q2' 
To derive the above Lax hierarchy we look for compati­

ble flows 

W t = Vw, V polynomial in ax' (2.5) 

Compatibility of (2.1 ), (2.5) implies the operator equation 

qt = - (aVy + [q+a;,vp. (2.6) 

Assuming the integral representation 

(V/)(xl,y) = L dX2 V(X I,X2,y)/(X2,y), Vl2 =:=V(XI,x2'Y) 

and noting that 

(ql + Di) VIiI = L dx2{(ql + Di )VI2}J;, 

VI (ql + D i )/1 = L dX2{ (q2 + D ~ )VI2}J; , 

Vy /= L dX2 V 12y / 2 , 

we obtain the distribution equation 

ql,{j12 = - (av 12y + qii V 12 ) . 

Thus 

ql,{j12 = - (DI + D2)'I112VI2, 

'11 12 * (DI + D 2) -l(a ay + qi2) . 

(2.7) 

(2.8) 

(2.9) 

The operator (DI + D 2)'I112 satisfies the following commu­
tator operator equation: 

(2.10) 
h;2 = ..!!....-h I2 . 

dXI 

Using the above equation and assuming the expansion 
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Eq. (2.9) yields 
n 

ql,812 = I 8i2 (DI + D 2 ) 'I' 12d~) 
j=O 

n+1 

+ 2 I 8i2 (DI + D 2 )vg-1) . 
j= I 

Thus 

(DI + D2 ) vl~) = 0, 

- -t 'l'12 vlJ> = Vl~-I) • 

(2.11 ) 

Therefore vl~) = ( - -t) n'l'~2 vl~). Hence assuming 
v\~) = 1, the above equations imply 

ql 812 = 8dDI + D2 ) 'I'~2+ I . 1 , 

where 

(DI + D2 )'I' 12 = <l>12(DI + D2 ) • 

B. Isospectrality yields a hereditary operator 

To make this paper self-contained we first introduce an 
appropriate directional derivative. Recall the integral repre­
sentation [Eq. (2.7)], 

( VI) (Xl>Y) = i dX3 v(xl,x3,y)/(x3,y) . 

Also, allowing I to depend on x 2 we obtain VI12 
= S R dX3 V13f32. In particular, 

qJ12= (ql + Di)/12 = i dX3q13h2· (2.12) 

Equation (2.12) is a map between an operator and its ker­
nel and induces the following directional derivative: 

ql)0"12]iJ2= i dX30"13h2· (2.13) 

Equation (2.12) and the bilinear form (1.22) imply that 
the adjoint of ql' qT = q2 + D ~ has the representation 

qT/12 = (q2 + D ~ )/12 = i dX3 q32/13· 

Hence 

(2.14 ) 

qT)O"12]f12 = i dX3 0"32 113 . (2.15) 

Equations (2.12)-(2.15) andql'1 *ql ± qTimply (1.24). 
Proposition 2.2: (i) Consider the isospectral equation 

qv+avy=A.v, (2.16a) 

and its adjoint, with respect to the bilinear form (1.4), 

qv+ - av/ = A.v+ . (2.16b) 

Then 

(grad A.) 12 = VI V2+ , (2.17) 

where (grad A.) 12 denotes the gradient of A. with respect to 
the bilinear form (1.22). 

(ii) Equations (2.16) imply 
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(2.18 ) 

To derive the above results, take the directional deriv­
ative of (2.16a) in the arbitrary directionl12, multiply this 
equation by vl+ and integrate over dx dy to obtain 

A.d [f12] = ( dxldyvtql [/12]v I · JR2 d 

Using (2.13) the above becomes 

A.d [/12] = ( dX I dX2 dy vl+ v2/12 . JRJ 

But 

hence (2.17) follows. Equation (2.18) is a trivial conse­
quence of (2.16). 

Equation (2.18) suggests that <I> 12 is a hereditary (Ni­
jenhuis) operator (see Proposition 4.3 of Ref. 4). Actual­
ly it can be easily verified that 

<l>12d [<1> 12 iJ2 ]g12 - <1>12 <l>12d [iJ2 ]g12 

is symmetric w.r.t. 112,gI2' (2.19) 

i.e., <1>12 is indeed hereditary (see Appendix A). 

c. Symmetries and conserved gradients 

1. Starting symmetries 

We recall that the starting symmetry operators play 
an important role in the theory developed in Refs. 4 and 5. 
An operator <1>12 algorithmically implies starting symme­
try operators: Look for operators 812 such that 
""- ""-
SI2H12 = 0, but <I> 12S12H12 #0. Then a starting symmetry 

""- ""- ""-
operator K~2 is given by K~2H12*<I>12S12H12. 

Proposition 2.3: Let 

K~2 *a ay + qi"2, H12 *H(xi - x2,y) , (2.20) 

where His an arbitrary function of the arguments indicat­
ed. Then the following statements obtain. 

(i) K~2 . H12 is a starting symmetry associated with 
the operator <1>12 [defined in (2.3)]. 

(ii) K~2 satisfies a simple commutator operator equa­
tion with h12 = h(x i - x2), 

[K~2,h12] =2 ah 12 (D I +D2). (2.21) 
ax, 

""-
(iii) <1>12 is a strong symmetry for K~2 . H 12, i.e., 

U? ""-0 
..z (<I>12,K 12H12) 

* <l>12d [K~2H12] + [<I>12,(K~2H12)d] = O. (2.22) 

(iv) The Lie algebra of the starting symmetry operator 
satisfies 

[K""-OH(l)K""-OH(2)] K""-o [H(l)H(2)] 12 12' 12 12 d = 12 12' 12 I' (2.23 ) 

where 

[K(l) K(2)] ~K(l)[K(2)] -K(2)[K ] 12' 12 d ...,.. 12d 12 12d 12' (2.24a) 
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A 

To derive (i) let SI2 = D, + Dz; then H,z is defined by 
(,p, + Dz)H12 = 0, thus H12 = H(x, - xz,y). Also 
K~zH12 = (a ay + qi"2 )H12. Part (ii) isastraightforward 
calculation and part (iii) follows from the definition of a 
starting symmetry and the fact that <1>12 is hereditary (see 
Lemma 4.2 of Ref. 4). Part (iv) is a tedious calculation 
[see Appendix A for a direct verification ofEq. (2.22) and 
(2.23)] . 

2. Symmetries 

We recall that U 12 is a time-independent extended 
symmetry ofEq. (2.2) iff 

[8'Z<l>~2K~2 . l,u'z]d = O. 

Proposition 2. 4: 

(2.25 ) 

bn•l constants. (2.26) 

(ii) [812 <I>~2K~2 . 1, <l>7!zK~2 . H 12 ]d 

(2.27) 
A 

(iii) uli')*<I>7!zK~2' 1 are time-independent ex-
tended symmetries of (2.2) . 

(iv) ugn ) are symmetries of (2.2) . 

(v) uli') = 0 are auto-Backlund transformations of 
(2.2), where q" q2 are interpreted to be two different solu­
tions of (2.2). 

Part (i) ofthe above follows from 

[
A 0 ] , [<I>'2,h l2 ] = 2h ;2' K 12 ,h'2 = 2h '2 (D, + D2) . 

(2.28) 

To derive (ii) note that 

where we have used (for the third equality) the fact that <I> 
A 

is hereditary and a strong symmetry for K~2 . H 12, and 
the fourth equality follows from Eq. (2.23). Part (iii) fol­
lows from (ii) by taking Hl2 = 1. Part (iv) follows from 
(iii) and (2.8) (see Theorem 4.1 of Ref. 4). For part (v) 
see Theorem 4.2 of Ref. 4. 

Remark 2.1: (i) Using Eq. (2.27) with suitable func­
tions H l2, it should be possible to show that time-depen­
dent symmetries of (2.2) are generated by linear combina­
tions of <l>7!zK~2Hl2' See Ref. 5 for the corresponding 
results associated with the first representation. 

(ii) An analysis about conserved gradients should fol­
low closely the methods developed in Refs. 4 and 5. For 
example, it can be shown that 'II~2 . Hl2 are extended gra­
dients for all H12 = H(x, - x 2,y). 
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3. A nongradlent mastersymmetry 

Proposition 2.5: (i) T,2*<I>r2812' 812*a8(x, 
- x 2 ) / ax, is a non gradient mastersymmetry of the KP 

class, since 
A A 

[<I>~2K~2Hl2,Tl2]d = (n + 1) <I>~2+ 'K~2H'2' (2.29) 

(ii) Tl2 generates the recursion operator <1>12 via 

2<1>'2 = T'2d + (D, + D2) TT2)D, + D2)-'. (2.30) 

(iii) Let 

rl~) * (<I>T2 ) n~2' 
Then 

rl~) Hl2 = grad'2 In , 

In * lI(n + 2)( rl~ + 1) H'2,8:2) . 

(2.31) 

(2.32a) 

(2.32b) 

The proof of (i)-(iii) is a consequence of equations 
812d=0, <l>12J812]=1 and ofEq. (4.9), (4.6), and 
(4.7) of Ref. 5, respectively. 

III. THE BO EQUATION 

The linear problem associated with the BO equation 
(1.30) is the following differential Riemann-Hilbert 
(RH) boundary value problem: 

1/J<-)(x) = (q(x)+iax )1/J<+), (3.1) 

where 1/J< + ) and 1/J< - ) are the boundary values on the line 
1m x = 0 of functions hoI om orphic in the upper and lower 
half-plane, respectively, '7 and the spectral parameter has 
been rescaled away. 

Equation (3.1) plays a crucial role in the derivation of 
the recursion and bi-Hamiltonian operators of the BO 
class. 

A. Derivation of the recursion and bl-Hamlltonlan 
operators 

Proposition 3.1: The linear problem (3.1 ) is associated 
with the hierarchy 

q" = f3n L dX2 8(x, - x2) <I>~2K~2 . 1 

=f3n L dx28(x,-x2) qi"2'11~2 . 1, (3.2) 

where f3 n are constants and the operators <1>'2' '11'2' and 
K ~2 are defined by 

<1>'2 *q,1 - iqi"2 H '2' q12 '11'2 = <I>'2q12' K~2 *qi"l , 
(3.3a) 

H'2fl2*rr-' L d5 [5- (x, +x2) ]-'F(5,X,-X2), 

f'2*f(x,,x2) =F(x, +x2,x, -X2), (3.3b) 

q,~ *q, ± q2 + i(D, +D2), q/ = q(x/>t) , 
(3.3c) 

Remark 3.1: (i) 'II,z = <l>T2, where • denotes the ad­
joint with respect to the bilinear form (1.32). 

(ii) The first few equations of the BO hierarchy are 
then 
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q, = 0, n = 0, (3.4a) 

q, = qx' n = 1, /31 = (20 -I (wave equation) , 
(3.4b) 

q, = 2qqx + Hqxx, n = 2, /32 = (4;)-1 (BO equation) , 
(3.4c) 

q, = ( - qxx + q3 + i(qHqx + Hqqx »)x , 

n = 3, /33 = (80- 1 (higher-order BO equation) , 
(3.4d) 

and are obtained from (3.2) using Eqs. (3.16b)-(3.16f). 
To derive the representation (3.2) we first seek 

compatibility between the differential RH problem (3.1) 
and the evolution equations 

t/I~±) = V(±)t/I(±), (3.5)± 

where V( ±) are differential operators ofthe form 
n 

V(±) = L Vi±)(x)a~ (3.6) 
j~O 

and the coefficients Vi +) (x) and Vi -) (x) are holomor­
phic in the upper and lower half x plane, respectively. 

The compatibility condition between (3.1) and (3.5) 
yields the operator equation 

q, = V(-)(q+; ax) - (q+; ax)V(+), (3.7) 

which can be converted into a scalar distribution equation 
by formally introducing the integral representation 

(V(±)j)(xl ) = I dX2 v\l)/(x2), V\2±)'*V(±)(XI'XZ)' 

( 3.8) 

For instance, the operator VI -) (ql +; ax, ) gives rise to 
the scalar kernel (q2 -; ax, )V\2-)' since 

V\ -) (ql +; ax, )/(xl ) = i dxz V\2-) (q2 +; ax, )/(x2) 

= i dx2(qz -; a
X2 

)V\2- »)/(xz) . 

(3.9) 

Equation (3.7) then corresponds to the following distri­
bution scalar equation: 

D(x i - xz) ql, = - (ql +; ax, )V\2+) + (q2 -; ax, )V\2-) 

- -t(qI1 (v\t ) - V\2- » 

(3.10) 

Equations (3.6), (3.8), and (3.10) implyforv\2±) the 
following expansions in derivatives of 15 12: 

n 

V( ± ) - ~ f:: j v( ± )j 12 - £.. U12 12 . 
j~O 

(3.11 ) 

Combining (3.11 ), (3.8), and the analyticity properties of 
Vi ±) (x), we obtain that V\2+) and V\2-) are holomorphic 
in the upper and lower XI + X 2 plane, respectively. Then, 
in particular, 

V\2+) - V\2-) = - iH12 ( v\t) - V\2-» 

[see Eq. (3.19)], and Eq. (3.10) becomes 

D12ql, = - -tct>12VI2' v12 ,*V\2+) - V\2-) 
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(3.12) 

(3.13) 

Remark 3.2: The following operator commutator equa­
tions hold: 

[qil ,h 12 ] = [H12,h 12 1 = 0 , 
(3.14 ) 

and hereafter h 12 indicates an arbitrary function of 
x I - x 2 • Substituting the expansion Vl2 = ~; ~ 0 15/2 Wi into 
Eq. (3.13) and using Eqs. (3.14) one obtains 

vI;) = 0; v\i-I) = (i/2)ct>12 v\P, 1 <.j<.n - 1 , 

Dl2ql, = (i/2)D 12ct>l2 v\~) . (3.15) 

The iteration (3.15) implies that v\~) = (i/2) n - I 

Xct>~2-IV\;-I); to determine v\;-l) we notice that v\~) 
= v\t )n - V\2- )n = 0 implies v\~) = v\l)n = Cn = const, 

and then 

V\~-I) = (i/2) [q11 (V\2+)n - V\2- )n) 

+ qil (v\t)n + V\2- )n) ]cn = icnqi2 . 1. 

Equation (3.2) is then obtained defining 
/3 n ,*i(i/2) ncn · 

B. Properties of the extended Hilbert transform 

In this subsection we list several interesting and useful 
properties of the extended Hilbert transform. 

Proposition 3.2: The extended Hilbert transform H12 
enjoys the following properties. 

(1) [H12,h l2 1 =0, 

(2) H I2a(xj ) = Hja(xj ), j=I,2, 

(3.16a) 

(3.16b) 

HJi(xj,xj ) '*11"-1 i dy(y-xj)-'j(x;.y), i=/=j. 

(3.16c) 

(3) i dX2 DlzH12/12 = HJII' 

(4) axH12/l2 = H lz ax.i12' j = 1,2, 
J J 

(5) Hi2 = - 1 . 

(3.16d) 

(3.16e) 

(3.16f) 

Moreover, 

(6) Hl2/i3. h 12 = (H12 /l2) ±h I2 , 

(7) HI2 (gil Hl2/12 + (Hlzg12 ) -/12 ) 

(3.17a) 

= - gi"1fl2 + (Hlzg12 ) - HI 2 112 , (3.17b) 

(8) HT2 = -HI2 . (3.17c) 

Here HI2 induces the following analytic properties: 
(9) If 

I\l) '* ± -t (1 + iH12 )/12 

= (211"0- 1 i dy(y- (XI +x2±iO) )-1 

XF(y,x I - x 2 ) , (3.18) 

then 
(i)/\2+) and/\2-) are holomorphic for Im(x i + x 2 ) >0 

and Im(x i + x 2 ) <0, respectively. 

(ii) Ib+) +1\2-) = -iHI2 (/b+) -1\2-»' (3.19) 
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Proof: Equations (3.160 and (3.17b) are interesting 
generalizations of well-known identities H2 = - 1, 
H(gHf + fHg) = -gf + (Hg)(Hf), and can be proven 
using Fourier space. Equations (3.16a)-(3.16e), (3.17a), 
(3.17c), and (3.18), (3.19) are direct consequences of the 
definition of H12 (see Appendix B for details). 

c. Algebraic properties of the BO class 

In this section we show that the main algebraic proper­
ties of the BO class can be entirely described using the theory 
developed in Ref. 4; we refer to that paper for details and 
proofs. 

1. Representation of the class 

It was shown in Sec. III A that the BO class admits the 
following representation: 

ql, = 13n L dX2 c5 12<1>72K?2 . 1 ~13n L dX2 c5J2K \~) ~K \7) , 

(3.20) 
A 

whereK?2 = ql2 and <1>12 is defined in (3.3a). 
The recursion operator <1>12 and the "starting" opera­

tor K?2 enjoy simple commutator relations with h12 
= h(x l - x2), 

[<I>12,h 12 ] = 2i ah 12 , [K?2 ,h12 ] = 0 , (3.21) 
ax, 

which imply that c5\2K g) can be written in the following 
alternative form: 

c5I2K\~) = ± (_2i)1(~)<I>72-IK?2 a 1
c5(X I -X2) . 

I~O ax, 
(3.22) 

2. The d derivative 

As in 2 + 1 dimensions, the derivation of the extended 
algebraic structures of the BO class is based on integral rep­
resentations of operators depending on q, ax' and H. This 
mapping between operators and their corresponding kernels 
induces a mapping between derivatives and leads to the in­
troduction of a new directional derivative, the so-called d 
derivative.4 Here we briefly remark that the basic operators 
q 1'1 appearing in the BO formalism are the same as for the 
KP case, replacing Xj by Yj and i by the parameter a [see Eqs. 
(1.13b) and (1.33)]. Then theird derivative is simply given 
by 

ql'1 [g\2] iJ2 ~gl'1fl2 , 

gl'1iJ2 ~ L dx3(g\3 f32 ±f\3 g32) . 

(3.23 ) 

(3.24) 

A 

Since <1>\2 and K?2 are expressed in terms of ql'1, their d 
derivatives are well defined, 

(3.25) 

As for the (2 + 1) -dimensional case, the connection be­
tween the d derivative and the usual Frechet derivative is 
given by the following projective formula: 
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K I2)c5\2 g12] = K 12f [g] ~KI2. [gil] + KI2 [g22] , 
I .2 

(3.26) 

where K 12., denotes the Frechet derivative of K\2 with re­

spect to q;. i.e., 

KI2 • .rgii]~aEKI2(qi +Egii,qj)IE~O' i,j= 1,2, i=l=j. 
(3.27) 

3. The starting symmetry K102 • h12• its Lie algebra, and 
its characterization through the recursion operator 

The starting symmetry K \~) = ql - q2 of the BO class 
is written as ql2 . 1. As in 2 + 1 dimensions a crucial as­
pect of this theory is that the operator K?2 = q 12 , acting 
on suitable functions h12 = h(x l - x 2), solutions of the 
RH problem h \/ ) - h \2- ) = 0 [( + ) and ( - ) here in­
dicate analyticity in the upper and lower x I + X 2 half­
planes, then h\2 = h :2+ ) = h :2-)]' form a Lie algebra, 
given by 

(3.28 ) 

where the Lie brackets [ , ]d' [ , ]/ are defined by 

[f12,gI2]d~fI2)g\2] -gl2)iJ2]' 

[hl2,hI2]/~ L dX3(h13h32 - h\3h32 ) . 

(3.29a) 

(3.29b) 

As in 2 + 1 dimensions, the starting symmetry K?2 . h 12 can 
be characterized through the recursion operator <I> 12 via the 
equations 

<l>12(h :2+) - h :2-» = qi! (h:/) - h \2-» + ql2 (h :2+) 

h \2+) = h :2-) = h 12 , 

obtained using Eqs. (3. 3a) and (3.19). 

(3.30a) 

(3.30b) 

4. Symmetries, strong and hereditary symmetries 

The recursion operator 4>12 and the starting operator 
K?2 = ql2 are the ingredients of the evolution equations 

ql, = L c5 12K \~) . (3.31) 

They enjoy the following properties. 
Proposition 3.3: 0) The recursion operator <1>\2 is 

hereditary, namely, 

<l>12)<I>\2iJ2]gI2 - <l>12<1>12d [iJ2]gI2 

is symmetric w.r.t. iJ2 and gl2 ; (3.32) 

Oi) <1>12 is a strong symmetry for K?2hI2' namely, 
U' AO 

-z (<I>12,K I2h12) 
. [A 0 [A 0 :::=<I> 12d K 12 h\2] + <I>\2,(K 12 h\2)d] =0. (3.33) 

Proof' Equations (3.32) and (3.33) are verified in 
Appendix A, although this check is not strictly necessary, 
for two reasons. 

(1) <I> 12 comes from the isospectral problem (3.1), 
and an extension of the theorem presented in Ref. 18 
should guarantee its hereditariness (see also Ref. 4, §4.E). 
It is also interesting to remark that a direct proof of the 
hereditariness of <1>12 makes use ofEq. (3.17b). 
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(2) The hereditariness of 4>I2 and the characteriza­
tion (3.30) implies that Proposition 3.3 (ii) holds (see 
Lemma 4.2 of Ref. 4 and Appendix A for a direct check). 

The operator 4>12 generates infinitely many commut­
ing symmetries of the BO class; precisely, since 4>12 is a 
hereditary operator and strong symmetry for the starting 
symmetry K~2h12 that satisfies Eq. (3.28), then Theorem 
4.3 of Ref. 4 implies that uli) *4>~ qi"i ·1 are extended 
symmetries of every evolution equation of the BO class, 
namely, 

u{m) [K (nJ ] - (tS K (n» [u<m)] 12, - 12 12 d 12 (3.3~) 

for every non-negative integer nand m, where, using 
(3.22), 

(tS 12K ~~»d * i (- 20 le)(4)~2-IK~2tS:2)d . (3.35) 
1=0 

The first three operators (t512K\~»d of the BO class are 
explicitly reported below: 

(UI 2K W)d =2i(ax , +aX2 ) , 

(t512K W)d 

(3.36a) 

(3.36b) 

= 4i(HI2( aX, + ax,)2 + (ax. + a",)(ql + q2) 

+ i(Hlql)X I - (H2q2)X2 ) 

- i(qt - q2)HI2( ax, + ax,. » (3.36c) 

(see Appendix A). 
The usefulness of the extended symmetries u\i) fol­

lows from the fact that they give rise to symmetries and 
Backlund transformations; precisely according to 
Theorem 4.2 of Ref. 4: 

If u(i) is an extended symmetry of Eq. (3.31), then 
(1') ,..(m) - ".(m) I is a symmetry of Eq (3 31) name-Vl1 - "'12 X2-X. • .. , 

ly, 
u(m) [K (n)] - K (II) [u(m)] . 

II, 11 - 11, 11 , (3.37 ) 

and (ii) the equation 

u\2') = u(m) (f{"q2) = 0 (3.38) 

is a Backlund transformation for (3.31) where, of course, 
ql and q2 are now viewed as two different solutions of 
(3.31). 

5. (BI-) Hamiltonian formalism and constants of 
motion In Involution 

Proposition 3.4: (i) If we define 

eg> *qi"2, eg) *4>I2eg> , (3.39) 

then e l2 *eg> + K9g) is a Hamiltonian operator for all 
constants K, namely, 

by 

612 

(3.4Oa) 

(b) e 12 satisfy the Jacobi identity w.r.t. the bracket 

{a 12,b12,c12} * (a12>eI2)e12bI2 ]C I2). (3.40b) 

(ii) The adjoint 4>T2 of the recursion operator, given 

(3.41 ) 
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satisfies the following "well-coupling" condition: 

cf>12eg> = eg>cf>T2 . (3.42) 

( ... ) ~(\) h "'* h' d d d' t 1U rl2 . 12 = ""'12' 12 1S an exten e gra len, 
namely, 

(yg)h 12 )d = (yg>h12)~' (3.43) 

Proof Equations (3.40)-(3.42) are a direct conse­
quence of the definitions (3.39), of Eqs. (3.17b) and 
(3 .17c). and of the property q 11* = ± q 11. 

Remark 3.3: Using Eq. (3.42) the BO class can be 
written in the following form: 

qt, = {3n f dX2 tS12 qi"2 (4)T2)n . 1 

={3n f dX2 qi2 tS12(cf>T2)"' 1 

= i ax. f dX2 t512 ( cf>T2)n . 1 = i{311 ax, r\~) . 
(3.44) 

The first Hamiltonian operator eg) = q12 commutes 
with tS 12 and reduces to i ax.' Then ax is the (projected 
version of the) first Hamiltonian operator of the BO class; 
this result was already known. 15 

The existence of a compatible pair of Hamiltonian op­
erators is connected to the existence of infinitely many 
constants of motion in involution. Theorems 4.1-4.5 of 
Ref. 4 can finally be summarized in the following proposi­
tion. 

Proposition 3.5: Consider the compatible pair of Ham­
iltonian operators eg)*QI2' eg>*(qi~ -iQI2HI2)qI2 
and define 4>12 *eg) (eg) )-1; then the following is true. 

(i) 4>12 is a hereditary operator. 
(ii) u\2') *cf>\2')QI2 . 1 and r\i) * (cf>t2)m . 1 are ex­

tended symmetries and extended gradients of conserved 
quantities, respectively, for Eqs. (3.2), namely, 

u(m) [K (If)] - (tS K (n» [u<m)] (3.45a) 12, - 12 12 d 12 , 

r\i;[K(II)] + (t512K(~»~[r(i)] =0, (3.45b) 

(cf>T2)mhdd =«4>T2)mhd~, hI2 =h(XI -X2 ). 

(3.45c) 
(iii) Equations (3.2) are bi-Hamiltonian systems, 

since they can be written in the following two "extended" 
Hamiltonian forms 

{3 r d {: eO) (n) {3 r d {: e(2) (11-1) 
Ql, = If JR X 2 U l2 12 rl2 = If JR X2 U l2 12 r12 . 

(3.46 ) 

(iv) u;;") and ri;") are symmetries and gradients of 
conserved quantities for Eq. (3.2). namely, 

,...(m) [K (n)] _ K (n) [u<m) ] 
VII, 11 - 11, 11 , 

r(m) [K (n)] + K (II) [u(m)] - 0 
11, 11 11, 11 - , 

(m) _ (m) + rll, - rll, ' 

(3.47a) 

(3.47b) 

(3.47c) 

where + denotes the operation of adjoint w.r.t. the bilin­
ear form (f,g) *fRdxfg. 

(v) The corresponding conserved quantities 1m , relat­
ed to rl2') and r\;") via equations 
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rl;') = grad12 1m, Im)/12] =* (grad lz I m,f12)' (3,48a) 

rl;") grad 1m , Im)fl =* (grad Im,f), (3,48b) 

are constants of motion of Eqs. (3.2). 
(vi) These constants of motion are in involution with 

respect to the Poisson brackets 

eg> and/or eg), 
(3,49) 

namely, 

{In,lm} = o. (3.50) 

(vii) The equations K I;') = K (m) (q l,q2) = 0 are 
Backlund transformations (BT) for the BO class (3.2), 
interpreting ql and q2 as to different solutions of (3.2). 

Remark 3.4: (i) The first extended symmetries of the 
BO class are given by 

O"l~) qi;' 1 = ql - q2 , (3.51a) 

O"g) <l>g)qi;' 1 

= i(ql + q2 ) + Hlql H 2q2 
~ ~ ~ ~ 

+ (ql + q2) (ql - q2) 

- i(ql - q2) (Hlql - H zq2) , (3.51b) 

then their projections are the first symmetries of the BO 
class 

,.,.(0) 
VII 0, 

and equations 

O"l~) 0, oW = 0 , 

(3.52) 

(3.53) 

are the first two BT's of the class. We remark that the BT's 
generated by <1>\2 are polynomial in ql' q2' unlike the pre­
viously known examples. 17 

D. Connection with the mastersymmetries theory 

The mastersymmetry approach was introduced by 
Fuchssteiner and one ofthe authors (A.S.F.) 15 as an alter­
native way of generating symmetries of the BO equation. 
This approach was subsequently applied to (2 + 1 )-di­
mensional systems like KP, 11 1 + 1 systems like KdV, 12,18 
and finite-dimensional systems like the Calogero-Moser 
problem. 19 

In this section we briefly show that the existence of a 
hereditary operator <1>12 allows a simple and elegant char­
acterization of the BO mastersymmetries (analogous and 
more detailed results for KP were reported in Ref. 5). 

Proposition 3.6: (i) If 

K l~) =*<I>~zqi; • 1, 

1"1;"r) =*<I>~qi; . (XI + x 2 ) r, 

then 

(3.54a) 

(3.54b) 

[012KI~),1"I;,·I)]d =4inKI~+m I) (3.55) 

(ii) 1"1;,,·1) =* 1"1;,,1) lx, = x, are mastersymmetries of de­
gree 1 of the BO class, since 

[K (n) ,.,..(m,l)] _ 4t'nK (n + m - I) 
11 "11 f- 11 • (3.56) 

Proof: The derivation ofEq. (3.55), presented in Ap­
pendix C, is based on the following important properties: 
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(1) <l>12d [q12 (XI + X2)] + [<I>IZ,(qI2 (XI + X2) )d ] 

= iql2 [Hw(x i + X2 ) ], (3.57a) 

(2) [HI2,(XI + x2) ] 112 = ..!.. r dy F(y,xI - x z) , 
1T JR 

ft2 = l(x l ,x2) =*F(x i + X2,XI - X2) , 

(3) iqi; [HI2,(XI -x2 )- ](0~2KW) =0, 

(3.57b) 

(3.57c) 

't/s,l>O. 
(3.57d) 

These follow from the definitions (3.3) and from equation 

lim (S~I (_I)S-1 as-I I al K(n») =0 
~ Xl X 2 12 

Ix21- 00 1=0 x, = x, 

(3.57e) 

(see Appendix C). Equation (3.56) follows from (3.55) 
using Theorem 4.1 of Ref. 4. 

Remark 3.4: As for the KP case,5 time-dependent 
symmetries of the BO hierarchy should be generated via 
mastersymmetries 1";;,.r) of degree r> 1. In this case, an 
equation analogous to (3.55) should follow from a suit­
able generalization of Eq. (3.57a) obtained replacing 
(XI + X2) by (XI + x 2 ) r, r> 1. 

E. Connection with the complex Burgers hierarchy 

It is well known that if q(x,t) is analytic in the upper X 

plane, then the BO equation (1.30) reduces to the (com­
plex) Burgers equation 

q/ = 2qqx + iqxx , 

since 

(3.58) 

Hj<±)= ±if(±), (3.59) 

where/( +) (x) and/( -) (x) are holomorphic in the up­
per and lower half X plane, respectively. The same result 
obviously holds for the whole hierarchy. 

Proposition 3.7: If q(x,t) is holomorphic in the upper 
X plane, then the BO hierarchy (3.2) reduces to the fol­
lowing complex Burgers hierarchy (investigated in Ref. 
20): 

(3.60a) 

(3.60b) 

Proof' The proof is straightforward and relies on the 
fact that each gradient rl~) is a holomorphic function in 
the upper XI and X 2 planes; hence Eq. (3.59) implies that 

<l>Tz rl~) = (qi~ - iHI2ql2 )rl~) 

= (q11 + ql2 )rl~) = 2(ql + i ax, )rl~) . 
Then 

ql, = fln Sa dX2 012ql2 (<I>tz)It . 1 

= 2ifln ax, L dX2 0 12 (<I>tz ) n . 1 

= i2"+ Ifl" ax, (ql + i ax,)" . 1 
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= bn ax, (ql + i ax, )n-Iql 

=bnax (ql+iax )n-1ax-1ql 
1 1 I Xl 
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APPENDIX A 

In this appendix we use the notion of directional de­
rivative and extended bilinear form introduced in (1.24) 
and (1.22), (1.32), respectively, to prove some of the re­
sults presented in this paper. In order to give a self-con­
tained presentation, we first present some results con­
tained in Appendix C of Ref. 4. 

The directional derivative of the basic operators ql1 
(1.13b), (1.23), (1.33), is 

q11) iJ2]g12 = 111g12' 

where the integral operators/11, defined by 

111g12'* 1 dx3( 1\3 g32 ± g\3 132) , 

enjoy the following algebraic properties: 

(AI) 

(A2) 

<l>12)<I>\2/\2]gI2 - <I>\2<1>12)iJ2]gI2 - (sym. w.r.t. 112~gI2) 

a l1 b\2 = ± b 11 a\2 , (A3a) 

(a l1 b 11 - b 11 a l1 )c12 = (ai;b\2)-C I2 = - cI2 a I2 b\2' 
(A3b) 

(aiib l2 +b~a\2)c\2= (a~b12)±C\2+ ± CI1a~b\2' 
(A3c) 

a I1·=±aI1. (A3d) 

Moreover the integral representation 

q11/12 = 1 dx3 (q\3 h2 ±/\3q32) (A4) 

implies thatql1 satisfy Eqs. (A3) as well. Equations (A3) 
are conveniently used to prove the following properties of 
the recursion and Hamiltonian operators of the KP and 
BO equations. 

For the KP class, the following is true. 
(I) ~12 '* (a ay + q12) (D1 + D2) -I is a strong sym-

~o -metry of K 12H\2 = (a ay + ql2 )H12. Indeed 

and 

<l>12)U12]=UI2(DI+D2)-I, 

(.K?2 H 12)d[U\2] = UI2 H 12 , 

U? "'0 
..z (<I>12,K 12H12)/12 

'" = (K?2 H 12)-(D1 +D2)-I/\2 

- (<1>\2 iJ2) - H12 + <1>12 /12 H12 

= (a ay + ql2 )H\2)-gI2 

- (a ay + ql2 )g\2)-H\2 + (a ay + ql2 )g12 H 12, 

having introduced g12 '* (D1 + D2) -1/12 and used 
HdDI +D2)-1 = (D 1 +D2)-IH12 • Using (A3a) we 
obtain gI2qi2H\2 - H 12ql2g12 - q12g12H12' which is 
zero, for (A3b) - . 

(2) ~12 is a hereditary operator. Indeed 

= (a ay + ql2 )(D1 + D2)-I/12 )-(D1 + D2)-lgI2 - (a ay + ql2 )(D1 + D2)-1/12 (D1 + D2)-lgI2 - ( sym .... ) 

= (D1 + D2)-lg\2)- (a ay + ql2 )(D1 + D2) -1j12 - (D1 + D2) -1j\2)- (a ay + ql2 )(D1 + D2) -lgl2 

- (a ay + ql2 )(D1 + D2)-1 (/12 (D1 + D1)-lgI2 - gl2 (D1 + D2)-1j12) = 0, 

using integration by parts, 

(D1 + D2)-1/12 (D1 + D2)-1 gl2 

= (D1 + D2)-I/\2 )-(D1 + D2)-lgI2 - (D1 + D2)-1 

X «((D1 + D2)-I/12 )-gI2 - gl2 (D1 + D2)-I/\2) 

and Eq. (A3b). 

(3) [K"'O H(\) K"'o H(2)] 12 12' 12 12 d 

- (K'" 0 H(2»-H(\) _ (K O H(\»- H(2) - 12 12 12 12 12 12 

- Hg>-(a ay + q12) 

+ Hg)- (a ay + ql2 )Hg> 

K"'o H(I)-H(2) 
- 12 12 12' 

for (A3a)- and (A3b)-. 
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For the BO class the following is true. 
(4) ~12 is a strong symmetry of ql2 h 12, 

h\2 = h(x1 - x2)· Indeed, using (3.43a), we have 

.Y(<I>12,qI2 h\2) = (q12 h\2)+/12 - i( qI2 h\2) - H12 112 

+ (qii - iqI2 H 12)/12 h12 

- (qlil12 - iqI2 H 12/12)-h 12 · 

Using Eqs. (A3a) and property (3.17a) [see Appen­
dix B (5)] we obtain 

(/11 ql2 h12 + qiil12 hl2 + h 12 qI1/12) 

+ i( (H\2 1\2) - ql2 h12 - ql2 (H12 112) - h12 

- h 12 qI2 H \2/12) , 
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and the two expressions in parentheses are zero using 
(A3c) and (A3b) -, respectively. 

and (1.33). Their immediate implications are Eqs. 
(3.17c), (3.4Oa), and (3.41). 

(5) <1>12 is a hereditary operator. Using (3.24a) we 
have that 

(7) eg> = ql2 and eg> are Hamiltonian operators. 
They are skew symmetric, since 

<1>12) <1>12 h2 ]gl2 - <l>i2 <1>12) 112 ]gl2 

- (sym. w.r.t. h2~gl2) 

eg>· = (qli - iqI2 H I2)qI2)* = qI2·(qli· - iH;2qI2·) 

= (qlih2 - iqi;:HI2 h2)gli = - eg> (being qli ql2 = ql2 qli ) . 
- i(qlill2 - iqi;:H12 h2) - HI2 gl2 They satisfy the Jacobi identity (3.4Ob), for instance 

- qli (/1ig12 - ifi;:Hl2 gd 
+ iqi;:HI2 ( IIig12 - ifi;:Hl2 g12) 

- (sym. w.r.t. 112~gI2) . 

(a12,eg! [eg>b12 JCI2 ) 

= (aI2,qI2d[qI2b12]C12) + cycl. perm. s 

= (aI2,(qI2blz)-CI2) + cycl.perm. s. 

Using (A3a) and (A3d) we obtain 

(a w - CI2 ql2 bl2 + b 12 ql2 CIZ - ql2 b 12 c12) , 

which is zero for any a12, b12, CI2' for Eq. (A3b). 

Using (A3c) and (A3b) we obtain 

ql2 (H12(g12 H I2/12 + (H12 gI2)-/12) 

+ gl2/12 - (H12 gl2) - HI2 112) , 

which is zero for Eq. (3.17b). 
(6) q11· = ± qI'~ . 

These are direct consequences of the definitions (1.32) 

I 

(8) The derivation of Eqs. (3.36) is the same as for 
the corresponding ones of the KP hierarchy (see Appen­
dix C of Ref. 4) and makes extensive use of the equations 

(8~2)±/12= (a~, ± (-l)na~,)h2' (A5) 

(812K:~»d[/12] = (8 12qlz ·l)d[FI2 ] = (qi;:812 )d[h2] =/12 812= - 8 IZ1 12 =0, 

(812Kg»d[h2] = (<I>l2q12 812)d[h2] -2i(qi;:812)d[hz] 

= <1> 12) Il2]qlz 812 + <l>l2qIZ) 112]812 - 2iqlz)h2]812 

= (Iii -ifI2 H I2)qIZ812 +<I>12/12 812- 2if12 8 12 

=/liqlz 812 - ifi;:H12qI2 812 - <1>12 812/12 + 2i(812 )-/12 = 2i( ax, + aX, )/lz, 
since 

Iii qlz 8 12 = qlzlli 8 12 - 8+ qlzh2 = 2( qlz - ql2 )h2 = 0, 

liZ H 12q12 812 = 112 812H 12 (ql - q2) = liZ 8 12(Hlql - H 2q2) = 0, 

(812)-h2=(ax, +ax,)/12' 

(812KW)d[h2] = (<I>i2qlz812)d[h2] -4i(<I>12qI2 812)d[h2] -4(qI2 8i2)d[/12] 

= <1>12) 112 ] <l>12qI2 8 12 + <1>12 <l>IZ) 112 ]ql2 8 12 + <l>i2 q12) h2 ]812 

- 4i<l>12)/12]qI2 8 12 - 4i<l>12qI2)h2]812 - 4qlz)h2]8i2 

= (IIi - if12 H I2)<I>l2q12 812 + <l>12( Iii - ifl2 H dqlz81z + <l>izflz812 

-4i(/li -ifI2 H 12)qlz812 -4i<l>12/lz 8 12 -4/lz 8i2 

= 4i(HI2 (ax, + aX2 )2 + (ax, + ax,) (ql + q2) + i(HI qlxl - H 2q2x2 ) - i(ql - q2)H12 ( ax, + ax,»), 

since, for instance, 

Iii <l>lzqi;: 8 12 =/~ (8 12K g> + 2i812K l~» =/dK g> + K lP) - 2i [(ax, (K ~~>/13) )x,=x, - (ax,(K l~>h2) )x3=x, J 
=/d2i(ql + q2 ) - 2i(ql + q2 ») = 0, 

Xl x2 xI x2 

112 H I2(812 Kg> + 2i812K:~» =/IZ (812H 12 Kg> + 2i8lzH12K:~» 
=/12 (H2K W - HIK :1» - 2i[(aX3 (h3H 32 K 1~>n~,=x, + (ax, (hzH13K:~»)x,=x, ] 

= 2i(Hlql - H 2q2 ) - (Hlql - H 2q2 »)/12 = 0; 
XI x2 Xl x2 

IIi ql2 812 = ql2/i! 8lz - 8 1 + ql2h2 = (q12 (ax, - ax,) - (ax, - ax,)ql2 )h2 = - (qlxl + q2x)/12; 

112 H 12qi;: 812 =/12 8 12 (Hlql - H 2q2) - (aX,(h3(H3q3 - H 2q2) ))x, =x, - (aX,h2(Hlql - H 3q3) )x,=x, 

- H 2q2 + Hlql . 
X2 X2 
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APPENDIXB 

In this appendix we prove some of the properties of 
the extended Hilbert transform presented in Proposition 
3.2. 

(1) i dX2 812H 12 g12 = HlglI , 

since 

i dX28121T-1 i dy[y- (XI +xz) 1 IG(y,xI-xZ ) 

= 1T- 1 i dy(y - 2x1) -IG(y,O) 

=1T- 1 i dy(y- Xl)-IG(2y,O) = H1gII , 

g(XI,X2 ) '* G(x1 + X2,xl - x2) . 

(2)H12a(xj ) Hja(xj ), j=1,2, 

since 

H 12a(x1) 

=1T- 1 i dy[y- (XI +xz) ]-Ia(~ + XI ;Xz) 

=1T- 1 i dy(y-xlf-:-Ia(y) =Hla(x l )· 

APPENDIXC 

In order to prove that Eq. (3.55) holds, we must first 
derive Eqs. (3.57). 

(a) Derivation of Eqs. (3.57): 

.2"(<I>lz,qi; (Xl + X2) )/12 

= (q12 (Xl + Xz) )+hz - i(ql2 (Xl + Xz»)-H I2 hz 

+ (qji - iqlZ H 12 )/'2 (XI + X2) 

- (qii 112 - iqI2 H 12/12)-(x1 +xz)· 

Then, using Eqs. (A3a), (A3c), and (A3b), we obtain 

.2"(<I>I2,qI2 (Xl + XZ) )/l2 

= iqI2(Hl2 /12)-(X I +Xz) -Hlz Ii; (XI +x2») 

=iqI2(HI2 (XI +x2 ) - (XI +x2)-HIZ )hz, 

which is Eq. (3.57a) 
Equation (3.57b) is a straightforward generalization 

of equation 

[H,x]/= ~ r dx'/(x'). 
1T JR 

In order to prove Eq. (3.57d), we first prove that 

(H12(x l +x2 )- - (XI +x2 )-H12 )(8~2hz) = Cs ' (Cia) 

Cs '* ~ r dX1 dxz 8l2 ( ax + ax ) 
1T JR2 I 2 

= ~i dx a (S~I (_l)S-laS-I-la l 1') 
Z .x, £.. X,.x, J 12 , 

1T R 1=0 '" =.x, 
(Clb) 
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(HI2 (X l +X2)- - (XI +x2)-H12)8~Jl2 

= HI2l dX3 [ (Xl + x3)8~J32 - 8~J!3 (X3 + X2) ] 

i dx3[ (XI + x3)H328~zhz 
- (HI38~Jt3) (X3 + X2)] 

=HI2 « -l)S(S(a~;132)"3=X' 

+ (XI +Xz)(a~,h2)"3=",) 

s(a~; 113)X,=x, - (XI +XZ)(a~/I3)x, ",) 

( - l)S(S(H32 a~; 132)",=x, 

+ (Xl +x2)(H32a~,h2)x'="2)+s(H13a~, 113)X,=x, 

+ (XI +x2)(H13a~/13)x,=x" 

where we have used Eq. (3.16e); using now (3.16d) we ob­
tain 

[HIZ,(XI +xz)]( -ly(a~,hz)x, x, - (a~,h3)x,=x,)' 

and Eq. (3.57b) finally leads to Eq. (Cl). 
Equation (3.57d) directly follows from Eq. (CI) when 

liZ = K iq, since Eq. (3.57e) holds. 
(b) Derivation ofEq. (3.55): 

[
£ K(n) .... (m.ll] Ul2 12 ,112 d 

= ItO( _2i)IC)[<I>~2-lqI28~2,<I>;;qI2(XI +X2)]d 

= Ito ( - 2i)IC)( <I>~2+ m-/[ ql2 8~2.qI2 (XI + X2)]d 

n I 

+ ;<1>;; L <I>~2 1- rql2 [HI2.(X1 + X 2 ) -] 

r= I 

X <1>;; Iql2 8~2 ) • 
having used the fact that <I> 12 is a strong symmetry of q 12 h 12> 

Eq. (3.57a) and Eq. (2.8) of Ref. 5. Equation (3.28) and 
equation [8i2,(X I + XZ)]I 281.1.81,/ = I if 1= 1 and ° if 
1 =1= I, then yield 

4inK i~ + m - 1) 

+i i 1/'.f( -2i)1(~)(2i){r . 1)<I>~2-I+m-rqI2 
I=Or=lj=O J 

X [H12,(xl +X2 ) J(8ii jKg- 1
-j» =4inKi~+m-l). 

for Eq. (3.57d) . 
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It is shown that for any local Lie group G of transformations in R XR n there exist differential 
systems of the form x(m = f(t,x, ... ,x(m I). which are symmetrical under G. The order m of 
these systems is related to r, the number of essential parameters of G. -

I. INTRODUCTION 

In a recent paper! it was shown that for normal systems 
of differential equations of type 

x(m = f(t,x,x,. .. ,x(m - ! )xER", (1) 

the maximal number of its pointlike symmetry vectors is (i) 
infinite, when m = 1; Oi) not greater than rP + 4n + 3, 
when m = 2; (iii) not greater than 2n2 + nm + 2, when 
m > 2. Since the number 2n2 + nm + 2 increases without 
limit with '!!, the question arises of whether or not it is possi­
ble to find a system of type (1) symmetrical under a given 
group G, for a sufficiently high value of '!!. We prove that the 
reply to this question is affirmative. Our result is local, in the 
sense that the function f of (1 ), whose existence we prove, 
will be, in general. only locally defined. 

Note that since a first-order (m = 1) system always 
possesses an infinite number of pointlike symmetry vectors, 
one could naively expect to find for any G a first-order sys­
tem possessing G among its symmetries. That this is not gen­
erally possible is seen if G is, for instance, a group acting 
transitively on the (t,x,x) space. Foran example see Part (1) 

of Sec. III. 
Note also that the construction given here does not 

guarantee that G is the maximal group of pointlike symme­
tries GM of (1), but only that GC GM · 

II. MAIN RESULT 

Assume that Si (t,x), i = 1, ... ,1', is a basis of generators 
of G. Calling S~ the e-order extension of Sj we have2 

r 

[Sje,s]'] = L CjjkSke, 
k 1 

e = 0,1,2, ... , ;,j = 1, ... ,1', (2) 

where Cijk are the structure constants of G associated with 
the basis {Si (t,x)}. On the other hand, the necessary and 
sufficient condition in order that G be a symmetry group of 
equations ( 1) is2 

s}m(x(m - f) Lm ~ f = 0, ; 1, ... ,r. (3) 

Conditions (3) indicate that the manifold M m of 
(t,x, ... ,x(m) space defined by Eq. (1) is invariant under the 
action ofthe vector fields s~m, ... ,s~m. We are going to prove 
that given G, one can find a sufficiently high m such that, for 
a certain f, Eqs. (1) do possess G as a group of symmetries. 

The idea of the proof is to eliminate the possible transitivity 
ofthe action of G' on De = {( t,x, ... ,x(e )} forlow values of ~ 
by making ~ bigger and bigger. This is made possible, essen­
tially, due to property (2), implying that at any point of De 
the vector fields s}e generate an involutive distribution !?lJe 
(Ref. 3) of dimension not greater than r. To avoid singular­
ity points where the dimension of the distribution !?lJe 
changes value, we restrict conveniently the domain lY in 
order that in this restricted domain jje, dim(!?lJe) keeps a 
constant and maximum value de. Of course 
dim !?lJe- 1 = de - 1 in the projection of jje along the x(e 

axis. See Ref. 4 for details. 
Therefore let s\e, ... ,s~: be a local basis of!?lJe. Note that 

it might be necessary to renumber the generators of G for the 
basis of !?lJ e to appear in this way. Conditions (3) for the 
symmetry of ( 1) under G now take the form 

f)1 =0, i= 1, ... ,d. 
x(m =f 

Writing Eq. (1) in the implicit form 

E(t,x, ... ,x(m) = 0, 

(4) 

(5) 

where E is a vector of m components, Eqs. (4) take the form 

Sim(E)E~O = 0, i = 1, .... dm • (6) 

A sufficient condition necessary for Eqs. (6) to be satisfied is 
that the m components of the function E of ( 6) be local first 
integrals ofSl m, that is. ifE satisfies 

(7) 

But according to the Frobenius theorem3 the number of lo­
cally independent first integrals I of an involutive distribu­
tion like !?lJm is dJ = dim(Dnt) - dm = 1 + n( 1 + m) 

- dm • Now, sincedm .;;;ritfollows thatdI>n for sufficiently 
large m. Assuming dr>n. in order to satisfy (7) it is suffi­
cient to choose 11 first integrals I ofs}m such that they satisfy 
the additional requirement 

rank --' = n, k = 1, ... ,n. ( aI.) 
aXkm 

(8) 

Condition (8) guarantees, via the implicit function theorem, 
that the system of differential equations 

(9) 
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can be locally written in the normal form (1). The symbols 
CIt""Cn in Eqs. (9) are real numbers, and they appear since 
Eqs. (7) are clearly equivalent to 

s~m(E - C) 0, (10) 

for any CERn . Let us see that condition (8) can be satisfied if 
m is chosen such that 

(11) 

In fact, if (8) were not satisfied by an appropriate choice of 
/I, ... ,ln between the dl first integrals of ~m, we would have 

~ a/I 
£.. ak 3 (m 0, i = I,2, ... ,d1 , 

k= 1 cJXk 

(12) 

where ak are functions on Dm . 
But (12) implies that the vector field Z defined by 

n a 
Z= 2: ak - (13) 

X= I axlm 

has /l, ... ,ld
J 

as first integrals. Therefore ZE~m and we can 
write 

d", 

Z= 2: Cis~m, (14) 
i=1 

for certain functions c; defined on Dm. 
Projecting (14) on the vectors 

a a a a d", -a ; -;-; -;(i" , ... , , 0 = 2: C;s~m - I. (15) 
t cJX; cJXI ax~m-I 1=1 

But ( 15) and ( 11 ) are contradictory since from the fact that 
Slm, ... ,s~: are a basis of ~m it immediately follows (note 
that Sf - 1 does not depend on x(m) that Slm - t, ... ,s~m - 1 

generate~m-t. Hence by (16), dim ~m-I <dm and (12) 
is contradicted. Therefore (II) implies (8). 

It remains only to prove that (11) can always be satis­
fied by choosing m conveniently. But this follows from the 
fact4 that -

(16) 

Indeed, since the dimension is a positive integer, nondecreas­
ing by ( 16), and bounded by r. (the number of parameters of 
the group) it is obvious that for a certain m (12) holds. 
Furthermore, '!! satisfies -

m<r-dim(~o) + 1 =rt , (17) 

since the worst situation that can occur concerning (11) is 
that 

dim (5P S
) dim(5P s - 1

) + I, s<m, (18) 

in which case (17) would hold with the equal sign. 
Note that if we require m to be greater than (or equal to) 

a given k (k = 1,2, ... ) then the above considerations lead to 
the inequality 

(19) 

the equality sign being valid only when the sequence of di­
mensions dim (~k 1), dim (~k ) , ... is strictly increasing by 
1 at each step and condition ( 11 ) is fulfilled when 
dim(~m) = dim(~m I) = r. 
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Note also that calling r( G) the minimum integer such 
that for k>r( G), dim ( ~ k ) maintains a constant value, that 
is, dim(~k) dim(~k,> for every k,k '>r(G), by (11) we 
can say that for every m > r( G) there are systems of differen­
tial equations of order m invariant under G. 

Note finally that [see Eq. (11)] the construction given 
here actually assures the existence of n-parameter families of 
systems of type (1) invariant, for any value of the param­
eters, under G. Let us now see, with two examples, that con­
dition (11) is not necessary for the existence of individual 
systems of type (1) invariant under G. 

III. EXAMPLES SHOWING THAT CONDITION (11) IS NOT 
NECESSARY 

( 1 ) Let us take as G the Poincare group in R X R 2 (two 
spatial dimensions) . We shall see that (11) is not satisfied 
either for m 1 or for m = 2. Nevertheless, as has been 
shown elsewhere5 x = '0 is a second-order differential system 
(in fact the only one) invariant under the Poincare group in 
R X R 2. In fact the six generators of the group are 

a a a a 
Sl at' Sl + c = -;- ; S4 = XI -;- - X 2 -;- ; 

cJX; cJX2 UX I 
-

(Xj~+t~); i= 1,2. 
at ax; 

(20) 

Since dim(5Po) = 3 the group acts transitively on DO 
= (t,x\>X2)' 

The corresponding generators of the first extension of G 
are given by 

Sp !, Sp+; = a~; , 

S4
(l S·a .a 

4+ X I-. -X2-. , 
axz aX l 

(21) 

S(1 S ( . 2 1) a " a 
4+; = 4+1 + Xj - ~+xIXj~' 

uX; uXj 

One can immediately check that dim(~ I) = 5. Indeed, the 
singular points of 5P I are only those satisfying 1 - xi 
- xi = O. Therefore Dl = {(t,x1,xZ,xj ,x211 - xi - x~ 
1= O}. Here G I acts transitively in each of the two unconnect­
ed components of DI and also in the set 1 - xi - xi = O. 
Accordingly, it is impossible to find a single first-order sys­
tem of type (1) symmetric under G. 

The second-order extension of G is defined by 

a. S(2 _ a 
a ' 1+; --;-, 

t UX; 

S(I + ( "a "a ) 
4 -X2 aX

I 
+XI aX

2 
' 

(22) 

S(I+(3XX ~+(2Xx +X" )~) S j 1 3" 1 2 zXI 3" , 
cJX1 cJX2 

SO + (2X" + x x ) ~ + 3x" ~). 6 zX 1 I 2 3" zX2 3" 
cJX j cJXz 

We can see that dim ~2 = 6. Since dim ~2 = 6 
> dim ( ~ 1 ) 5 condition (11) is not satisfied. But from 
this fact one cannot conclude, in general, that there are not 
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systems of type ( 1 ), for m = 2, symmetrical under G. In fact 
the system i = 0 is a system invariant under G. 

Note that since dim ~2 = 6 and the group has six pa­
rameters it is clear that for k> 2 we will have dim (~k ) = 6. 
Therefore ( 12) is satisfied for every m > 2 and by the results 
of Sec. II we can say that there are two-parameter families of 
m-order (m > 2) differential systems symmetrical under G. 

(2) Let us take now as G the conformal group in R X R. 
(Note that the space is now only one dimensional.) 

The six generators of this group can be taken as 

a a a a 
SI = at; S2 = ax; S3 = t at + x ax ' 

a a a a 
S4 = t - + x - ; S5 = (t 2 + x2

) - + 2tx - , (23) 
ax at at ax 

S a 2 2 a 
6 = 2tx - + (t + x ) - , 

at ax 
and therefore the third-order extension of them will be given 
by 

S(3-~ 
1 - at' 

S2(3=~ 
ax' 

S(3=S -x~-2X~, 
3 3 ax ax 

s(3 =S (l-x2 ) ~-2X~ 
4 4+ ax ax 

( 4 ···· 3"2) a + -:xx-x ax' 

S(3 = S + (2x - 2xx2 ) ~ 
5 5 ax 

+ (2X - 2X3 
- 2Xt - 6xxx) ~ 

ax 

+ {- 6X(2X2 + xx) - 4x(t + 2xx)} ~ , 

S~3 = S6 + 2t( 1 - x2
) ! 

+ {2(1-x2
) - 2X(x + 3tx)} ~ 

+ {- 6X(2X + tx) - 4x(x + 2tx)} ~. 
ax 

From (24) it follows immediately that 

(24) 

dim ~o = 2; dim ~I = 3; dim ~2 = 4; dim ~3 = 5. 
(25) 

We see in (25) that condition (11) is not fulfilled for m = 1, 
m = 2, and m = 3. This implies, as we shall prove in Sec. IV, 
that there are no one-parameter families of differential equa­
tions of first-, secondo, or third-order invariant under this 
group. Nevertheless, as we show now, there is one (and only 
one) third-order differential equation invariant under G. 

Indeed, invariance under SI and S2 implies that the 
third-order equation will have the form 

x =/(x,x). (26) 

Invariance under S3 implies 
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" a/ - 2'f, x--
ax • 

that is, 

/= a(x)x2
, 

where a (x) is an arbitrary function. 
Invariance under S4 implies 

(1 - x 2 ) da - 6Xa = - 4xa - 3, 
dx 

and therefore, 

a(x) = (3x - b)/(x2 
- 1). 

(27) 

(28) 

(29) 

(30) 

Finally invariance under S5 implies b = 0. The resulting 
third-order differential equation is automatically invariant 
under S6' 

Therefore we have obtained the differential equation 

(31) 

which is the only one invariant under the conformal group in 
RxR. 

Note that since ~ 1 does not act transitively on the 
whole (t,x,x) space it is possible to have also first-order dif­
ferential equations invariant under G. This is precisely what 
happens with the two differential equations 

x = 1, x = - 1, (32) 

which are the only ones (of first order) invariant under G. 
Observe that the set {(t,x,x) 11 - x 2 = o} defines the 

singular points of ~ I, that is, the points where ~ 1 has (in 
this case) dimension 2. 

Although ~2 also has singular points, where its dimen­
sion does not attain the maximum value, it is easy to check by 
direct computation that there do not exist second-order 
equations invariant under the conformal group in R xR. 
(The generators Sf ,S~ ,S~ ,Sl2 imply x = 0, but this equation 
is incompatible with the two generators S~2 and S~2.) 

IV. n-PARAMETER FAMILIES OF EQUATIONS 
INVARIANT UNDER G 

The above examples show that condition ( 11 ) is, in gen­
eral, not necessary for the existence of isolated systems of 
order m invariant under G. We prove here that ( 11 ) is neces­
sary a~d sufficient for the existence of n-parameter families 
of equations, each of them being invariant under G. 

In fact, the necessary and sufficient conditions in order 
that the n-parameter family defined by 

E(t,x,x, ... ,x(m) = C, det( aE )#0, (33) 
ax(m 

be invariant under G are 

S}"'(E)IE=C = 0, i = 1, ... ,dm • (34) 

Since Eqs. (34) hold as identities in CeRn we must have 

S}"'(E) = O. (35) 

Let us see that (35) and 

dim(~m-I) <dim(~m) (36) 

are contradictory. 
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In fact, as explained in Sec. II, ifSlm, ... ,s~: is a basis of 
~m then Slm - I, ••• ,S~: - 1 is a basis of ~m - 1 • Therefore if 

(36) holds we must have 
dm 
~ (t (m-I)s(m-l 0 ~ Ci ,8, ... ,8 i =, 

;=1 

(37) 

where not all of the C; are equal to zero. 
Therefore 

d m (37) d", n a(E) (35) (38) 
~ c.s~m(E) = ~ c. ~ .',(m -- = 0, 
~ I I £.. I £.. 'f'lJ !I (m 

; = 1 ; = 1 j = 1 cJxj 

contradicting the hypothesis of det (a E/ axe m ) i= 0 imposed 
in (33). Note that this hypothesis concerning the determi­
nant is essential in order to be able to apply the implicit 
function theorem to the variables xlm, ... ,x~m and put Eqs. 
(33) in the normal form (1 ). To conclude, we give an exam­
ple of a one-parameter family of second-order differential 
equations invariant under the Poincare group in R X R. 

In this case, the generators of G can be taken as 

a a a a 
Sl=-' S2=-' S3=X-+t-. (39) at ax at ax 

The first and second extensions are given by 

and 
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S(I - a. S(I - a . s(I = S + (1 _ x· 2) ~ 
1 - at ' 2 - ax' 3 3 ax ' 

S(2- a . 
2 - ax' 

(40) 

S(2 - SO + ( 3 ... ) a 
3 - 3 - xx -. ax 

(41 ) 
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One can immediately see that 

dim ~o = 2, dim ~ 1 = 3. (42) 

Since the group has three parameters it is clear that 
dim ~k = 3 for any k;;;d. Therefore there are one-param­
eter families of differential equations of order m (for any 
m;;;.2) invariant under this group. Taking for simplicity 
m = 2, the symmetry of the equation 

x =1 (t,x,x) (43) 

under S 1 and S2 implies 

al =0, al =0 
at 'ax ' (44) 

that is, I (t,x,x) = g(x). The symmetry under the boosts S3 
implies 

- 3xg = dg (1 - x 2 ) ( 45) 
dx 

which leads, after integration, to the one-parameter family 

(46) 
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Integrable forms of the one-dimensional flow equation for unsaturated 
heterogeneous porous media 

P. Broadbridge8
) 

CSIRO Division of Environmental Mechanics, GPO Box 821, Canberra, ACT, 2601, Australia 

(Received 25 September 1986; accepted for publication 28 October 1987) 

The equation for the horizontal transport of a liquid in an unsaturated scale-heterogeneous 
porous medium is ao lat = A(X)a lax [C(o)ao lax] -A '(x)E(O)aO lax - A" (x)f(C + E)dO. 
A systematic search for Lie-Backlund symmetries leads to the requirement that 
C = a(b - 0) -2, as in the homogeneous (A = I) case. More generally, (A,E) may be 
((1 + mx)a, (1/a - ~)C) or (exp(mx), - 3C 12). In these cases the transport equation may be 
linearized and solved exactly. Examples of more complicated heterogeneous extensions are 
presented for the integrable nonlinear diffusion equations and for Burgers' equation. 

I. INTRODUCTION 

The general form of the nonlinear equation for the one­
dimensional horizontal transport of liquid in an unsaturated 
heterogeneous porous medium is 

ao = ~ [F(O,x) aO(x,t) + G(O,x)] , (1) 
at ax ax 

where t and x are time and space coordinates, 0 is the volu­
metric liquid content, and F and G are differentiable func­
tions of two variables. From the general results on Pfaff's 
problem,! there exists a (nonunique) potential function 
qt(O,x) and an integrating factor K(O,x) such that 

[F G] = _ K [aqt aqt]. 
, ao' ax 

In the context of porous media, qt is the (negative) potential 
energy per unit weightz,3 ofliquid due to capillarity and oth­
er interactions between the liquid and the solid medium, and 
K is the hydraulic conductivity or permeability of the medi­
um for a specific liquid. Thus Eq. (1) is the equation of 
continuity ao lat + avlax = 0, with the flux v satisfying a 
generalization of Darcy's law: 

v = - K(O,x) a'l'(O(x,t),x) . 
ax 

(2) 

In heterogeneous media, K and qt depend explicitly on both 
the moisture content 0 and the position x. 

The complicated nonlinear equation [Eq. (1)] is usual­
ly simplified by imposing reasonable restrictions on the func­
tions F and G. One commonly used simplification is the as­
sumption that soils at any two different locations have 
geometrically similar internal structure.4.5 From scaling 
analysis4.6 it then follows that 

K(O,x) = K. (0) [A(X) ]2, 

qt(O,x) = qt. (O)IA(X), 

(3a) 

(3b) 

where K. (0) and qt. (0) are the conductivity and potential 
functions at the surface x = 0, and A(X) is the geometrical 
scaling factor with A (0) = 1. Here, we are concerned mainly 

a) Present address: Department of Mathematics, La Trobe University, Bun­
doora, Victoria, Australia 3083. 

with scale-heterogeneous media,4 with A (x) twice differen­
tiable. The flow equation [Eq. (1)] then reduces to 

ao =A(X)~[C(O) ao] -A'(x)E(O) ao 
at ax ax ax 

-A "(x)[f (C(O) +E(O»)dO], (4a) 

where 

and 

d'l'. 
C(O) =K.­

dO ' 

dK. 
E(O) = qt.-, 

dO 

f (C+E)dO=K.qt •. 

(4b) 

(4c) 

(4d) 

Philip4 found that in the particular case K. ex: qt.- 2 and 
log ( - qt. ) ex: 0, Eq. (4) could be transformed to a nonlinear 
diffusion equation 

ap =~[D ap], 
at ax ax 

(5) 

with D an exponential function of P and P a logarithmic 
function of qt. In the physically relevant case of constant 
potential boundary condition and uniform potential initial 
condition, 

t = 0, x ~ 0, qt = qt i 

and 

(6a) 

t>O, x = 0, qt = qto, (6b) 

nonlinear diffusion equations may be transformed to a single 
ordinary differential equation (ODE) in which the indepen­
dent variable is the Boltzmann similarity variable 
qJ = xt -1/2. Although in this case the ODE must be integrat­
ed numerically, we still obtain interesting exact relation­
ships4 such as the flux at x = 0 being proportional to t -1/2, 

independent of A. 
Here we determine the class of model porous media 

(K. ,qt. ,A) for which Eq. (4) is integrable and for which 
exact solutions may be found. In Sec. II we assume that the 
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flow equation [Eq. (4)] possesses a Lie-Backlund symme­
try group. This leads to the restriction, as in the case of ho­
mogeneous media,7 that 

C = a(b - 0)-2, with a and b fixed. (7) 

However, more generally, A. may be either any power 
(1 + mx)a or any exponential exp(mx) with m and a fixed. 
In all such cases, E(O) must be a scalar multiple of C( 0). 

In Sec. III we transfonn each of the integrable flow 
equations of Sec. II to the exactly solvable nonlinear 
Fokker-Planck equation 

ap = i.lp-2 ap 1_ Sp-2 ap , (8) 
a" ay ay ay 

with p a function of"', " a multiple of t, S constant, and y a 
function of x. The efficacy of Philip's approach depends on 
the transfonned equation [Eq. (5)] being a conservation 
equation with the dependent variable P being a function of '" 
alone. The same applies to the dependent variable p of Eq. 
(8). Given the initial and boundary conditions (6), Eq. (8) 
may be solved by the quasianalytic method of Philip, 8 which 
in this case requires no more than the solution of a sequence 
of linear ordinary differential equations. 

In Sec. IV we consider more general types of heteroge­
neity and present some examples of exactly solvable hetero­
geneous defonnations of Fujita's nonliner diffusion equation 
and of Burgers' nonlinear convection-diffusion equation. 

II. DETERMINATION OF THE CLASS OF ADMISSIBLE 
SCALE-HETEROGENEOUS MEDIA 

The nonlinear diffusion tenn in ( 4 ) is commonly simpli­
fied by the Kirchhoff transfonnation 

U = J qO)dO + const. (9) 

Then, Eq. (4) becomes 

~ =A.(x)C a
2
u -A. '(x)E~ 

at ax2 ax 

-A."(x)C J (1 + ~)dU. ( 10) 

In this section C and E are treated as functions of u; 
C = C (O( u») and E = E (O( u»), unless other arguments are 
shown explicitly. 

We now assume that Eq. ( 10) possesses a one parameter 
Lie-Backlund symmetry group, 

~ (.): u_u~s) = fj?(s;t,x,uo,ul, ... ,uj , ... ), 

where uj = [a / ax F U (x,t), and such that ~ (0) is the identity 
map and ~ (s) ~ (u) = ~ (s + u). Furthennore, we assume that 
in infinitesimal fonn, 

u. = U +sL(t,x,uO'U I,U2,U3) + 0(S2). (11) 

The landmark work of Anderson and Ibragimov9 recog­
nized that some generality is lost in restricting the generating 
function L to depend only on derivatives uj up to some finite 
orderj = n. However, for finite n, a direct method exists for 
detennining the full algebra of symmetry generators. Fur­
thennore, in the analysis of Eq. (1) it seems reasonable to 
consider n = 3, since for homog~neous media an extension 
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to n > 4 does not yield any new nonlinear diffusion equa­
tions 7 or nonlinear diffusion--convection equations. 10 

Since (11) is presumed to be an infinitesimal symmetry, 
for every solution u(x,t) of (10), 

Dtu. - A.(x)C(u. )(Dx )2U. + A. '(x)E(u. )Dxu. 

+A. tI (X)C(u.)J(I+ E(U·»)dU. =O(sZ), (12) 
qu. ) 

where Dt and Dx are, respectively, the total t derivative and 
total x derivative operating on functions/(t,x,uo,ul, ... ,uj , ... ) 

on an infinite-dimensional manifold: 

a/ '" a/ a/ '" a/ 
Dx/=-+ L -Uj+I, Dt/=-+ L -Ujt · 

ax j=O aUj at j=O aUj 

Since U is presumed to be a solution to ( 10), Ujt is taken to be 

(! Y [A. (x)Cu2 - A. '(x)Eu l 

-A. "(x)C J (1 + ~)dU}. 
The Us terms in (12) are immediately of order sZ, and 

there remains a polynomial equation in U4 whose coefficients 
depend on t, x, and uj ; j < 4. This and subsequent polynomi­
als have been manipulated using the algebraic software 
package REDUCE. II 

Setting u~ tenns in (12) to zero [plus O(sZ)], we obtain 

a2L 
-=0. 
au~ 

Progressively balancing U4U3' U4U2' and U4UI tenns, we ob­
tain 

and 

implying 

L = U3 g(t,x)C 3
12 + H(t,x,U,UI,U2)' (13) 

for some functions g and H. Setting the remaining U4 tenns to 
zero, we deduce thatg = A. 3/2 P(t) for some function P. We 
now substitute (13) in (12) and consider (12) as a polyno­
mial equation in U3. Progressively balancing u~ and U3U2 
tenns, we obtain a 2 H / au~ = 0 and 

a
2
H = 2. dC CI/2pA. 3/2. 

aU2 aUI 2 du 

Therefore, 

H= U2(2. dC C t /2pA. 3/2U t +J(t,x,U») + Q(t,x,u,u t ), 
2 du 

for some functions J and Q. Now the balance of u3uf tenns in 
(12) leads to the requirement 

2(d 2C /du2) dC /du 

dC/du C 
implying C = u(u + V)2, with u and v constant. By invert­
ing (9), this is equivalent to 

C=a/(b-0)2 (a,bconstant). (14) 
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Naturally this form of ditrusivity is demanded in the special 
case of homogeneous (A = 1) nonlinear diffusion, as dem­
onstrated by BIuman and Kumei.7 Previously, exact solu­
tions to the equation 

a() a [ a a()] 
at = ax (b - ()2 ax 

had been developed by Fujita,12 Knight and Philip,13 and 
Rosen. 14 Now, it is known15 that Lie-Backlund symmetries 
exist also for a scale-heterogeneous porous medium equation 
[Eq. (4) ] with A = 1 + mx, and it remains to determine the 
full class of admissible scale functions A (x) . 

In the following analysis, we assume that C = u2
, since 

u = 1 after a suitable rescaling of the t coordinate and v = 0 
after a suitable choice of the constant of integration in (9). 
Setting U3UI terms in (12) to zero, we obtain 

_ 3PA 'A 1/2 dE C 3 /2 _ 2A.C aJ + 2 dC J = 0, 
du au du 

implying 

J = -l..A 'A 1/2pU2 f..!.. dE du + N(x t)u2 
2 u du " 

for some function N. Then, by balancing the remaining U3 
terms in (12), we obtain 

0= - 4...1. 3/2 aN + 4...1. 1/2A.'N + U 2U-1 (dP) 
ax dt 

_ 3PA."A. 2U _l..P(A ')2Au _ 6PA" ...1.2 E 
2 u 

+ 3P(A ')2...1. E + 6PA."A 2 J..!.. dE du 
u u du 

- 6PA" ...1. 2 f E du - 3P(A. ')2...1. f..!.. dE duo 
u2 u du 

A balance of u-independent terms in the above leads to the 
requirement that 

N = No(t)A.(x) , 

for some function No. A balance of u-dependent terms im­
plies 

2 1 (dP) A 2 (A" AI) 
E(u) = -3P dt (A,)2- u (...1.')2+2' 

(15) 

Since E is a function of u alone, it follows that 

A" A I(A ')2 = a l (constant). (16) 

Therefore A is restricted to the form 

A(x) = (l + mx)a 

Ill. SOLUTION OF ADMISSIBLE SCALE· 
HETEROGENEOUS FLOW EQUATIONS 

A. The case of the exponential scale factor 

First we consider the special case (A,C,E) 
= (ernx,a(b - () -2, _ 3/2a(b _ () -2) corresponding to 
a I = 1. From the definitions (4b) and (4c), it then follows 
that 

dInK. 3 

din 1'1'.1 - 2' 
so that K. ex: 1'1'.1-3/2

• Now (4b), (14), and (18) imply 

- 1'1'.1-3/2 d 1'1'.1 ex: (b () -2 d(). (18) 

Accordingly, we assume 

K. «() = u(b _ ()-3 (19) 

and 

'1'. «() = - !(alu)(b - ()2, for some constant U. 

(20) 

Relation (20) could represent a real soil only over a limited 
rangeof(). Following (19) and (20), the flow equation [Eq. 
(10)] becomes 

a() = emx ~ [a(b _ () -2 a()] 
at ax ax 

Now, let 

+ 3 mx (b ()-2 a() -me a - -
2 ax 

+..!.. am2emX(b _ () -I. 

2 

P= - [(2u) 1/2IaJI'I'11/2 

=a-1/2e (l!2)mx«()_b). 

Then (21) transforms to 

ap = ap [ -2.Ei!...] +..!.. mp-2 ap . 
at ax P ax 2 ax 

(21) 

(22a) 

(22b) 

(23) 

Equation (23) is known to possess an infinite hierarchy of 
Lie-Backund symmetries. 1O In fact, it may be transformed 
to the linear diffusion equation, as shown here in the Appen­
dix. Some exact solutions of Eq. (23) have already been ap­
plied to the flushing of oil reservoirs, 10,16,17 to the transport 
of a solute subject to adsorption, 18 and to rainfall infiltration 
in unsaturated soil. 19 However, these solutions, when trans­
formed back to a concentration field ()(x,t) via (22b) , do not 
satisfy boundary and initial conditions which are particular­
ly relevant to heterogenous porous media. Nevertheless, the 
relevant initial and boundary conditions [Eq. (6)] are ex­
pressed easily in terms of p: 

t=O, x~O, P=Pi= -{(2u)1/2/alj'l'ijI/2 (24a) 

[m constant and a = 0- al)-I], (l7a) and 

or 

A(X) = exp(mx) (in the case a l = 1). (l7b) 

Further restrictions are not warranted since an appropriate 
formofEq. (1) may be integrated whenever A satisfies (17a) 
or (l7b). 
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t>O, x=O, P=Po= -[(2u)1/2Iall'l'oII/2. (24b) 

Nonlinear Fokker-Planck equations such as (23), subjectto 
(24), have previously been used to model unsaturated flow 
in homogenous media. In the latter application, the convec­
tive term would be due to gravity20 rather than heteroge­
neity. Following the quasianalytic method of Philip,8 we 
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first reexpress Eq. (23) in the form 

-~ (P xdp=~+J...m(p-I-p;-I). 
at J1Ti axlap 2 

(25) 

Then, we seek a small-t solution in the form 

"" x(p,t) = L tpj(p)til2. (26) 
j=1 

The boundary condition (24b) transforms to tpj (Po) = 0 for 
allj and the initial condition (24a) is then automatically 
satisfied. After substituting (26) in (25), the balance of 
t -1/2 terms implies 

(P tpl dp = _----!.2p_-_2 
JPi tp; (p) 

(27) 

In the absence of the nonlinear convective term in (23), the 
series (26) would terminate atj = 1 and the solution of (23) 
and (24) would be equivalent to the solution of the nonlinear 
diffusion problem, 

ap a [D( ) ap ] . h D -2 -=- P - ,WIt =p, 
at ax ax 

(28) 

and subject to (24). This is the nonlinear diffusion problem 
that (21) and (22) reduce to in the case of a homogenous 
medium (m = 0). Unlike the case of general diffusivity,8 
when D(p) =p-2, this problem may be solved exactly in 
parametric form by transforming (28) to a single linear ordi­
nary differential equation.12.IS The subsequent balance of 
t k12 terms (k = 0,1,2, ... ) in (25) leads to a sequence ofinho­
mogeneous ordinary intergrodifferential equations,8 the first 
two of which are 

[ tp2 dp = p-2[ tp; (p)] -2tp i (p) _ ~ m(p-I -p;-I) 

and 

[ tp3 dp = jp-2[ tp; (p>] -2tp i (p) 

_ jp-2[ tp i (p) ]2[ tp; (p)] -3. 

Integrating each side of the conservation equation [Eq. 
(23)] from x = 0 to x = 00, we obtain 

a L"" - (p -p;)dx = Wo - Woo, 
at 0 

(29) 

where Wo and w"" are, respectively, the values of 
~mp-I - p-2(aplax) at x = 0 and at x = 00. From (24a), 
Woo = - !mp;-I. Now, 

1 -I _2apl Wo= --mpo -Po -
2 ax .><=0 

1 -I -1/2Ka\fl1 --mpo -a -
2 ax .><=0 

[by (19) and (22)] 

where Vo is the physical flux at x = O. We may carry out the 
integration in (29) by parts and assume (26) to obtain 

625 J. Math. Phys., Vol. 29, No.3, March 1988 

Vo = 1St -1/2 +~ a l12m[po-I -p;-I] + f Aj t(1I2)j-l, 
j=2 

(30) 

with 

Aj = ; al/2 J:o tpj(p)dp. 

The sorptivity S is the same as that for the homogeneous 
(m = 0) soifl 

S = a l
/
2 [0 tpl dp. (31) 

However, unlike the model [Eqs. (5) and (6)] of Philip,4 

this model predicts that Vo is not proportional to t - 1/
2

, since 
the order t (I/2)j-1 corrections are nontrivial and propor­
tional to the (j - 1) th power of the strength m of the hetero­
geneity. 

The radius of convergence of the power series in (30) 
has not yet been established. However, by analogy with the 
gravitational time scale tgrav of gravity-assisted infiltration, 3 

for heterogeneity-affected flow, practical convergence is ex­
pected until t is of the order of the heterogeneity time scale: 

t
het 

= S2a-Im -2(pj-1 - PO-I) -2. (32) 

The convective term in (23) is of the form - (dH 1 
dp) (aplaz) , whereH(p) =! mp-I. In the case ofa porous 
medium whose texture becomes finer with increasing depth, 
m <Oandd 2H Idp2>Oin thedomainp; ::;;P::;;Po<O. It then 
follows from a general result of Philip22 that, at large t, 
p(x,t) approaches a traveling wave solutionp = g(x - Ut), 
with speed 

U = !m(po- 1 - p;- I )/(po - p;) = !ml(pop;). (33) 

In the particular case of Eq. (23), the function g is known 
exactly. 18,19 Although a traveling potential wave develops in 
this model, there will not be a large-t asymptotic traveling 
concentration wave, since in heterogeneous media fJ is not a 
function of \fI alone. 

B. The case of the power law scale factor 

We now consider the class of models in which 
A = (1 + mx)Q and C = a(b - fJ) -2. We assume that dP 1 
dt = 0, so that (15) reduces to E = (a-I - ~)C. Corre­
sponding to (18), we now have 

K. a: 1\fI.llla-312. 

Now, (34), (4b), and (14) imply 

- I \fl. Ilia - 3/2 d I \fl. I a: (b - fJ) -2 dfJ. 

We assume 

K. = (7(b _ fJ) - a, 

and 

\fl. = [al(7(1 - a 2 )](b _ fJ)a2 - I, 

with (7 constant and 

a 2 = (2 - 3a)/(2 - a). 

(34) 

(35) 

(36) 

(37) 

Equation (36), like Eq. (20), could represent a real soil only 
over a limited range of fJ. In applications to soil physics, we 
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require a > 2 or a < 0, since the physics demands that \II. 
must be negative and that dK.I dB must be positive as \II. 
approaches zero.3 One exception is provided by the case 
a = l, in which the absence of the finalterm in (4) ultimate­
ly allows more freedom in the function K. (B) than that indi­
cated in (35).15 

The flow equation [Eq. (10)] now takes the form 

aB = (1 + mx)a ~ [a(b _ B) -2 aB] 
at ax ax 

+ ama(b - B) -2(1 + mx)a - 1 [~_l..] aB 
2 a ax 

+a(a-l)m2a(b-B)-H- ~] (1+mx)a-2. 

(38) 
We define a new dependent variable, 

-1/2 [ u 2a ] 112 -lIa
l
\"11I2 _ Iia p=-a --- .... 

a a-2 
(39a) 

=a- 1/2 (O-b)(1 +mx)l- a12. (39b) 

Equation (38) becomes 

ap =(1+mx)l+aI2~[(1+mx)l-a/2p-2 ap ] 
at ax ax 

+ am (1 + mx)p-2 ap . (40) 
ax 

Now let 
y = m- l ln(1 + mx). (41) 

Equation (40) then reduces to 

ap =~ [p-2 ap] + l..amp-2 ap . 
at ay ay 2 ay 

(42) 

All of the previously mentioned techniques for solving Eq. 
(23) also apply to Eq. (42). The initial and boundary condi­
tions [Eq. (6)] transform to 

and 

t=O, y~O, 

-1/2 p=pj = -a 

X [(ula)(2al(a - 2»)] 112 - lIal\llj 1112 - lIa 

t>O, y=O, 

P =PO = - a- 1/2 

X [(ula)(2al(a - 2»)] 112 - lIal\llol1l2 - lIa. 

Asmall-tsolutiony(p,t) may be constructed as in (26). For 
a porous medium whose texture becomes finer with increas­
ing depth, amI = (d)"1 dx) x = 0) < 0, and there will develop 
an asymptotic large-t traveling potential wave 
\11= G(y- Ut), with U=amlpoPj' From (41), this im­
plies that at large t and for fixed 0, x (O,t) increases exponen­
tially in time. The above analysis, which ignores the effect of 
gravity, can apply to vertical infiltration3 only up to times of 
the order of tgrav = 3 2 [K. (00 ) - K. (OJ) ] -2, where OJ and 
00 are initial and final volumetric moisture contents. The 
large-t heterogeneity-driven traveling wave or exponentially 
accelerated profiles could begin to develop without being 
significantly modified by gravity only if the heterogeneity 
time scale were significantly less than the gravitational time 
scale. 
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IV. MORE COMPLICATED FORMS OF HETEROGENEITY 

Equation ( 1) is much more general than Eq. (4a), since 
it admits heterogeneity that is more complicated than the 
scale heterogeneity represented by Eqs. (3a) and (3b). One 
approach to constructing integrable examples of a more gen­
eral type is to find smooth deformations of known integrable 
homogeneous models. This possibility has by no means been 
fully explored, but some examples are given in this section. 

A. Heterogeneous extensions of Fujita's equation 

The integrable scale-heterogeneous models introduced 
in Sec. II may be viewed as smooth deformations of the inte­
grable nonlinear diffusion equation [Eq. (28)] previously 
studied by Fujita 11 and others.12-14.23 This same equation 
also has integrable heterogeneous relatives of a more exotic 
nature. For example, when 

F=a[b- (mx+ l) YO]-2(mx+ 1)2 

and 

G = aym[b - (mx + IVO] -2(mx + 1)fJ, 

Eq. (1) transforms to (A3) by taking 

W= [(mx+ l) YO-b](mx+ 1)y-1 

and 

y= (l_y)-Im-I[(mx+ 1)I-Y-l]. 

For y < ° and mx> 0, none of the above functions have sin­
gularities provided b is greater than the water content Bs at 
saturation. 

B. Heterogeneous Burgers' equation 

One integrable heterogeneous deformation of Burgers' 
equation is 

ao = ~ [(mz + 1)2D. ao _ k(mz + 1)2(fJ -OY] , 
at az az 

(43) 

with D., m, and k fixed. For m = 0, (43) is the usual 
Burgers equation, which has already been applied to field 
soils with distributed macropores.24 After defining 

Z=z+l.., 
m 

w=~(z+l..) (O-Oj), T=tm2D., 
2D. m 

Eq. (43) transforms to 

aw =Z2 a
2
w -4Zw aw . 

aT az 2 az 

Now through the transformation 

1 1 au 
W= --z--

2 u az' 

( 44) becomes 

[u~- au] [au _Z2~] =0. 
az az aT az 2 

(44) 

(45) 

(46) 

The transformation (45) is a modification of that used by 
Forsyth,! Hopf,25 and Cole26 to solve the homogeneous 

P. Broadbridge 626 



                                                                                                                                    

Burgers equation. From Eq. (46), it is sufficient that u satis­
fies the linear equation 

!!!... _ Z2 a2
u = O. 

ar az 2 
(47) 

Equation (47) is amenable to solution by standard integral 
transform techniques. 

Similar heterogeneous extensions of higher order equa­
tions of the Burgers hierarchy27 have not yet been systemati­
cally investigated. However, from no-go theorems for homo­
geneous media,28 an extension to higher spatial dimensions 
seem improbable. 
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APPENDIX: REDUCTION OF THE FOKAS-YORTSOS­
ROSEN EQUATION TO THE LINEAR DIFFUSION 
EQUATION 

The convective term may be removed from Eq. (23) by 
the transformation (x,p) -> (y,w): 

w =pe- mx12
, 

y = (2/m)(emx12 
- 1), 

so that 

aw = i. [D(W) aw] , 
at ay ay 

with 

D(w) = w- 2
• 

(Al) 

(A2) 

(A3) 

(A4) 

The general nonlinear diffusion equation [Eq. (A3)] may 
be simplified by applying the Kirchhoff transforma­
tion,3,13,29 

w= f D(w)dw, 

so that 

aw =D(W) a2 w . 
at ay2 

In the case of D(w) being given by (A4), we take 

W= -l/w, 

so that 

aw = W 2 a2 w 
at ay2 . 
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(A5) 

(A6) 

(A7) 

(A8) 

Equation (A8) may be transformed to the linear diffusion 
equation 

aQ a 2Q 
Tt= aX2 ' 

(A9) 

using the correspondence of Vein, 23,30 

JQ . 
W=-, y=Q. 

aX 
(AW) 

Given any solution Eq. (A9), we may successively apply the 
inverses oftransformations (AW), (A7), (A2), and (A1) 
to obtain a parametric solution X -> (X,p) to Eq. (23). 
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In this paper the results of a search for complex bilinear equations with two-soliton solutions 
are presented. The following basic types are discussed: (a) the nonlinear Schrodinger equation 
B(Dx, ... )G·F= 0, A(Dx,Dt )F·F= GG*, and (b) the Benjamin-Ono equation 
P(Dx, ... )F·F* = 0. It is found that the existence of two-soliton solutions is not automatic, but 
introduces conditions that are like the usual three- and four-soliton conditions. The search was 
limited by the degree of A = 2, and by degree of P<;4. The main results are the following: (1) 

(iaD! + DxDt + iDy + b)G'F= 0, D~F'F= GG*; (2) (D~ + aD; + iDt + b)G'F = 0, 
D D F·F=GG*· (3) (iaD 3 +D2 +iD )F'F* =0' and x y , x x t , 

(4) (DxDt + i(aDx + bDt ))F'F* = 0. 

I. INTRODUCTION 

This is the fourth in a series of papers devoted to search­
ing for bilinear equations having three-soliton solutions 
(3SS's). We have previously discussed single bilinear equa­
tions! P(Dx,Dp ... )F·F= 0, and pairs ofequations,2,3 main­
ly of type B(Dx,Dt)G'F= 0, A (Dx,Dt )(F'F + G'G) = 0, 
where A is quadratic and B either odd2 or even.3 

In this paper we will consider complex bilinear equa­
tions. The parameters in the previously mentioned systems 
could also be complex, but their complexity did not play any 
special role, since complex conjugates never entered. For the 
present systems complex conjugation is used explicitly. 
Since the complex parameter has two real degrees of free­
dom it turns out that we obtain analogs of the three- and 
four-soliton conditions (3SC, 4SC) already when we try to 
construct a 2SS. 

We will now go through the types of equations that we 
will discuss in this paper. 

A. Nonlinear SchrOdinger equation 

The most famous complex integrable system is of course 
the nonlinear Schrodinger equation (NLS) 

iYt + Yxx + IYI2y = 0. (1) 

With the dependent variable transformation Y = G IF, F 
real, (1) is satisfied if 4 

(D~ +iDt)G'F=O, 

D~F'F=GG*, 

(2a) 

(2b) 

where Dx and Dt are the usual Hirota derivatives. This is an 
example of the class of bilinear equations 

B(Dx,Dp ... )G·F= 0, 

A (Dx,Dp ... )F·F= C(Dx,Dp ... )G·G *, 

with the properties 

[B(X,T, ... )]* = B( -X*, - T*, ... ), 

A(O,O, ... ) = 0. 

(3a) 

(3b) 

(4) 

(5) 

Furthermore, A can be assumed to be even with real coeffi-

cients and the polynomial C should also satisfy (4). The 
overall coefficients of A, B, and C are unimportant. 

The 1 SS for (3) is given by 

F= 1 + Ken+ n*, G = en, 

where 

n = px + Ot + ... + no, 

K- C(p-p*,O-O*, ... ) 
- 2A( * 0 0* )' p+p ,u+u , ... 

(6) 

(7) 

(8) 

and the dispersion relation between the (complex) param­
eters p,O, ... is given by 

B(p,O, ... ) = 0. (9) 

Note that a formally quadratic term appears in F already for 
the ISS [cf. (11) and (20) in Ref. 3]. 

The NLS equation has been generalized in various di­
rections. The result presented in Ref. 4 included a cubic 
term, the equations can be scaled to 

(iyD! +/3D~ +iDt)G'F=O, (2a') 

together with (2b). Here /3 and yare real constants. The 
two-dimensional nonlinear Schrodinger equation (2D NLS ) 
(or Benney-Roskes or Davey-Stewartson equation) is giv­
en by 

iU t - /3uxx + yUyy + 81ul 2u - 2uv = 0, 

/3vxx + YVyy -/38(luI 2)xx = 0. 

After the change of dependent variables, 

u = G IF, v = 2/3(ln F)xx' Freal, 

( 10) goes over t05,6 

(iDt -/3D; +yD;)G'F=O, 

(/3D; + yD;)F'F= - 8GG*, 

(10) 

(11 ) 

(12) 

which has N-soliton solutions of the same type as NLS. Re­
dekopp's equations 

(13) 
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which are also related to Langmuir waves, yield with (11) 
({3 = - 1) a singular limit of (12),7 

(iD,+D;)G'F=O, DxD,F·F=GG*. (14) 

Tajiri8 has considered the "coupled Higgs field" equation, 
which is as in (10) and (12) except that iu, is replaced by 
- cu in (10) and iD, by - cin (12). This system also has 

N-soliton solutions (NSS). Higher-dimensional generaliza­
tions of the above equations have NSS only if extraneous 
conditions are imposed on the parameters.9,IO 

As an equation with a bilinear form of the above type 
that does not have NSS's we have the Zakharov equations 

iE, +Exx =nE, nil -nxx = (IEI2)xx, (15) 

which, after a transformation similar to (11), yield II 

(iD,-D; -b)G·F=O, (D;+D;)F·F=GG*. 
(16) 

However, this equation does not have 2SS of the standard 
type,12 and other tests indicate also that it is probably not 
integrable. 13 (The other two systems discussed in Ref. 11 are 
also not integrable.) 

When the bilinear equations (2), (12), and (16) are 
derived there is a possibility of an additional "decoupling 
constant," so that one can as well take 

[B(Dx,D" ... ) + d ]G'F= 0, 

[A(Dx,D" ... ) + d ]F'F= GG*, 

(17a) 

(17b) 

as the bilinear form. The (real) constant d is related to the 
boundary condition of the soliton and if it is nonzero then the 
ISS is different from (6): one obtains the so called "enve­
lope-hole soliton"s,14 by 

F= 1 + en, G=gei8 (1 +en+ iD ), (18) 

where n is as in (7), but with real parameters, and 

8 = kx + wt + ... , d = g2 = - B(ik,iw, ... ), (19) 

where also the constantsg, k, and ware real. For D we obtain 
from (17a), 

eiD = B( - p + ik, -!l + iw, ... ) + b (20) 
B(p + ik,!l + iw, ... ) + d ' 

and from (17b) 

cosD= 1 + A (p,!l, ... )ld. (21) 

When D is eliminated from these we obtain a rather compli­
cated dispersion relation for the parameters p,!l, ... . This so­
lution shows that it is possible to have real parameters even 
when the imaginary unit appears in various places in the 
equations. The envelope-hole solitons are not discussed 
further in this paper. 

B. Hirota-Satsuma equation 

In all of the systems above we assumed 
[B(X,T, ... )]* =B( -X*, - T*, ... ). This is trivially true if 
B is real and either even or odd (the overall i factor does not 
matter). The real version of the NLS-type (3) was not stud­
ied in Refs. 2 and 3, because we previously assumed that C in 
(3b) has the property C(O,O, ... ) = O. Now C=. 1, so we will 
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include this new type in our analysis. A well-known equation 
of this type is the Hirota-Satsuma equation 

u, + uxxx + 3vux = 0, 
(22) 

v, - a(vxxx + 6vvx ) = 2buux' 

The substitution (11) with {3 = 1 yields nowl5 

(D, +D;)F-G=O, Dx(D, -aD;)F'F=bG 2, 
(23) 

which has N-soliton solutions for a = ~. The ISS is given by 
(6)-(8) withp* = p,!l* = !l, .... 

c. Benjamin-Ono equation 

One can also have complex bilinear equations with one 
dependent variable, 

P(Dx,D" ... )F·F* = 0, (24) 

where P satisfies (4). Such an equation is obtained, e.g., for 
the Benjamin-Ono (BO) equation 

u, + 2uux + Huxx = 0, (25) 

where H is the Hilbert transform. One now defines a new 
dependent variable byl6-19 

u = i ax 10g(F*IF) (26) 

and then using the property 

H [i ax 10g(F*IF)] = - ax 10g(F*F) (27) 

one obtains 

(D; +iD,)F'F* =0. (28) 

For the BO equation one uses rational solutions, indeed 
the polynomial character of F is needed to derive (27). In 
this paper we will discuss only standard exponential solu­
tions, for which case the analog of (28) is obtained from the 
Joseph equation 

u, + 2uux + Guxx = 0, (29) 

where the integral transform G is defined by 

G [u(x,t)] = - kP coth -1Tk(x' - x) 1 S"" [ 1 
2 - "" 2 

- sgn(x' - x) ]u(x,t)dX', (30) 

One now has for exponential F,19 

G [i ax 10g(F*IF)] = - ax 10g(F*F) + ku, (31) 

and thus, assuming (26), one obtains20 

(D; +iD, +ikDx)F'F* =0. (32) 

This contains the Benjamin-Ono equation in the limit k -+ 0, 
while the KdV equation is obtained (in scaled variables) as 
k-+OO.19 

If the system is assumed to be fully complex then the ISS 
for (24) can be written as 

(33) 

with n as in (7), and the parameters satisfy the dispersion 
relation 

P(p,!l, ... ) = 0. (34) 

However, it is also possible to assume that the param-
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eters are real, the ansatz is then 18,20 (a slightly different 
choice was used in Ref. 17) 

/= 1 + eiqlen
, fjJ real, n as in (7) (real), (35) 

The complex phase eiql is determined when (35) is substitut­
ed into (24): 

e2iql = _ P( _ p, _ fl, ... )IP(p,fl, ... ). (36) 

This ISS seems peculiar due to the fact that the parameters 
are not constrained by a dispersion relation. However, (36) 
becomes a dispersion relation if we insist that 
fjJ(k,fl, ... ) = dk for some constant d. This requirement is 
natural, because then we can write (24) as l8 

P(Dx,D" ... )F +'F _ = 0, where F ± = F(x ± id), 
(24') 

P(Dx,D" ... )exp[idDx ]F'F= 0, (24") 

whereFisasin (33) with real parameters. In (24") it is only 
the real ( = even) part ofthe operator that counts. We will 
not discuss the real solutions further but consider only the 
fully complex case. 

In this paper we will report the results of a search for 
bilinear equations of types (3) and (24) having a 2SS. In the 
next section we will derive the conditions for the existence of 
a complex 2SS and mixed 1 + ISS for the NLS equation of 
type (3). The conditions are given in the general case, while 
our search is limited to the special case where C= 1 and A is 
quadratic. The real case of Hirota-Satsuma is also discussed 
for C= 1 and A quadratic. In Sec. III we derive the condi­
tions for the existence of 2SS's in equations of the Benjamin­
Ono type. For this system our search extends up to degree 4. 

II. THE NONLINEAR SCHROOINGER TYPE 

A. Conditions for complex 2SS's 

We start now our discussion of equations of type (3) 
with (4) and (5). The standard ISS was given in (6)-(9). 
[If B and the constants are assumed to be real and 
C(O,O, ... ) = ° then we obtain the ISS discussed in Ref. 3.] In 
addition to the 1 SS (6) the system (3) has also the more 
trivial ISS, 

F = 1 + en, G = 0, (37) 

where now A gives the dispersion relation, rather than B as in 
(9). Obviously such ISS's can be combined to NSS's while 
keeping G = 0, and thus we find as our first condition that 
the polynomial A must satisfy the 3SC and 4SC applicable to 
a bilinear equation of type AF· F = 0. 1 

For NSS's composed of ISS's of type (6) we may as­
sume that they follow the general pattern proposed by Hir­
ota4

: 

exp[(~) fjJ(i,j)fLifLj + .~ fLin;], (38a) 
J<] 1= 1 

F= I(O) 

/L =0,1 

exp [(% fjJ(i,j)fLd)'j + i~/;n;], (38b) 
(1) 

G= I 
/L = 0,1 

exp[(I) fjJ(i,j)fLifLj + .~ fLinj] , 
I<} 1= 1 

(-I) 

G*= I 
/L = 0,1 

(38c) 
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where 

n; = pjX + fl;f + '" + m;, for i = 1, ... ,N, 

n; =nr_N' fori=N+ 1, ... ,2N, 

(39a) 

(39b) 

(40) 

and the fL summations 1:(a) go over all vectors 
fL = (fLI,· .. ,fL2N)' where fLj = ° or 1, and 

N N 

I fL; = I fL;+N + a. (41) 
i=1 ;=1 

Equation (40) defines an affine manifold where the param­
eters Pi> flj , ... ( = p;) belong; we use the notation VB for it, 
thus (40) meansPiEVB' ThefunctionsfjJ(i,j) depend on the 
parameters pj,pj,fli>flj , .... For i<N, fjJ(i,i + N) is deter­
mined already by the ISS (6), for other indices fjJ is deter­
mined when the 2SS [( 38) with N = 2] is substituted into 
(3). Let us define the degree of a term by the number of n's in 
the exponent, then after the substitution we find that (3a) 
has terms of odd degree, while (3b) has even degree terms. 
From degree 2 (or 6) terms we find 

eql(j,j+N) = C(p; -p!, ... )/[2A(p; +p!, ... )], 

and from some of the degree 4 terms 

eql(i,j) =2A(pj -Pj, ... )/C(pj +Pj'''')' 

both for all i <j<N. Also eql(i + NJ + N) = [eql(iJ)] *. 

(42) 

(43) 

The degree 3 and 5 terms yield a condition, which can be 
compactly written as 

(\) (3 ) (3) I B I UiPi>'" II P(u;uj;p; - UjUjPj, .. ·) = 0, 
u=±l ;=1 i<i 

(44) 

for all p;EVB • Here we have defined P3 = - pt so that pa­
rameters satisfy dispersion relation (40) for all indices. The 
polynomial P is defined by 

P( + 1;" .) = A ( ... ) ,P( - 1;"') = C( ... ). 

(45) 

The summation is over all those ujE{ - 1,t} such that 
1: j U j = 1. 

The condition obtained from the remaining part of the 
degree 4 terms can be written as 

uh,(~'2) p(I) uj;;tl U;P;, ... ) [3UIU2UP4 - 1] 

(4) 

xII P(ujUj;P; - UjUjPj"") = 0, VP;EVB' (46) 
i<i 

wherep3 = - pt,P4 = - pt,andtheP'sareasin (45). The 
summation is now over all those u's for which 1: j U j = ° or 2. 

The conditions (44) and (46) are close analogs to the 
3SC and 4SC given in Ref. 3 (especially if we could assume 
that C is even). The big difference is that these conditions are 
obtained already when we try to construct a 2SS. The fact 
that 2SS's are not automatic with complex degrees of free­
dom is understandable, for two complex sets of parameters 
have four real degrees of freedom. 

It is useful at this point also to consider various special 
cases of the above conditions. For example, if C= 1, which is 
assumed in our search, (44) simplifies to 
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A (PI - P2'··· )B(PI + P2 - P3'···) 

+A(P2 - P3,···)B( - PI + P2 + P3'···) 

+A(P3-PI, ... )B(PI-P2+P3' ... ) =0, 

V PiEVB. (44-1) 

If the system was real (which implies P3 = - PI' P4 
- P2) then from both conditions ( 44) and ( 46) we could 

extract a factor C(O, ... ). Thus if ceO, ... ) = 0 then 2SS's 
would be automatic, in agreement with Ref. 3. In the follow­
ing we will consider the real case only if C== 1, then the con­
ditions are (PI,P2EVB) 

A(PI - P2,···)B(PI + 2P2'···) 

+A(PI + P2, .. ·)B(PI - 2P2' ... ) = 0, 

A(2PI - 2P2, ... )A(P1 + P2,···)2 

+A(2PI + 2p2, ... )A(PI - P2,···)2 

- 2[A(2PI' ... ) +A(2P2'· .. )] 

XA(PI + P2,···)A(PI - P2' ... ) = o. 

(44-rl ) 

(46-rl ) 

The 2SS used above was composed of two ISS's of type 
(6). But since the system has also ISS's of type (37) one may 
ask whether one can combine these different ISS's as well to 
construct a 2SS. In fact it can be argued that for a fully 
integrable system one should be able to combine any kind of 
solitons to make a multisoliton solution. 21 The natural an­
satz for the 2SS is in this case 

where the parameters in n A satisfy the dispersion relation 
A(PA,OA' ... ) = O. When (47) is substituted into (3a) we 
find from the degree 2 and 4 terms 

L = -B(PI -PA, ... )IB(PI +PA'.·.)' (48) 

while the degree 2 and 4 terms in (3b) yield (42) again. The 
degree 3 terms in (3b) yield a condition, which can be writ­
ten as 

I' p( - 0'10'2; ± O'iPo- .. )P(0'10'2;[J1 - 0'10'2f'2'···) 
a= ±I i= I 

xB(P1 - 0'10'3P3'··· )B(P2 - O'zO'3P3'···) = 0, (49) 

where now P2 = - pt, P3 = PA' that is, PI,P2EVB' P3EVA' 

and in the summation 0' I = 1. This is again a typical 3SC and 
could be written like (44) except that now the polynomials 
are not determined by the signs of the O"s alone. 

Let us again look at some special cases. For C== 1 (49) 
simplifies to 

I [A (PI - P2 + O'P3'··· )B(PI - O'P3'···) 
a= ±I 

+A(PI -P2,···)B(PI +O'P3'···)] 

XB(P2 + O'P3' ... ) = 0, (49-1) 

where PI,P2EVB, P3EVA. If the system is real (i.e., 
P2 = - PI) then C may be assumed to be real and we find 
that each term in (49) would have a factor ce 0, ... ) or 
C (p A , ••• ). If the system is real and C == 1 then (49-1) be­
comes (PIEVB, P3EVA ) 
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I [A(2PI + O'P3,···)B(PI - O'P3'···) 
a= ±I 

+ A (2pl> ... )B(PI + O'P3' ... )] 

XB( - PI + O'P3'.·.) = O. (49-r1) 

In Ref. 3 we assumed that the system is real and ce 0, ... ) = 0, 
then what remains from (49) is 

A (2PB, ... )B(PB - PA'···) 

(49-rO) 

for all PBEVB, PAEVA. Obviously this is satisfied ifC=.A. In 
Ref. 3 we obtained some results which passed the standard 
3SC and for which C #A. However, we did not check 
whether they also had mixed 2SS's. It turns out that none of 
the results in Ref. 3 with C #A pass (49-rO). 

B. Complex results 

Our search follows the pattern of previous papers, and 
we will not discuss the methods in detail here. We assume 
that C== 1, and (as in our previous papers) that A is a qua­
dratic function of X and T. Then A can be rotated and scaled 
so that A = X 2, or XT. In this case the "four-soliton condi­
tion" (46) is identically satisfied. The search proceeds as 
usual from leading monomial to leading homogeneous poly­
nomial to the final result. 

1. A = X 2
• The first problem is to determine the leading 

monomials in B. We have the freedom of redefining the T 
variable; we use this to define the highest-order factor (dif­
fering from X) of the leading homogeneous polynomial as T. 
The monomials that satisfy (44-1) and (49-1) are discussed 
in Appendix A. The results are as follows. 

1.1. B =XM, vB =XK, M,K>O. Equation (49-1) 
poses no restrictions, but for ( 44-1) one needs 
K..;;[(M + 1)/3] + 1 ([a] stands for the integer part of a), 
except that when M = 3 it is sufficient to have K = 3. 

1.2. B =XMTN, vB =XKTL, M,N,K,L>O. For this 
we find that M = K = L = 1, N = 2n + 1 is necessary. The 
only possibly nonlinear case can arise from B = vB = XT. 

1.3. B= TN, VB= TL, N,L>O. In this case (49-1) 
requires L = 1, N = 2n + 1, which also passes (44-1). 

Next we consider the extension of the above results to 
homogeneous polynomials. Such a possibility exists only for 
case 1.2, but the generalizations do not pass the test. After 
this we tested systematically the nonhomogeneous general­
izations fitting to the above; our results are the following. 

(i) The most general nonlinear result is 

B=iaX 3+XT+iY+b, A=X2, C=1. (50) 

As special cases it contains the original NLS (2) and Hiro­
ta's generalization (2a'). 

(ii) Linear dispersion manifolds 
1.A. Up to degree 4 any polynomial in X (subject to 1.1 

above) passes both (44-1) and (49-1) but at higher degrees 
we get additional conditions. At degree 5 polynomials with 
up to two different factors are acceptable; there are also two 
other possibilities, i(X + ia)3(X2 + ibX + c) and i(X 
+ ia) (X 2 + ibX + C)2, for which we find that a = b = 0 is 

necessary. At degree 6 also polynomials with up to two fac­
tors are acceptable, the other cases pass the tests in the fol-
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lowing special cases: (X + ia)4(X2 + ibX + e) when 
2(2a - b)(b 2 + 4c) = 0, (X 3 + iaX 2 + ibX + e)2 when 
a2 + 3b = 0, and (X + ia)3(X + ib)2(X + ie) when 
4a2 

- 2ab - 6ae + 3b 2 - 4be + 5e2 = O. Similar results are 
expected at higher degrees. 

1.B.B=(X+ia)(T+ib)2n+l, A=X2, C=1. 
1.C.B=i(T+ia)2n+l, A=X2, C=1. 
For some of the above cases we find that the parameters 

P and n. will be pure imaginary. In such cases p and p* are 
related, but in our formulations this was not assumed. Thus 
the conditions that were used before are in fact too strong, 
and other such more or less trivial cases may be acceptable. 

2. A = XT. In this case we have the freedom of reflecting 
X ++ T, but no rotational freedom. In Appendix A the follow­
ing results are obtained for the leading monomial. 

2.1. B =XM, VB =XK, M,K>O. Condition (44-1) 
impliesK<[(M + 1)/3] + 1, but (49-1) is more stringent, 
demanding that M = 2 or K = 1. Thus the only interesting 
caseisB = VB =X2. 

2.2. B = X MT N, VB = X KT L, M,N,K,L > O. For these 
(44-1) is never satisfied, while (49-1) requires (M = 2 or 
K = 1) and (N = 2 or L = 1). Since both conditions should 
be satisfied we find that no monomial of this type is accepta­
ble. 

As for the homogeneous extensions we find that 
B =X M, vB = X extends to (X + aT)M, in fact to yM, and 
B = VB = X 2 to X 2 + aT2. The results are as follows. 

(iii) The only nonlinear result in this case is 

B=X 2 +aT2+iY+b, A=XT, C=1. (51) 

For a = 1, b = 0 this can be rotated and scaled to the 
2DNLS (12), while for a = 0, b = Owe obtain (14), and for 
Y -+0 we obtain the coupled Higgs field equation ofTajiri. 

(iv) The results with linear dispersion manifold are 
2.A. B = (X + ia)2m, A = XT, C = 1. 
2.B.B=i(Y+iafm+ l, A=XT, C=1. 

C. Real results 

We will next discuss the real results with C = 1, i.e., 
results of the Hirota-Satsuma type. We take again A = X 2 or 
A =XT, which is simpler than in (23). The conditions are 
given in (44-rl) and (49-rl). Since P2 = - PI when com­
pared to Sec. II B, we find the conditions somewhat easier. 
For monomials the results are derived in Appendix B. 

LA =X2 

1.1. B =XM, VB =XK, M,K>O. Equation (44-rl) 
impliesK< [M /4] + [(M + 1 )/4] + 2, expectthatthereis 
a special case: for M = 13, K = 9 is sufficient. 

1.2. B = X TT N, VB = X KT L
, M,N,K,L > O. Equation 

(44-rl) is passed if M = 2m + 1, N = 2n + 1, K = L = 1. 
1.3. B = TN, VB = T L

, N,L > O. Now from (49-rl) we 
obtain L = 2, N = 2n + 1. 

As can be seen the restrictions are less strict than the 
ones in Sec. B 1. Again the possible homogeneous general­
ization of 1.2, B = (X + aT)MTN, does not pass (44-rl) ex­
cept when a = O. 

(i) The nonlinear results are 

(52) 
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and 

(53) 

which tum out to be just the real and imaginary parts of 
(50). 

(ii) The linear manifold results are as follows. 
1.A. Polynomials that depend only on X: Up to degree 7 

the acceptable results fall into the sequence B = (X 2 + a)M 
andB = (X 2 + a)MX2n+ I. 

1.B.B=X2m+IT2n+1, A =X2, C= 1. 
1.C.B= T 2n+l, A =X2 , C= 1. 
2.A=XT 
2.1.B =XM, VB =XK,M,K>O. From (49-rl) weob­

tainM=20rK= 1. 
2.2. B=XMTN, vB=XKTL, M,N,K,L>O. Now 

from (44-rl) we get M = 2m, N = 2n, K = L = 1. 
Of these 2.1 is as before but 2.2 was not acceptable in the 

complex case. Statement 2.2 does not have homogeneous 
generalizations, but 2.1 generalizes to X 2 + aT 2

, and to 
(X + aT)M, which generalizes still further to yM. 

(iii) The nonlinear result, 

B=X 2 +aT2+b, A=XT, C=l, (54) 

is again just the real part of (51 ) . 
(iv) The linear manifold results are 
2.A.B=x 2m, A =XT, C= 1; 
2.B.B= y2m+l, A =XT, C= 1; 
2.c.B=x2mT 2n, A=XT, C=l; 

of which only the last one is a generalization over the com­
plex case. 

III. THE BENJAMIN-oNO TYPE 

A. Conditions for a complex two-soliton solution 

We will now derive the conditions for the Benjamin­
Ono-type equation (24) to have a complex 2SS generalizing 
(33). The general N-soliton ansatz is of the form 

'(0,1) [(2N) 2N] 
F = J.L £';',1 exp t; ¢(i,j)!-li!-lj + i~1 !-lini , (55) 

which is a combination of (38a) and (38b), with theconven­
tions (39). The dispersion relation is given by the polynomi­
al P (34). 

When the 2SS (55) with N = 2 is substituted into (33) 
we obtain 

e¢U,}) = -~P(Pi-Pj, ... )/Pe(Pi+Pj"")' i<N<j, 
(56a) 

e¢U,j) = -2Pe (Pi -PJ,,,,)/P(Pi +PJ'''')' i,j<N, 
(56b) 

where Pe is the even part of P. In addition to this we get the 
following conditions: 

L (I) 

U= ± I 
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uf:± :0,2) P (~ (T;; ;tl (T;P;."') [3(TI(T2(T3(T4 - 1] 

(4) 

XII P«(T;(T/,p; - (T;(TjPj"") = 0, 
i<j 

(58) 

where P3=-pT, P4=-pt VP;EVp ' P(+I;"') 
=Pe("'),andP( -1;''') =P("·). 

Note the close analogy of (57) and (58) with (44) and 
( 46): the form is the same, only the meaning of the various 
polynomials differ from that used in Sec. II A. From the 
identical form it follows that if (24) has 2SS's then there 
exists a corresponding NLS-type equation PG· F = 0, PeF' F 
+ PG' G· = 0 which also has a 2SS [for the relative 

signs, compare, e.g., (42) and (56) ]. This is also easy to see 
directly: substitutef = F + GJ· = F + G· into PIf· = 0 
to [PF'F + PG·G·] + PG'G + (PG·F)· = O. Due to the 
type of the ansatz we find that the three groups of terms in 
the equation must vanish separately, which is equivalent to 
the pair of equations mentioned earlier. 

We also recall the fact that the conditions [(57) and 
(58)] are obtained for the existence of a 2SS, because no 
algebraic relation is assumed between the parameters and 
their complex conjugates. This also means that these condi­
tions do not vanish automatically if P is assumed to be even 
(and therefore real), it is also necessary to assume that the 
parameters are real and therefore P3 = - PI' P4 = - P2' 

B. Results 

The even part of P appears in the denominator of et!>(i·j) 

and therefore we will only consider cases where Pe does not 
vanish identically. We searched for polynomials P of degree 
up to 4 that satisfied (57); we did not check (58). 

If the degree of P is less than 4 we must have a nonvan­
ishing quadratic term. The rotational degrees of freedom are 
fixed partially by rotating this term to X 2 or XT. When the 
degree of P is 4 we fix the rotational degrees by the leading 
term (classified as in Ref. 1). The acceptable leading mono­
mialswereP= Vp=X4;P=X3T,VP=X2T;P=X2T2, 
V P = XT. The only possible homogeneous extension 
P=X 2T(X + aT), VP=XT(X + aT) did not pass (57). 
We then tested systematically the possibility of additional 
terms, cubic and linear if deg (P) < 4, and cubic, quadratic, 
and linear terms if deg(P) = 4. The results are as follows. 

(i) The genuinely nonlinear results are 

P = iaX 3 + X 2 + iT, (59) 

which generalizes the Benjamin-Ono equation (28) and 
(32) by the cubic term, and 

P=XT+i(aX+bT), (60) 

which has X++T symmetry. The suggested generalization 
XT + iY did not pass the test. 

(ii) As usual we obtained several results with linear dis­
persion manifold. 

A. The one-dimensional results are P = X 4 + aX 2 
+ ibX; p=X 2(X 2 + iaX + b); P= (X + i)2(X2 + iaX); 

and P = X 4 + iX 3 + aX 2 + ibX, if 4a2 - 20ab + a 
+ 24b 2 - 3b = O. 

B. Up to degree 4 the other results fit into 
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p=iX2n+I(T+i)M, which seems to be allowed also for 
higher degree. 

IV. CONCLUSIONS 

In this paper we have discussed certain types of complex 
bilinear equations. It turned out that the construction of 
complex two-soliton solutions presented conditions analo­
gous to the usual three- and four-soliton conditions. This is 
understandable because a two-soliton solution has four sets 
of real parameters. 

Our search revealed generalizations of the bilinear for­
mulations of the known integrable systems of this type. For 
example, the original nonlinear SchrOdinger equation (2) 
seems to have two (2 + 1 )-dimensional generalizations: the 
well-known (12) or (51) and the apparently new (50). For 
the Benjamin-Ono type we have the generalization (59) and 
the new case (60). 

We do not know if these new models are completely 
integrable, but they are the only equations within the class 
studied that do at least pass the first condition of having two­
soliton solutions. It would be interesting to apply other tests 
of integrability on these systems. 

Note added in proof: The Benjamin-Ono-type equation 
(60) has also been found by Matsuno [see Ref. 22, Eq. 
(2.3) ].lto has found23 that (50) has 3SS for some arbitrar­
ily chosen parameter values. This equation also passes the 
Painleve test. 24 
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APPENDIX A: CONDITIONS FOR THE LEADING TERMS, 
NLS EQUATION 

In this Appendix we will derive the conditions arising 
from ( 44-1) and ( 49-1). We will only discuss the more strin­
gent of the conditions, for 1.1, 1.2, and 2.2 it is (44-1) while 
for 1.3 and 2.1 it is (49-1 ). Since the rewrite rules do not here 
connect different monomials it means that all monomials 
must separately vanish. Conditions are derived by a judi­
cious choice of monomials. 

1.1. Condition (44-1) reads 

(PI - P2)2(PI + P2 - P3)M + (cyclic terms) = 0, (AI) 

whenpf -0. Our method is to isolate that monomialpip~p~, 
where m, n, and k are the smallest (for example, if M = 3jl it 
is obtained by m = k = jl + I, n = jl, and cyclic permuta­
tions) and if its coefficient does not vanish identically we can 
read off the maximum K from the maximum exponent. 

The terms where P3 appears with power k are given by 

p~ { [(PI - P2)2(PI + P2)M - k( - 1)k 

+ (pi + ( - 1)M-kpi) (PI - P2)M-k] (0 
I )M-k)( )M-k+l( M ) - 2(PI - ( - P2 PI - P2 k _ 1 
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+ (PI _P2)M-k+2(1 + (_1)M-k) (k ~ 2)}' (A2) 

The terms combine differently depending whether M - k is 
even or odd. Suppose M - k is odd. Then the center term is 

p'['p';+ Ip~ em m+ 1) (M: 1) 2( _ 1)m+ I 

x{[1 + (_I)k+m+l] -k}/[(2m + I)(M+ 1)]. 
(A3) 

For most k 's this does not vanish identically, so a rewrite rule 
must be imposed. 

(a) If M = 3p, we take k = p, + 1, m = p, then the term 
in curly brackets in (A3) is p, - 1, thus for p, > 1 we get the 
rewrite rule K <.p, + 1. 

(b) If M = 3p, + 2 we take again k = p, + 1, but 
m =p, + 1, thusK<.p, + 2. 

(c) For M = 3p, + 1 the M - k odd terms yield K<.p, 
+ 2, but this condition can be improved by the M - k even 

terms to K<.p, + 1. 
These results combine to K<. [(M + 1)/3] + 1 for M> 3. 
For M <.3 it is sufficient to take K = M. 

1.2. Now (44-1) reads 

(PI - P2)2(PI + P2 - P3)M(01 + O2 - 03)N 

+ (cyclic terms) = 0, (A4) 

whenpfOf -+0. From (A4) we choose those terms that have 
maximum power of 0 3 and no P3' They are given by 

[(PI - P2)2(PI + P2)M( - 1)N + p~ ( - PI + P2)M 

(A5) 

These terms do not vanish by the rewrite rule pfOf -+ 0; thus 
it should vanish identically. This is possible only if N is odd 
and M = 1 (and therefore K = 1), as can be easily seen. To 
continue in that case let us take the terms with Of - 102, 

[(PI - P2)2(PI + P2 - P3) + (P2 - P3)2( - PI + P2 + P3) 

- (P3 - PI)2(PI - P2 + PJ) ]NOf-I02' (A6) 

and from these the terms linear in P3' 

2P1P3(PI - P2)NOf- I02' (A7) 

These can vanish only by the rewrite rule, but then L = 1. 
1.3. Condition (49-1) is 

L [(PI - P2 + UP3)2(01 - U03)N 
u= ±I 

+ (PI - P2)2(01 + U03)N] (02 + U03)N = 0, (AS) 

for Of -+ 0, Of -+ 0, and P3 -+ O. Let us take the terms with no 
P3 and expand them with decreasing order in 0 3 , We obtain 

L (PI - P2)2{Of[ ( - I)N + 1] 
u= ±I 

+NOluOf- I[( _1)N-I + 1] + ... } 

x{Of +N02uOf- 1 + ... }. (A9) 

The leading term vanishes only if N is odd, in which case the 
next to leading term is 

4N2(pl - P2)20~N - 20 10 2 , (AlO) 

This can vanish only by a rewrite rule and thus we get L = 1. 
2.1. Condition (49-1) is 
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L [(PI - P2 + UP3) (0 1 - O2 + u03) (PI - UP3)M 
u= ±I 

+ (PI - P2)(01 - 02)(PI + OP3)M](P2 + OP3)M = 0, 
(All) 

forpf-+0,pf-+0,P303-+0. Now we take the terms with the 
maximum number of P3 and no 0 3, The terms with 
(UP3) 2M + I vanish in the u summation, the next terms are 

piM(OI - 02){(PI - P2) [( - I)M + 1] 

(AI2) 

These terms vanish only if M = 2 or K = 1. 
2.2. In this case condition (44-1) is more strict, it reads 

(PI - P2) (0 1 - O2 ) (PI + P2 - P3)M 

(A13) 

whenpfOf-+O. Take terms with maximal power of 0 3 and 
no P3' They are given by 

Of+l[ -P2( -PI +P2)M -PI(PI-P2)M], (AI4) 

and do not vanish by the rewrite rule in question. 

APPENDIX B: CONDITIONS FOR THE LEADING 
MONOMIAL, HIROTA-5ATSUMA EQUATION 

In this Appendix we derive conditions for monomials 
for real systems with C = 1. In each case we discuss only the 
stronger one of the conditions (44-rl) and (49-rl). 

1.1. Equation (44-rl) reads 

(PI - P2)2(PI + 2p2)M + (PI + P2)2(PI - 2P2)M = 0, 
(BI) 

when pf -+ O. The coefficient of pf + 2 - mp'; vanishes when m 
is odd and for even m it is 

(M'I 9m2 - 12mM - 21m + 4M2 + 12M + S . (B2) 
m) (M-m+I)(M-m+2) 

We choose now the optimal m for given M and check 
whether (B2) vanishes or not. 

(a) When M = 4n, take m = 2n to obtain K<.2n + 2, 
because expression (B2) does not vanish for integer n. 

(b) For M = 4n + 1 the optimal m is m = 2n + 2. The 
expression in the curly brackets is 2(2n2 - 5n - 3), which 
has n = 3 as the only integer root. This means that 
K <.2n + 2 for all the other cases except for n = 3, i.e., for 
M = 13 it is sufficient that K <.9, which is also necessary for 
the term with m = 6. 

(c) If M = 4n + 2, take m = 2n + 2 to obtain K<.2n 
+2. 

(d) When M = 4n + 3, take m = 2n + 2 to obtain 
K<.2n + 3. The results combine toK<. [M /4] + [(M + 1)/ 
4] + 2, except for the special case M = 13, K = 9. 

1.2. Equation (44-rl) reads 

(PI - P2)2(PI + 2p2) (ql + 2q2)N 

+ (PI + P2)2(PI - 2P2) (ql - 2q2)N = 0, (B3) 

when pfqf -+ O. The terms pi + M (2q2) N vanish only if N is 
odd and similarly for exchanged indices we find M must be 
odd. Expanding to the next term we obtain 

(B4) 
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which implies that K = 1. Similarly we can get the result 
L=1. 

1.3. Now (49-rl) is the strongest condition, it reads 

L [(2PI + UP3)2(fil - Ufi3)2N] 
U= ±I 

+ 8pi (fii - fi~)N = 0, (BS) 

for fir -0,P3 -0. The leading terms inpi and fi3 vanish only 
if N is odd. The next to leading terms contain fii so we obtain 
N = 2n + 1, L = 2. 

2.1. We use again (49-rl), it is now 

L [(2pI + uP3)(2fi l + ufi3)(PI - UP3)2M] 
U= ±I 

+ 8Plfi l (pi - p~ )M = 0, (B6) 

with P3fi3 -o,pf -0. Thep~M + I terms vanish by u summa­
tion or by the rewrite rule in index 3. The coefficient of p~M is 

4(201 + (03)PI(2 - M), (B7) 

thus we get the conditions M = 2 or K = 1. 
2.2. Now we use (44-rl) that reads 

(PI - P2)(fi l - fi2)(PI + 2P2)M(fi l + 2fi2)N 

+ (PI + P2) (fi l + fi2) (PI - 2P2)M(fi l - 2fi2)N, 
(B8) 

forpffif-o. ThetermspfC+ lfif+ I andp~+ 10f+ I vanish 
only if Nand M, respectively, are even. A next to leading 
term is 
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2M+ Ip~+ IOffi2(1- 2N), 

which implies L = 1, similarly K = 1. 
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This is the first of a series of papers preparing the mathematical framework for a past light­
cone formulation for the quantum mechanics of particles of arbitrary mass and spin. The aim 
of past light-cone quantum theory is to define quantum states solely in terms of data accessible 
to an observer, i.e., information from within his current past light cone. In order to set up such 
a theory one needs to define on the past light cone complete orthonormal sets of functions that 
belong to the appropriate unitary irreducible representation of the Poincare group. Such 
functions are interpreted as energy-momentum eigenfunctions. The present paper treats the 
discrete spin, zero mass case for all values ofthe helicity s = O,!,~, .... 

I. NOTATION AND CONVENTIONS 

Alphabet conventions: Greek lowercase letters 
= 0,1,2,3, with summation over repeated indices. 

Metric tensor: gJ..p, = diag (1, - 1, - 1, - 1). 
Conjugation operations: A superscript *, T, t applied to 

a quantity denotes, respectively, the complex conjugate, 
transpose, Hermitian conjugate. 

Number fields: Rand C are, respectively, the real 
numbers and the complex numbers. 

Dirac delta/unctions: 6(x) is the ordinary delta func­
tion of a real variable x, 6(x) = 6(x l )6(x2 )£5(X3 ) that of 
a three-vector x = (X 1,X2,X3 ), and 6(k,k') = 6(cos Ok 
- cos Ok' )6(l/?k - fPk') the surface delta function for two 

unit vectors k = (sin Ok cos fPk,sin Ok sinfPk'cos Ok) and 
k' = (sin ° Ie cos fP Ie ,sin ° Ie sin fP ,,,cos ° Ie ). 

Generators 0/ the Poincare group.' ~ and lK are the mo­
mentum and the angular momentum operators, respective­
ly,J= U23,j31,jI2),K= UOJ ,j02,j03). 

Mass zero, helicity s representation 0/ the Poincare 
group 1: The carrier space is the Hilbert space of square inte­
grable functions t/I(k) of a future pointing null vector 
k J.. = k(1,sin Ok cos fPk,sin Ok sin fPk'COS Ok) defined by the 
scalar product 

(t/I,t/I') = J d;k t/I*t/I'. 

The Poincare generators are represented by 

D(pJ..) = fzk\ D(J) = - ilikX~ + M, ak 
. a A 

D(K) = - lfzk - - -liskXT, ak 
where 

k=k/k, 
T = [tan(!Ok )cos 0k,tan(!Ok ) sin Ok' 1], 

and 

s = O,!, 1,~, .... 

aj Permanent address. 

(1) 

(2) 

Mass m, spin-j representation o/the Poincare group 1: For 
j = O,p,~, ... , the carrier space is the Hilbert space offunc­
tions t/ls(k), where s takes the 2j + 1 valuesj,j - 1, ... , - j 
and k J.. is a future pointing vector on the upper mass shell 
k ° = Ek = (k2 + m2c2 If(-) 1/2. The scalar product is 

(t/I,t/I') = L J d 3

k ~(k)t/I;(k), 
s Ek 

and the generator representations are 

D(pJ..) = fzk\ D(J) = - ilikX~ + IISj, ak 
a IikxS j 

D(K) = - iflEk - - ----ak Ek + mclfz 

(3) 

Here S j is the (2j + 1) X (2j + 1) Hermitian matrix repre­
sentation ofthe SU(2) generators. 

Pauli spin matrices aA and cf : 

aD = (~~), (11 = (~ ~), 

cr = e -~). cr' = ( ~.). 
cf = cr(~)*cr. 

D (i /2)0 representation 0/ the SO (1,3) generators: 

D(i/2)O(J) = !fza, D(i/2)O(K) = (ifz12)a. 

II. INTRODUCTION 

A. Motivation 

(4) 

In special relativity an observer may be modeled by the 
following idealized picture. His path through space-time is 
represented by a timelike trajectory xJ.. = ~(1"), where the 
~(1") are the four functions of a parameter 1". The latter is 
most conveniently taken to be the proper interval 
f (gJ..p, d~ dzl') 1/2 measured along the trajectory from some 
arbitrary initial event. Thus gJ..p, ~vI' = 1, vO> 1, where 
~ = d~(1")/d1" is the observer's four-velocity vector. An 
ideal clock carried by the observer will then record the prop­
er time 1" Ie that has elapsed since the initial event. Each value 
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of r corresponds to a "here-now" z< ( r), at which the observ­
er has knowledge only of events within his current past light 
cone, i.e., the region 

xo<tI(r)-lx-z(r)l. (5) 

Thus any events that the observer learns about at his current 
proper time rle lie on the past light cone 

xo=tI(r) -lx-z(r)l. (6) 

Introducing a past pointing null vector 1', (2) may be writ­
ten in parametric form 

x'" = Z« r) + 1', yO = - Iyl, (7) 

with the vector y taking all values in R3. The three-surface 
that the observer regards as "the present time r Ie" is actual­
ly the past light cone (7), not the hyperplane XO = tI( r). 
With increasing rthe events of space-time unfold as a succes­
sion of past light cones, and not as a sequence of spacelike 
hyperplanes X O = const. 

Motivated by the above picture, a previous paper2 devel­
oped a version of quantum mechanics, first suggested by 
Dirac,3 in which an observer's quantum state refers to the 
past light cone of his current here now. This is in contrast to 
the conventional idea of a quantum state "at a given time." 
In this new approach a system containing one charged boson 
of rest mass m and spin zero is represented by an SOC 1,3) 
scalar wave function f/!(y,r). Physically acceptable wave 
functions are required to be elements of the Hilbert space 
JiY'y, defined by the Lorentz invariant scalar product 

f d3y 
(f/!I,f/!2)y = -yf/!Tf/!2' (8) 

If during the interval ro to r the observer receives no data 
arising from measurements on the system, then the evolution 
is assumed to be unitary, 

f/!(y,r) = exp { - (i/Ii) [Z« r) - Z« ro) ]PA}f/!(y,ro), 
(9) 

where the generator of translations PA is an Hermitian four­
vector operator defined on a dense subspace of JiY'y, and 
satisfies pAPA = m2c2

• The eigenfunctions of p A are of the 
form 

f/!kl (y) = (21T)-2i iCC> duueig(u)( - kAI')iU-I, 

o (10) 
f/!k( -I) (y) = [f/!kl (y)] *, 

where g(u) is an arbitrary real function, and k A any vector 
lying on the upper mass shell k 0 

= Ek = [k2 + (mc/Ii)2] 1/2. These functions satisfy com­
pleteness and orthogonality, 

(11) 

with the charge index q assuming the two values ± 1. One 
may interpret f/!kq (y) as an eigenfunction with momentum 
eigenvalue Iik A and charge eigenvalue q. The momentum 
operator pA and charge operator Q in JiY'y are then given by 
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f d3k A 
Jlf/!(y) = L -f/!kq(y)1ik (f/!kq,f/!)y, 

q ck 

f d 3k 
Qf/!y = L - f/!kq (y)q(f/!kq,f/!)y' 

q Ck 

(12) 

The translation generator p A in (9) is identified either with 
pA or with QpA, depending on which oftwo alternative hy­
potheses is made concerning the Hilbert space of physical 
states. 2 

B. Statement of the problem 

The aim of this series of papers is to derive complete 
orthonormal sets that generalize the spin-zero results (10), 
( 11) to other values of spin. To define the problem math­
ematically we need to recall some results from group repre­
sentation theory as applied to the Poincare group. 

The functions f/!kq (y) of (10) belong to the mass m, 
spin-zero unitary representation of the Poincare group. Re­
call the following definition introduced by Wigner. 4 Suppose 
that for each element R of a group E1 there exists a represen­
tation by an operator P R on some Hilbert space JiY'. If there is 
a set of elements f/! A EJiY' such that 

(13) 

where {D(R)} is a representation of E1 , then we say that the 
set f/!A belongs to {D(R)}. If the index A takes values in a 
continuum then the summation in (13) is replaced by inte­
gration. 

The set f/!kq furnishes an example of ( 13), E1 being the 
Poincare group and JiY' being JiY'y. In this case the represen­
tation {p R} is defined by the infinitesimal generators pA of 
(12) and the angular momentum operatorsr given by 

J =( ·23 '31 '12) - _ ·.l;".X.!.-
- j ,j,j - '''3 ()y' 

K=. (r',r2,r3
) = iliy.!.-. 

()y 

(14) 

The carrier space for the representation {D(R)} is the Hil­
bert space JiY'k consisting of functions 9'(k) subject to the 
scalar product 

f d3k 
(9'1,9'2) = -- 9' T9'2' 

ck 
(15) 

As representative operators for momentum and angular mo­
mentum in JiY'k we have 

D(JI) = lie', D(J) = - iIikX.!.-, ak 
D(K) = - iliEk .!.-. ak 

The set f/!kq then satisfies 

pAf/!kq = IikAf/!kq. Jf/!kq = ilikX :k f/!kq' 

Kf/!kq = flick :k f/!kq. 

(16) 

(17) 

which corresponds to (13). Note the sign change in the de­
rivative terms between (16) and (17), arising from the fact 
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that (13) involves right multiplication by the operator 
D(R). Since (17) holds for each value of the charge index q, 
D(R) is actually the direct sum of two copies of the mass m 
spin-zero representation. [See (3).] 

To summarize, what we have in the spin-zero case is a 
representation in JYy of Hermitian operators y' ,pA, jLK sub­
ject to the commutation relations 

[y,y' J = 0, [r,y' J = m[g"Ay' - gMy], (18) 

[pK,~] = 0, [ r,~] = iii [g"Ap' _ gMpK], (19) 

[r,/I'] = ili[g'l'jA + g"Aj'1' - gMjl' _ g"l'j'tA], (20) 

and the constraints 

YAy'=O, PApA=mV; (21) 

with - yO,pO having only positive eigenvalues. In this repre­
sentation y' is diagonal and pA is defined by specifying the 
complete orthonormal set of eigenfunctions t/Jkq using the 
ansatz ( 12). These eigenfunctions belong to the mass m and 
spin-zero representation of the Poincare group. 

What we seek in this series of papers are representations 
of the system (18)-(21) that correspond to nonzero values 
of spin or helicity. Once again the operator y' is required to 
be diagonal, so that the carrier space JY should be JY or the 

• y 
dIrect sum of a finite number of copies of JYy • To define the 
momentum operator pA we then need a set of states Iksq) that 
are complete and orthonormal in JY and belong to one of the 
unitary representations of the Poincare group. To label these 
states one would expect the need for a momentum variable k, 
some spin or helicity index s, and possibly additional labels q. 

In the mass zero, helicity s case [see ( 1 )] we require 

Jlksq) = (illkX :k + lisT) Iksq) , 
(22) 

° A where s = 0, ±~, ± 1, ± ~, ... , k = Ikl = k , and k and T 
are given by (2). The vector k A is thus future pointing and 
null, corresponding to zero mass. 

In the case of nonzero mass m and spin j, (22) is re­
placed by 

J\ksq) = illkX~ Iksq) + 12 Iks'q)IiSis's, 
ak s' (23) 

Ilk s: 
Klksq) = mek ~ Iksq) - 12 Iks'q) X s's , 

ak s' ek + mc/Ii 

where kA now lies on the mass shell kO = ek (k2 + m2c2/ 
1i2 ) 1/2. The spin j takes the values 0, ~, 1 d, ... , with s ranging 
from - j to + j at integral steps, and SJ is the 
(2j + 1) X (2j + 1) matrix representation of the SU (2) gen­
erators. (See (3).] 

If the Hilbert space relevant to (22) or (23) is the direct 
sum of N copies of JYy for some integer N, then the states 
Iksq) may be represented by a set of N functions of a past 
pointing null vector y'. However it is not clear a priori what 
values of Nwill allow a solution of (22) or (23). Nor is it 
clear whether the form (14) for the angular momentum op­
erators J and K remains appropriate. It will turn out to be 
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necessary to modify (14) by the addition of helicitylike 
terms. 

From now on in this paper, only mass-zero representa­
tions will be considered. The case of nonzero mass will be 
discussed in subsequent papers of the series. 

III. MASS ZERO WITH HELlelTV s 
A. The spinor Hilbert spaces JYs and JY v 

Rather than work with the Hilbert spaces JYy and JY k 

it is simpler to introduce spinor Hilbert spaces similar to 
those used by Dirac5 in another context. 

Any further pointing null vector kA = k(l,sin Ok 
cos qJk' sin Ok sin qJk' cos Ok) may be written in terms of a 
contravariant D (1/2)0 spinor S, 

(24) 

with 

S=[SI+is2]=kl/2[ COS!Ok ]e i"k (25) 
S 3 + is 4 ei'Pk sin !Ok 

For a given k A. the phase angle 'TJk may be chosen arbitrarily 
in (0, 21T). We now introduce a Hilbert space JY $' the set of 
all square integrable functions qJ (S I,S 2,S 3,S 4) of the real and 
imaginary parts of the components of S, defined by the scalar 
product 

(qJl,qJ2)$ = f qJTqJ2dslds2ds3ds4, 

(26) 

The angular momentum tensor operator j'K that arises from 
theD (1/2)0 transformation law for sunder SL(2,C) transfor­
mations is given by 

( ,23 '31 '12) J ·..!!:I.x a l.J1J!T'( . a ) j $ ,j $ ,j $ = $ = - ITIA - + Til. l--
ak 2 a'TJk' (27) 

( '01 '02 '03) -K _ 'Zk a 1 Z(kAXT)( . a ) j $ ,j $ ,j $ - $ - - tTl - - Tl - 1-- , 
ak 2 a'TJk 

with T as in (2). We have the commutators 

- (i/2 )lias. (28) 

In the subspace of functions of the form qJ(k)exp(im1k) 
with integral n, the angular momentum operator is equiva­
lent to (1) with helicity s = !n. 

Similarly, we can represent any past pointing null vector 
y' = y( - l,sin 0 cos qJ,sin 0 sin qJ,cos 0) in terms of a co­
variant D 1/20 spinor v, 

y' = - vU"vt . 

[See (4).] Writing 

v = [VI - iv2,v3 - iv4] = yl/2[ei'P cos ~O,sin!O ]ei", 
(29) 

we then introduce a Hilbert space JYv ' the set of all square 
integrable functions t/J( VI' V2' v3, V4) with scalar product 
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with 

and 

y=yly, W= [cot(!O)cOSq1,cot(!O)sinq1,-I], 
(32) 

[J",v] = !livO', [K",v] = (i12)IiVO'. (33) 

Bo Orthonormal states for mass zero and hellclty s 
Consider now the complete orthonormal set of func­

tions 

1/Is(v) = (2Ir)exp[121/2(vs + stvt)], 

= (2Ir)exp[123/2(vlsl + V~2 + V3S3 + V4S
4)], 
(34) 

which span K". We have 

f t!1(v)1/Is' (v)d
4
v = AiJl t5(SA - SA'), 

f1/ls(V)t!1(V')d4s= AiJl t5(VA -v~). 
(35) 

We can obtain complete and orthonormal functions ofy that 
belong to a definite helicity by writing (34) in terms of the 
variables y,11,k,17k and then projecting out the appropriate 
helicity components. From the definitions (25) and (29) 
one obtains 

- i(1I -11k) ,f:' e v~ 

= (ky)1/2(ei'Pcos!Ocos!Ok +ei'Pksin!Osin!Ok)' 

IvsI2 = !t, (36) 

where 

t = - kAy' = ky + koy. (37) 

Thus we may write 

vs = (t 12) 1/2 exp[ ip(y,k) + i( 11 -11k)]' (38) 

withp(y,k) the real function ofO,q1,Ok,q1k given by 

eif'(y,k) = (21(1 + koy»1/2 
X (ei'P cos !O cos ~Ok + ei'Pk sin! 0 sin !Ok)' 

(39) 

Substituting (38) into (34) yields 

2 1 A A } 1/1" (5) = r exp {2it I 2 cos[p(y,k) + 11 -11k] 

=.±. i ukn (y)exP{in(l1-l1k+...!.-1T)}, (40) 
1T n =-oo 2 

with 
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(41) 

If ( 40) is inserted into (35) the dependence on the angles 
11,l1k drops out and we arrive at the relations 

f u:n (y)uk'" (y) d;y = M(k - k'), 

f 
d3k 

Ukn (y)u:n (y') k = yt5(y - y'). 

(42) 

That (41) defines a function belonging to helicity s = !n 
may be seen as follows. A combined SL (2,<::) transformation 
of the spinors 5 and v leaves 1/1 s ( v) of (34) invariant, and 
hence 

(j}K + J":)1/Is (v) = O. 

Applying (27) and (31) to (40) then yields 

( - iliyX ~ + ~ IinW)Ukn (y) 

= (ifikX~ + "'!'-IinT)ukn (y), 
ak 2 

(iliy ~ + ~ linyXW)Ukn(y) 

= (ilik ~ - ...!.-linkXT)Ukn (y). 
ak 2 

(43) 

(44) 

Thus the functions ukn (y) defined by (39) and (41) satisfy 
all the requirements, viz. completeness, orthogonality, and 
definite helicity. Note that the carrier space for the represen­
tationsofthe (nonclosed) algebra (18)-(21) isKy , butthe 
operators J and K of (22) now include helicity terms !IinW 
and !linyXW [see (44)]. The algebra (18)-(21) includes 
two Poincare subalgebras {y',j"'J and {pA,r}, and for the 
representation associated with Ukn (y) both yoJlli and 
(po) -lpoJlli have the eigenvalue s = !n. 

An explicit form can be given for the momentum opera­
tor pA that has eigenfunctions ukn (y) and eigenvalues Iik A. 
Consider the Hermitian operator ~ on K" defined by 

~= - (1i12)ato-ta", (45) 

where a is the contravariant D (1/2)0 differential operator 
" 

[
a. a] -+1-

a =...!.- aVI av2 • 

" 2 ~+i~ 
aV3 aV4 

Applying ~ to the functions 1/1 s ( v) of (34) yields 

~1/Is (v) = lik A1/I6 (v). 

Note that the operator 

S = !va" - !(va,,)* 

i a =---, 
2 al1 

(46) 

(47) 

(48) 

commutes with ~, so that the expansion (40) represents a 
decomposition of 1/16 (v) according to the eigenvalues s = !n 
ofS. Thus 

(~-IikA)Ukn (y)einll = 0, (S - !n)ukn (y)einll = O. 
(49) 
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In terms of the coordinates y,'T] the operator tI' takes the 
form 

tI' = tr10) + tr11) S + tr12) S 2, 

with 

tr10) =~[ - ~ y ~22'~ Y ~22 - ~ (Y' ~)], 
~I =- - -21WX-~[ i J J] 

() 2 ysin2Wn JfP' Jy , 

~(2) = ~ [1,0,0, - 1]. 
2y sin (~O) 

Whence from (49) 

p"ukn (y) = fz/c"u kn (Y), 

where 

p" = tr10) + !ntr1l) + ln2tr12) 

(50) 

(51) 

(52) 

(53) 

is a Hermitian operator in JYy • It is a vector operator satisfy­
ing ( 19), wthr given by the operators on the left-hand side 
of (44). 

C. Complete orthonormal sets obtained by unitary 
transformations 

We can now derive other complete orthonormal sets by 
making unitary transformations of the U kn (y) given by 
(41). Writing the Bessel function as an integral6 (41) be­
comes 

We now show that if the phase factor rqn - iu)1 
r qn + iu) in (54) is replaced by a arbitrary phase factor 
exp[ig(u)], g(u) real, then one again obtains a complete 
orthonormal set satisfying (42) and (44). This is most readi­
ly seen by noticing that 

einl'(Y.k) 
u~n(Y) =~ 

X J:"" du(~ n_iu)eig(U);iU-I, (55) 

is related to ukn (y) by the unitary transformation 

U' ( ) = eig(D) n!n + in) U ( ) 
kn Y r (!n _ in) kn Y , 

(56) 

where 

D= -{Y' ~ + 1) 
= - (i12) [vJv + (vJv )* + 2]. (57) 

Note that D is a Hermitian operator (in both JYy and JYv ) 

that commutes with!: and S [see (31) and (48) ] and satis­
fies the eigenvalue equation 

(D - U);iu-I = o. (58) 

Particular examples of (55) follow: 
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(1) exp[ig(u)] = 1T- 112r(! - iu) 

X [cosh<!1Tu) - i sinh(~1Tu)], 
_ einl'(y,k) 

, () ___ -.,...- r (\/2)n 
U kn Y = !:> 

(2~) 1/2 

X ~ (; 112 - (\/2)n sin;). (59) 

(2) exp[ig(u)] = 1T- I12n! - iu) 

X [coshq1Tu) + i sinh (!1TU) ], 
einl'(y,k) 

, () _----,----,_ r (\ /2) n 
Ukn Y = !:> 

(2~) 1/2 

X ~ (; 112- (\12)n COS;). (60) 

(3) g(u) = 0, 

U~n (y) = 
inl'(y,k) d 

-e ;(\12)n+I_c5(;_1). 
21T d; 

(61) 

D. Further complete orthonormal sets 

A class of complete orthonormal sets of quite a different 
type may be derived from unitary transformation of 

Xk (y) = [2yc5(y + [2k), (62) 

where [ is an arbitrary constant of dimensions length. 
We have the relations 

J d;Y X~(Y)Xk' (y) = kc5(k - k'), 

J d3k k Xk (Y)X~(Y') = yc5(y - y'), 

( -i~X ~ - ~ MW)Xk(Y) 

= (i~kX~ + ~MT)Xk (Y), 
Jk 2 

(i~y ~ - ~ MYXW)Xk(Y) 

= (ifz/c ~ - ~ ~nkXT) Xk (y). 
Jk 2 

(63) 

(64) 

Note that (64) holds in a trivial way for any value of n, 
and that the heIicity term on the left-hand side has the oppo­
site sign to that in (44). A whole class of orthonormal func­
tions X~ (y) may now be defined by a procedure analogous to 
that of (56). Letg(u) be an arbitrary real function ofa real 
variable u, and D the Hermitian operator on JYy defined by 
(57). Now define 

X~ (y) = eig(D)Xk (y) 

= c5(y, -k) J"" du(L)iU-Ieig(U). (65) 
21Tk2[2 _ "" k[2 

The delta function in (65) is the surface delta function for a 
unit sphere. Particular examples of (65) follow: 

(1) exp[ig(u)] = 1T- I12n! - iu) 

X [cosh(! 1TU) - isinh(!1Tu)], 
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Xk (y) = 8(y, - k)(2hryk3/2)1/2 sin(ylke) , 
(66) 

(2) exp[ig(u)] = rq + iu) 

x [coshq1Tu) + i sinh (!1TU) ], 

Xk (y) = 8(y, - k) (212/~k)1/2 sin(kI 2Iy). 
(67) 

IV. SUMMARY AND CONCLUDING REMARKS 

The functions ukn (Y), ukn (y), Xk (y), Xk (y) given by 
(54), (55), (62), and (65), respectively, are complete and 
orthonormal sets offunctions ofy. Any ofthese alternative 
sets can be used as a basis in Ky the Hilbert space defined by 
(8). An important property of these sets is that they belong 
to the unitary irreducible representation of the Poincare 
group with rest mass zero and helicity ~n. [See (44), (64).] 
This suggests the possibility of formulating a past light-cone 
quantum mechanics of lightlike quanta. Thus a theory of 
neutrinos and antineutrinos might be based on uk ( ± I) (y), 
and a theory of photons on uk ( ± 2) (y), just as a theory for 
spinless bosons of nonzero mass can be based on the ,pkq ( Y ) 
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of ( 10). Such theories will be explored in later papers of this 
series. 

ACKNOWLEDGMENTS 

The author would like to thank Professor Abdus Salam, 
the International Atomic Energy Agency, and UNESCO for 
hospitality at the International Center for Theoretical Phys­
ics, Trieste. 

IE. P. Wigner, Ann. Math. 40,149 (1939); V. Bargmann and E. P. Wigner, 
Proc. Natl. Acad. Sci. USA 34,211 (1948); L. L. Foldy, Phys. Rev. 102, 
568 (1956); J. S. Lomont and H. E. Moses, J. Math. Phys. 3, 405 (1962). 

2G. H. Derrick, J. Math. Phys. 28, 64, 1327 (1987). 
3p. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
'E. P. Wigner, Group Theory and its Application to the Quantum Mechanics 
of Atomic Spectra (Academic, New York, 1959), Chap. 12. 

5p. A. M. Dirac, J. Math. Phys. 4, 901 (1963). 
6M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions 
(Nat!. B~r. Stand., Washington, DC, 1965),9.1.26. 

G. H. Derrick 641 



                                                                                                                                    

Quantum systems with external electromagnetic fields: The large 
mass a$ymptotics 

L. Papiez and T. A. Osborn 
Department 0/ Physics, University 0/ Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 

F. H. Molzahn 
Department 0/ Physics, University o/California, Berkeley, California 94720 

(Received 3 June 1987; accepted for publication 30 September 1987) 

The large mass asymptotics of the quantum evolution problem for a system of charged 
particles that mutually interact through scalar fields and couple to an arbitrary time-varying 
external electromagnetic field is rigorously described. If K(x,t; y,s;m) denotes the coordinate 
space propagator (time evolution kernel) of this system, the singular perturbation behavior of 
K as mass m --- 00 is expressed in terms of a gauge invariant asymptotic expansion. In terms of 
the external fields and interparticle interactions, this expansion provides a nonperturbative 
approximation for the propagator K that is valid for all particle coordinates x, y and for finite 
time displacements t - s. For the class of analytic scalar and vector fields that are defined as 
Fourier transforms of time-dependent measures, the existence of this asymptotic series for K in 
powers of (m) -I is established for both real and complex masses. Explicit bounds for the error 
term are obtained and a manifestly gauge invariant transport recurrence relation is derived that 
uniquely determines all the coefficient functions of the asymptotic series. The small time 
asymptotic expansion of K is shown to be embedded within the large mass expansion. 

I. INTRODUCTION 

The time-dependent Hamiltonian of an N-body quan­
tum system of spinless nonrelativistic particles, each having 
mass m and charge q, that mutually interact through scalar 
fields and couple via the Lorentz force to an external electro­
magnetic field is given by 

H(x,p,t,m) = (2m)-I[p-qa(x,t)]2 

+qt/J(x,t) + V(x,t). (1.1) 

Here (x,t) is the space-time point in the (d + 1 )-dimension­
al Euclidean space that specifies the generic position of the 
particles of the system at time t. If the individual particles 
move in three dimensions then d = 3N. It is assumed that the 
timet takes values in the interval [O,T]. Thesymbolp repre­
sents the momentum operator - ifzV conjugate to x. The 
vector and scalar potentials that are responsible for the inter­
action with the external electromagnetic field are denoted by 
a: Rd X [O,T] ___ Rd andt/J: Rdx [O,T] ---R, respectively. The 
mutual interaction of all N particles, and their interaction 
with other possible forces, is described by potential V. 

Consider the propagator (evolution kernel) K for the 
system (1.1). If (y,s)ERdx [O,T] is an arbitrary initial 
space-time point, then the propagator is a distribution-val­
ued solution of the time-dependent Schrodinger equation 

ifz!...K(x,t;y,s;m) =H(x, - ifzV,t,m)K(x,t;y,s;m), at 

that satisfies the delta-function initial condition 

K(x,s;y,s;m) = 8(x - y). 

( 1.2) 

(1.3 ) 

The large mass limit is one mechanism through which 
quantum systems exhibit classical-like behavior. In this pa-

per we obtain a detailed description of the analytic behavior 
of the propagator K for both real and complex masses. In the 
case of forward time evolution, the mass parameter m is re­
stricted to take values in the upper-half complex plane. The 
open (closed) upper-half plane is denoted by iC> (iC;;.) and 
iC+ represents the closed upper-half plane with the origin 
deleted, iC+ = iC;;. ,,{O}. The mass behavior in iC+ is then 
utilized to find simple nonperturbative approximations for 
K. There is no loss of generality in the assumption of a com­
mon mass m for all N particles since a coordinate scale 
change transforms a Hamiltonian with different particle 
masses into one with the form (1.1). Similarly the effect of 
different charge coupling constants for each particle can be 
absorbed into the definitions of a and t/J. 

Stated in general terms, the large mass expansion we 
find takes the following form. The kernel K is shown to ad­
mit the factorization 

K(x,t;y,s;m) = Ko(t - s;x - y;m)F(x,t;y,s;m- I ), 

mEiC+, (1.4) 

where Ko is the well-known free evolution kernel (i.e., the 
propagator for the Hamiltonian with a = 0 and t/J = V = 0), 

Ko(t - s;x - y;m) = [m/21Tifz(t - s) ]dl2 

Xexp[im(x - y)2/(2fz(t - s»)] 
( 1.5) 

and F turns out to be a smooth bounded function, for each 
allowed (x,t; y,s) as 1 m 1--- 00 in iC+. This implies that K and 
Ko have exactly the same essential singularity at 1 m 1 = 00. In 
addition, the function F has the large mEiC+ asymptotic ex­
pansion 

F -{exp[ (ifz) -IJ(X,t; y,s) ]}{1 + m-1T1 (x,t; y,s) 

642 J. Math. Phys. 29 (3), March 1988 0022-2488/88/030642-18$02.50 @ 1988 American Institute of Physics 642 



                                                                                                                                    

+m-2T2 (x,t;y,s) + ... }. (1.6) 

The phase factor J is 

J(x,t;y,s) = f ds{(t-s)[qt,h+ V](w(s)) 

-(x-y)·qa(w(s»}. (1.7) 

In this expression w is the linear path in Rd X [0, T ] connect­
ing the initial space-time point (y,s) to the final point (x,f), 

w(s) = w(s;x,t; y,s) = (y + s(x - y),s + s(t - s»), 

sE[O,I]. (1.8) 

Clearly, J is real valued and independent of both m and Ii. 
The functions 1j turn out to be gauge invariant and are 
uniquely determined as solutions of a transport recurrence 
relation that is associated with the linear path w. The gauge 
dependence in the propagator is carried entirely by the mass­
independent phase factor J. The appearance of a, t,h, and V in 
the exponential factor J illustrates the nonperturbative na­
ture of the approximation (1.4 )-( 1. 7). 

Expansion (1.6) was recently derived! in a heuristic 
fashion by implementing a large mass expansion of the high­
er-order Wentzel-Kramers-Brillouin (WKB) approxima­
tion for the propagator K. The objective of this paper is to 
obtain the large mass asymptotics described in Eqs. (1.4)­
( 1.7), rigorously, for a sufficiently smooth class of potentials 
a, t,h, and V. 

The method of solution, devised for this problem, is to 
employ a constructive representation of the propagator K. 
For the class of potentials that can be represented as the 
Fourier transforms of complex-valued time-dependent mea­
sures, a convergent infinite series expression2 for K is known. 
Section II reviews the status of the operator-valued and ker­
nel-valued solutions of the quantum evolution problem for 
Hamiltonian ( 1.1 ). Those features of the constructive repre­
sentation of K needed in this investigation are outlined. In 
Sec. III the factorization property (1.4) is verified. The 
boundedness of Fin the neighborhood of Iml = 00 is estab­
lished. We prove that m -! is the appropriate small expan­
sion parameter of F. Furthermore, if the asymptotic expan­
sion (1.6) is carried out to an arbitrary order M, we obtain 
bounds for the remainder term that describes the total error. 
In Sec. IV the phase factor J is derived by summing all the 
mass-independent parts of the constructive representation of 
K. Finally a manifestly gauge invariant recurrence relation is 
obtained for the coefficient functions 1j, from which T! and 
T2 are computed. Section V summarizes our conclusions and 
gives the physical interpretation of representation (1.4)­
( 1.8) that is applicable if the external fields are solutions of 
Maxwell's equations. 

II. THE COMPLEX MASS PROPAGATOR: DEFINITIONS 
AND KNOWN RESULTS 

In this section the constructive description of the propa­
gator is recounted. Precise definitions of the operator-valued 
and kernel-valued solutions of the evolution problem are 
presented. In particular, this section defines the numerous 
quantities that enter the constructive formulas for K. A class 
of Fourier image potentials is discussed. For these potentials 
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one can prove that the kernel-valued Dyson series3.4 gives, 
via the complex mass extension method,2 an explicit series 
representation of the propagator. Finally, the behavior of the 
propagator with respect to the U( 1) gauge group is dis­
cussed. 

The Hilbert space of square integrable functions on Rd is 
indicated by JY = L 2(Rd). The identity operator on JYwill 
be I, and our notation for the inner product (defined to be 
antilinear in the left argument) is (','). In the following 
analysis certain restrictions are placed on the vector and sca­
lar potentials that ensure that the operator H (x, - iIiV,t,m) 
has a unique closed extension, H(t,m). Furthermore, these 
restrictions will imply that the (dense) domain of H (t,m) is 
independent oft, i.e., D (H(t,m») = DoCJYfor all tE[O,T]. 
Note that for complex masses, the Hamiltonian operators 
H(t,m) are not generally self-adjoint unless 1m m = 0. Fin­
ally the symbols TA, and (T~) denote the closed (and open) 
two-dimensional time regions {(t,s)ER2

: O<s<t<T} and 
{(t,s)ER2: ° <s <f < T}. 

The abstract (JY-valued) evolution problem5 in TA, 
takes the following form. A function tf!: [s, T] .... JY is said to 
be a solution of 

iliif;(f) = H(t,m)tf!(t), (2.1) 

if tf! takes values in Do, possesses a strong derivative ;p 
throughout the interval [s, T], and satisfies (2.1) for all 
tE [s, T]. Suppose I is an arbitrary function chosen from Do 
and s is the time at which the initial data condition is im­
posed. The Cauchy problem in the triangle TA, is the problem 
of finding, for each fixed sE[O,T], a solution tf!(. ,s) of (2.1) 
on the interval [s,T] that satisfies the initial condition 

tf!(s,s) =/ (2.2) 

Consider the description of the solution to the Cauchy 
problem in TA, in terms of an evolution operator. Let fjJ (JY) 
be the Banach space (with operator norm 11'11) of all bound­
ed operators mapping JY into JY. The evolution map 
I ~tf!(t,s) defines a linear operator from Do into cW'. The 
extension of this operator to JY is defined to be the evolution 
operator U(t,s;m). In greater detail, for each fixed value of 
mEC+, one has the statement. 

Definition 1: A two-parameter operator-valued function 
U: TA, .... fjJ (JY) is said to be the Schrodinger evolution gen­
erated by {H(t,m): tE[O,T]} if the following holds. 

(1) For (t,s)ETA" U(t,s;m) maps the domain Do into 
itself. (2.3a) 

(2) U is uniformly bounded in T A, and for some positive 
finite c, 

II U(t,s;m) II<exp[c(t - s)], t>s. 

(3) U is strongly continuous in TA,. 
(4) The following identities hold in fjJ (JY): 

(2.3b) 

U(t,s;m) = U(t,r;m)U(r,s;m), O<s<r<t<T, (2.3c) 

U(s,s;m)=I, sE[O,T]. (2.3d) 

(5) On the domain Do, U is strongly continuously dif­
ferentiable relative to t and s. Furthermore, U satisfies the 
equations of motion on T~, 

ili~ U(t,s;m)/=H(t,m)U(t,s;m)J, IEDo, (2.3e) at 
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- iii ! U(t,s;m)f= U(t,s;m)H(s,m)!, fEDo. (2.3f) 

Now we introduce the family of potentials that are the 
Fourier transforms of complex bounded measures on Rd. 
First, it is notationally simpler to combine the two scalar 
fields f{J and V into a single potential, viz., 

v(x,t) = qf{J(x,t) + V(x,t). (2.4) 

At this point the charge coupling constant q will be taken 
into the definition of a so that qa in (1.1) is replaced by a. 
The vector and combined scalar potentials are assumed to 
have the general form, 

a(x,t) = f eia
·
x dy(t) , (2.5a) 

V(x,f) = f eia·xdv(t). (2.5b) 

In these integrals the measures y(t) and v(t) are time depen­
dent, while the variable of integration aeRd (the wave vec­
tor) is not displayed in the measure symbol dy(t) or dv(t). 

Our measures [r(t) and v(t)] will be chosen from the 
Banach spaces ..ff (Rd,C:'), (r = d or 1) of C'-valued Borel 
measures ron Rd, which have complex-valued Fourier im­
ages (2.5a) and (2.5b). The space ..ff*(Rd,C:') is the sub­
space of..ff (Rd,C;') whose images are real valued. The norm 
11'11 for..ff (Rd,C') and..ff* (Rd,C:') is defined using the total 
variation measure I yl, via 

Ilrll=lrl(Rd) < 00. (2.6) 

The same symbol 11'11 is used as the norm for a variety of 
different spaces. The context will determine its correct 
meaning. An additional restriction on the measures is the 
requirement that they have compact support. Let S k C Rd be 
the closed ball of radius k and center at 0. Then..ff* (Sk ,cn 
will denote the Banach subspace of measures in..ff* (Rd,C') 
that have their support contained by Sk' 

A time-dependent measure is defined by the map 

r('): [O,T]-+..ff*(Rd,Cr
). 

From this point of view, y( f) is a Banach-space-valued func­
tion of t. In the space..ff* (Rd,cr) one has the conventional 
definitions2 of conti~uity and differentiability with respect 
to 11'11. The symbol y(t) denotes the derivative of r(') at t. 
With this terminology in place we may state the hypothesis 
on the potentials that is required for the remainder of this 
paper. 

Potential class (A): Let k < 00. The potentials a and v are 
said to be in the class (A) if a and v are the Fourier images, 
Eqs. (2.5a) and (2.5b), of time-dependent measures r(') 
and v( . ) satisfying 

(1) r(t)e..ff*(SkI2,Cd), tE[O,T], 

(2) v(t)e..ff*(Sk'C), tE[O,T], 

(3) both y( . ) and v( . ) are continuously differentiable 
on [O,T]. 

Hereafter the hypothesis that a and v are in (A) will 
always be assumed and so will not usually be cited as a part of 
the various lemmas and theorems. The functions a ( . ,t) and 
v(· ,t) in class (A) are Rd and R-valued analytic functions. 

644 J. Math. Phys., Vol. 29, No.3, March 1988 

The requirement that k < 00 means that the electric and 
magnetic fields have a space frequency cutoff k. The portion 
of our analysis that forces us to adopt class (A) is the con­
structive determination of the propagator K. The Schro­
dinger evolution operators U(t,s;m) are known to exist5.6 for 
a much wider class of potentials. 

Some useful constants related to a and v that often ap­
pear in the subsequent estimates are 

V T = supllv(t) II, rT = suplly(t) II, YT = supllr(t) II, 
(2.7) 

where each supremum is taken over tE[O,T]. For a more 
complete discussion of the measures r(t) and v(t) and their 
properties consult Ref. 2, Sec. II. 

Three immediate consequences of hypothesis (A) are 
(for all mEC+, tE[O,T]) (1) that H(x, - iliV,t,m), inter­
preted as the minimal operator on CO'(Rd), has a unique 
closed extension H(t,m) in K; (2) that the domain of 
H(t,m) is time independent and is the same domain Do as 
that of the self-adjoint extension of the Laplacian; and (3) 
that H(t,m) is strongly continuously differentiable in t on 
Do. Given the validity of these three properties for the family 
of Hamilitonian operators {H(t,m): tE[O,T]}, one can 
adapt without difficulty the general theory5,6 of evolution 
equations in Banach space, with unbounded operator coeffi­
cients, to obtain the existence of the complex mass evolution 
operator satisfying all the properties of Definition 1. For 
details of the proof see Ref. 2, Theorem 2. 

Theorem 1: For each mEC+, the family of Hamiltonian 
operators {H( t,m): tE [O,T]} generates a Schrodinger evolu­
tion operator U(',';m): TA -+ f!l} (K). 

It is often the case in physical problems that the bound­
ed evolution operators U(t,s;m) turn out to be represented in 
terms of an integral kernel.7 For the system (1.1) an appro­
priate definition of the propagator is as follows. 

Definition 2: Fix mEC+. A two-parameter family (in 
T~ ) of functions K ( . ,t;· ,s;m): Rd X Rd -+ C that are measur­
able and locally integrable on Rd X Rd is called the propaga­
tor for evolution {U(t,s;m): (t,s)ETV iffor allfa 0' (Rd), 

[U(t,s;m)f](x) = f K(x,t;y,s;m)f(y)dy, a.a. x. 

(2.8) 

The notation L b (Rd) denotes the L P functions of com­
pact support. Observe that (2.8) determines U(t,s;m)f for 
all/eK. The space L 0' (Rd) is a dense subset of K. Thus 
eachfeK is the strong limit ofa sequence {/;}CL 0' (Rd). 
The value of U(t,s;m)fis then given by 

U(t,s;m)f = si-~i~ f K( ',t;y,s;m)/; (y)dy, 

which holds for allfeK. 
. Definition 2 of the propagator as a type of integral ker­

nellS structured to deal with the difficulties of interpreting 
the free propagator as a kernel. The function 
Ko (t - SiX - y;m) is bounded but has no decay as 
Ix - YI-+ 00. As a consequence, for an arbitrary wave func­
tion feK, one does not generally have that 
Ko(t - SiX - y;m)f(y) is L I(R;). This difficulty is circum-
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vented by requiring that/be in L neRd). In addition, note 
that Definition 2 implies that for each (t,s)ET~, the propa­
gator K ( . ,t; . s;m) is uniquely defined almost everywhere. 
The point t = s is excluded from the specification of the pro­
pagator since, as the case of the free propagator Ko shows, 
one cannot expect that K be defined for zero time displace­
ment. 

The Dyson expansion3.4 provides, when successful, a 
perturbative method for obtaining the operator U(t,s;m). 
The non-Laplacian portion of Hamiltonian (1.1) has the 
differential structure 

M M 1 2 
- a(x,t)·V + - (V'a) (x,t) + - a (x,t) + v(x,t). 
m 2m 2m 

(2.9) 

Using standard techniques for perturbing closed operators, 8 

H (t,m) can be shown to be the sum of the closed extension 
Ho(m) of the free Hamiltonian - ft-(2m) -la and a per­
turbing operator V(t,m) associated with (2.9), i.e., 

H(t,m) = Ho(m) + V(t,m). 

The unbounded operator V( t,m) is defined on the domain 
Do [the domain of Ho(m)] and is Ho(m) bounded. The 
formal integral equation equivalent to the equation of mo­
tion (2.3e) for U(t,s;m) is 

U(t,s;m)/= Uo(t,s)/ -..!...- i' dr 
fl s 

X Uo(t,r) V(r,m) U( r,s;m)J, (2.10) 

where Uo (t,s) is the evolution operator generated by Ho (m). 
Iterating (2.10) leads to the formula 

Dn (t,s;m)/ 

=( - ~r L dtn UO(t,tn)V(tn,m)UO(tn,tn_l) 

X ... X V(tl,m) UO(tl'S)J, (2.11) 

where tn = (tl, ... ,tn ) and < is a shorthand notation for the 
n-dimensional time-ordered domain an (t,s) = {tn ERn: s<.t 1 

<.t2<. .. · <.tn <.t}. 
In the circumstances where V( . ,m) is uniformly bound­

ed in the interval [O,T] then it is well known (Ref. 5, Chap. 
II) that the sum of terms (2.11) converges strongly to 
U(t,s;m)! However, for the problem at hand (with a#O), 
the term (ifllm )a(x,t)·V is unbounded no matter how nicely 
a(x,t) behaves. This difficulty may be overcome2 by the use 
of the complex mass embedding method. In this method one 
obtains the propagator K for real mass values by continuity 
from the evolution kernels for complex masses. This tech­
nique is similar to Nelson's program9 of using analytic con­
tinuation in mass to define the Feynman path integral. 

For 1m m > 0 an operator characterization of the nth 
Dyson iterate (2.11) and its summation over n is found in 
Ref. 2. Let Y be the Schwartz space of complex-valued func­
tions on Rd of rapid decrease. If/EY, mEC> ' then the right­
hand side of (2.11) is defined as the n-dimensional strong 
Riemann integral on K. Thus for each (t,s;m)ETa XC> 
and n;;;.l the map D n (t,s;m): Y -+ K is well defined. In ad­
dition, for sufficiently short time displacements, t - s, the 
sum over n of Dn (t,s;m)/ converges strongly to U(t,s;m)! 
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Consider next a kernel representation for Dn (t,s;m), 
1m m > O. The relevant formulas are built up in terms of 
integrals of composite measures formed from r( . ) and v( . ). 
These measures and their combinatorics are defined as fol­
lows. First, the measure p, ( .) is given by 

p,(t) = (2m)-l r (t)*r(t) + v(t). 

Here * is the scalar convolution of two measures in 
1*(Rd,Cd) that constructs a measure in1*(Rd,C). Recall 
that ifr(t) has support inSk/2 , then r(t)*r(t) has its sup­
port contained in Sk' The Fourier transform of p, (t) is the 
scalar function (2m) -la(x,t)2 + v(x,t), which is the deriv­
ative-free part of expression (2.9). 

It is helpful to introduce the polar factorization of r(t) 
relative to Ir(t) I. For each tE[O,T] there exists a Borel-mea­
surable function 1] (t, . ): Rd -+ Cd whose Cd Hermitian norm 
11] (t, . ) I = 1. Specifically if B denotes the Borel subsets ofRd, 
then 

i dr(t) = i 1] (t,a)d Ir(t) I (eEB). 

An i-tuple of vectors in Rd is represented as U i = (al, ... ,ai ). 
In terms of the parameters n, i, U i_ I' t, define the measure 

p,7(t,ui _ l ) (e) = i (~+ :il 

aj )'1](t,a)d Ir(t) I, 
e 2 J= 1 

(2.12) 

where the dot denotes the summation over the components 
of vectors in Cd. A combination of the previous two measures 
leads to 

Pi(t) =p,(t) - (fllm)p,7(t,ui _ I )· 

It follows from its definition that Pi (t)E.-U'*(Sk'C), 
The measures that appear in the formula for D n (t,s;m) 

are constructed from Pi (ti) and Ir(tj) I. For O<.r<.n, let Jn" 
denote the collection of all r-element subsets of {l, ... ,n}. 
Thus I n,, = {el} if r = 0, while if 1 <.r<.n, I n,, contains (~) 
setsj, = {jl, ... ,j,}, where we may supposejl <j2 < ... <j,. 
Each j,E.ln" defines a measure in the n-fold product space 
(RdX'" X Rd,B x··· XB) by 

An(j"tn) = PI (tl) X ... X Ir(tj,) I 
X .. · X Ir(tj) I X .. · XPn (tn)· (2.13) 

The right-hand side of this equality is to be understood in the 
following way. If r = 0 the measure involves only products 
of Pi (ti) for i = 1-n. In the case where r> 0 and jr 
= {jl, ... ,j,} then thejith term of the product for the r = 0 
case has element Pi; (tj,) replaced with I r(tj) I. Finally we 
specify the summation convention 

n 

L=L L 
'J, ,= 0 J,eJ •. , 

and set cn" to be 

( m )d/2 ( _ i)" ( fl )' 
cn" = 21Tifl(t _ s) T im' 

The integral kernel behavior of Dn is then summarized 
by the statement (Ref. 2, Lemma 9). 

Lemma 1: Suppose that mEC> and (t,s)ET~. Let 
d n ( • ,t; . ,s;m ) : Rd X Rd -+ C be the parametric integral (n;;;.l), 
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with the integrand 

J = exp ix' I a p - _1_ I (t - tp' V tp lap' 'ap [ 

n 'Ii n 

p=l 2m p ••p 1 

+ im (Xn -y)2) 9, (2.14b) 
21i(t - s) 

where tp' V tp = max{tp' ,tp} and 

9 =exp [ -im (Xn _y)2] {iI [17(tj"ah )·Vyj} 
21i(t-s) 1=1 

xexp[ im (X
n 

_ y)2] , 
21i(t - s) 

(2.14c) 

Ii n 
Xn =x-- I U-tp)ap' (2.14d) 

mp=1 

Then d n (',t;'s;m) is a CarlemanlO kernel for the operator 
Dn (t,s;m), 

Dn (t,s;m)!= f dn (',t;y,s;m)!(y)dy, !ElK. (2.15) 

Basically this conclusion emerges from the study of iter­
ations of the map exp(i1'~o(m)/Ii)V( 1'l,m) (1',,1'2>0) act­
ing on an element of Y. Observe that the function dn re­
mains well defined for nonzero real values of m. Hereafter dn 

will denote the function (2.14a) on the enlarged domain T~ 
XRdXRdXC+. 

The propagator K is obtained as the sum over n of the 
functions dn , with do =Ko. This fact and the explicit formula 
(2.14) for dn is the reason for calling this result a construc­
tive representation. The sum over n has a finite radius of 
convergence which may restrict the allowed time displace­
ment t - s in Tb,' but which is independent of the x, y vari­
ables. We introduce the convenient convergence parameter 

Ty = min{lml(2ekYT)-I,T}. (2.16) 

Theorem 2: Let mEC+ and (t,s)ET~.lft s< Ty then 
for each(x,Y)ERdXRd, the (pointwise) sum over n of 
dn(x,t;y,s;m) is absolutely convergent and gives an x,y 
jointly continuous function 

00 

K(x,t;y,s;m) = I dn (X,t;y,s;m), (2.17) 
n=O 

which is the propagator (in the sense of Definition 2) of the 
SchrOdinger evolution operator U (t ,s;m ) . 

Proof: For masses that are in C> or have positive real 
values this result is established in Ref. 2 (Proposition 4 and 
Theorem 3). The proof given there is also applicable if 
m<Q 0 

The U( 1) gauge dependence of time evolution for sys­
tem (1.1) is well understood. \1,12 The fact that the concept 
of evolution has been widened here (via Definition 1) to 
include complex masses in C+ leaves this situation un­
changed since the mass parameter does not appear in a gauge 
transformation. However, in view of the specific results 
above several questions relating to gauge invariance arise. 

The first question concerns the stability of the potential 
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class (A) under gauge transformations. Is there a natural 
class of gauge transformations that leave class (A) invar­
iant? An affirmative answer is provided by the following 
construction. Let A: Rdx [O,T 1--R denote a gauge poten­
tial. 

Gauge class [j: Let k < 00. The gauge potential A is said 
to be in the class [j (k) if A is the Fourier transform, 

A,(x,t) = f eia
·
x dt(t) , (2.18) 

of a time-dependent measure t(t) satisfying 

(1) t(t)E..4*(SkI2'C), tE[O,T], 

(2) t(·) is twice continuously differentiable on [0,T1. 

Note that A,(x,t) defines a t-dependent family of bound­
ed operators on JY'. Namely let A (t)Ef)) (JY') be specified, 
for each tE [0, T], by 

[A(t)!](x) = A (X,t)j(X) , fElK. 

The operator norm of A(t) obeys IIA(t) 1I<lIt(t) II. Similar­
ly, the strong t derivative of A (t) is also a uniformly bounded 
operator on [O,T] and is given by 

[AU)!] (x) = aA(X,t)!(x), fElK. 

The symbolaA denotes the partial derivative of A with re­
spect to time. The Abelian U( 1) gauge group is convention­
ally taken to be the family of unitary operators {exp( (q/ili) 
X A(t)]: qER}. However in (2.4) and thereafter the charge 
coupling constant q was incorporated into the definition of a 
and <p. To be notationally consistent, here, it is necessary to 
set q = 1 and write the unitary gauge operator as 
exp[ (iii) I A(t)}. 

It is easy to see that the measure images of the two gauge 
transformation equations, 

a(X,tiA) = a(x,t) + VA (X,t) , 

V(X,tiA) = v(x,t) - aA(X,t) , 

take the respective forms 

r(t;A) = r(t) + Vt(t), 

V(tiA ) = v(t) - t(t), 

(2.19a) 

(2.19b) 

(2.20a) 

(2.20b) 

for all tE[O,T]. Here Vt(t)E..4*(SkI2,Cd
) is defined by 

Vt(t)(e) i ia dt(t) (eEB). 

The definition of [j (k) ensures that the right-hand sides of 
(2.20a) and (2.20b) are, respectively, in.4*(SkI2,Cd

) and 
.4* (Sk'C)' and satisfy the t-differentiability conditions re­
quired in (A). 

Time evolution, whether described in terms of U(t,s;m) 
or its kernel from K, possesses a simple gauge dependence. 
Let H(t,miA) be the Hamiltonian operator determined by 
(2.9) witha(x,t;A) andv(x,tiA) substitutingfora(x,t) and 
v(x,t). Further, let U(t,simiA) be the family of complex 
mass Schrodinger evolution operators ( described in 
Theorem 1) generated by {H(t,m;A): tE[O,Tn. It follows, 
without difficulty from (2.3e), that 

U(t,s;m;A) = exp[iA(t)/IiJ U(t,sim)exp[ - iA(s)/Ii]. 

This is the operator-valued form of the U( 1) gauge depen-
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dence of the evolution process. In an obvious notation its 
kernel analog reads 

K(x,t;y,s;m;A) = exp[iA(x,t)lfi]K(x,t;y,s;m) 

Xexp[ - iA(y,s)/fi]. (2.21) 

For sufficiently short time displacements, Theorem 2 guar­
antees the existence of both propagators in (2.21). However 
the condition t - s < Ty for Hamiltonian H( t,m;A) involves 
suplir(t,A) II, whereas Hamiltonian H(t,m) uses supllr(t) II 
= rT' Thus the convergence criterion (2.16) is not gauge 

invariant. This circumstance is just an artifact of the esti­
mates of d" (x,t;y,s;m), used in Ref. 2, to study the conver­
gence properties of the series (2.17). Each term in series 
(2.17) is highly gauge dependent and it is difficult to bound 
them in a manner that reflects the simple U( 1) gauge de­
pendence ofthe exact K. 

III. LARGE MASS ASYMPTOTIC BEHAVIOR 

This section focuses on the mass dependence ofthe ker­
nels dn (x,t;y,s;m) and K(x,t;y,s;m). It is verified that the 
factorization (1.4) is valid and that Ko(t s;x - y;m) car­
ries all the essential singularity of the propagator K in the 
inverse mass variable at m -I = O. We show that 
F(x,t;y,s;m- I

) admits a m- 1 expansion about the point O. 
An explicit bound is obtained for the total truncation error 
of this large mass expansion. 

The basic formula upon which the results of this section 
rest is the expression (2.14) for d". We discuss this formula 
in detail and show that, in spite of its rather elaborate nature, 
it has a structure that permits one to find simple estimates. 
These estimates will suffice to determine the mass depen­
denceofK. 

It is useful to employ the variable u = m -I. Let CZt be 
the u-complex plane and let CZt < (CZt < ) represent the lower 
half-planes 1m u < 0 (1m u <0). Furthermore, denote the 
open semidisk of radius uoby CZt < (uo) = {ueCZt <: lui <uo} 
and its closure by CZt < (uo)' The large mass limit then corre­
sponds to u ---0 in CZt < (uo)' 

To begin, consider the integrand f defined in (2.14b). 
The product of gradients Vy appearing in &1 may be evaluat­
ed (Ref. 2, Lemma 8) with the result 

[rl2J 
&1 = L L [ ifiu(t-s)]I-r4>(qr;a,,)lI'(qr;a,,), 

1=0 q, 

(3.la) 

where 4> and IIJ are the functions 
I-I 

4> (q,;a" ) = II 1](tq,_2i,aq,_2i) ·1](tQ,_2i_l,aq,_2i. 1)' 
'=0 

(3.1b) 
,-21 

lIJ(qr;an ) = II 1](tQi,aq) 
i I 

,[y-x+ (fiu) ptl (t-tp)ap]. (3.Ie) 

The summation convention in (3.1a) for qr is the fol­
lowing. The symbol [r 12 J is the greatest integer less than or 
equal to r12. Suppose the index set jr = (jl,j2, ... ,jr) is giv­
en. For each 0</ < [r 12 J, qr represents a particular two-stage 

647 J. Math. Phys., Vol. 29, No.3, March 1988 

selection from the set jr' First choose r - 2/ elements from 
jr, and denote them QI,q2, ... ,qr- 21' Next select / pairs from 
the remaining 2/ elements in j" and denote them by 
{Q,-21+ I ,Qr- 21+ 2},· .. ,{Qr- I'Q'}. The summation involv­
ing q, denotes all r![21(r - 21)!l!] -I distinct choices of this 
type. 

It is convenient to abbreviate the space-time arguments 
of d" by writing Q = (x,t;y,s). The dependence of 4> and IIJ 
upon Q and tn is suppressed, for reasons of notational econ­
omy. Note the simple numerical bounds that 4> and IIJ obey 

/4>1<1, IIIJI«Z" ),-2/, (3.2a) 

Zn = IY - xl + lulnfikT. (3.2b) 

A form of dn more suitable for estimates results from 
making the change of variables 

t,=s+S,(t-s), S,e[O,I], i I-n. 

In the new variables Sn = (SI,S2""'S" )e[O,I]" the time-or­
dered integral in (2.11) becomes the s-ordered integration 
(O<SI <S2<" . <Sn < 1), 

r d t" = (t - s)" f d Sn. 
JAnU,S) < 

Writing f in the S, variables gives us, after combining the 
arguments of the exponential in (2.14b), 

f = exp[i(x - y)2/2fiu(t - s) ]exp(ibn )h, (3.3a) 

where 

h =f2(s",a",t - s;u) = exp[ - ifiu(t -8)a,,/2], 
(3.3b) 

n 

a" = a" (s",a,,) = L g(S"Sj )a,'aj , 
',j= I 

n 

(3.3c) 

bn = b" (S",an;x,y) = L a p' [y + Sp(x - y)], 
p=1 

g(S,S ') = S < (1 - S> ). 

(3.3d) 

(3.3e) 

Here S < = Min{S,s'} and S> = Max{S,s '}. Thefunction 
gisa Green's function for the operatord 2 Ids 2 on the interval 
[0,1]. Observe that thevectory + SP (x - y) in (3.3d) is the 
space part ofw(sp) in (1.8). 

A generalized form of the integral (2.14) occurs in 
much of the subsequent analysis.This generic form results 
when the factors corresponding to Ko (t - sox - y;m) are de­
leted and h is replaced by other related functions of 
S" ,an,t - s;u. Denoting these functions by f( Sn ,an ,t - s;u) 
define 

x4>(qr;an )1IJ(qr;an )exp(ibn ), (3.4 ) 

where {tn (Sn )}j = s + SjU - s), i = I-n. If we return to 
thecasewithf=h then (2.14a), (3.1), and (3.3) imply the 
factorization 
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dn (Q;m) = Ko(t - sox - y;m)dn (Q;m- I), 

where 

dn (Q;u) = Sn (f2,Q;U). 

( 3.5a) 

(3.5b) 

Notice that in (3.5a) one must restrict t>s and m- I #0 in 
order to avoid the essential singularity in Ko, while dn re­
mains well defined by (3.5b) for t = sand u = 0. Of course 
(3.5a) gives do= 1. 

A number of the basic properties of dn (Q;u) follow im­
mediately from its integral form Sn (f2,Q;U). Note first that 
A n(j"tn) has finite total variation in the n-fold product 
space (RdX'" X Rd,B X··· XB). In the notation of Sec. II, 
A n is a mapping of I n,, X An (T,O) into the Banach space 
vH'*( [Sk r,C). As a consequence of (2.7), (2.12), (2.13), 
and the fact that a; (i = 1-n) has compact supportSk , the 
norm of An(j"tn) has the estimate 

IIAn(j"tn) II = IA n(jr,tn ) I (lRd) 

«J-lT + lullinkYT),,-r(yTy (3.6) 

for alljrEJn,r and t"EAn (T,O). 
Now observe thatf2 and <I> are x,y independent while 

exp(ib,,) is a Coo function ofx,y and that 'I1(qr;u,,) is a 
polynomial of order r - 21 in x - y. Combining these facts 
shows that d n has partial derivatives with respect to x and y 
to arbitrary order that are continuous on the domain TA 
X Rd X Rd X ~. Furthermore, d" has first-order derivatives 
with respect to t and s that are continuous on the domain T~ 
XRdXRdx ~. Finally for fixed QETA XRdXRd, dn is an 
entire function of u. Verification of this last statement fol­
lows from an application of Morera's theorem. The measure 
An (jr,t" ) is a polynomial in u and the remaining portion of 
the integrand is an entire function of u. Integrate dn over an 
arbitrary smooth finite length contour in ~ . In this case the 
multiple integral is absolutely convergent, and thus Fubini's 
theorem shows one may interchange the order of the u and 
the An integration. Doing the u integration first shows that 
the complete multiple integral is zero for all contours. Thus 
d n is entire. This result is a particular consequence of the fact 
that the measures y(t) and v(t) have compact supports Sk' 
If the supports for these measures were all of Rd then the 
multiple integral would not be absolutely convergent for u in 
the upper half complex plane and Fubini's theorem would 
no longer apply. 

Next consider Fof (1.4). From (3.5a) and (2.17) it is 
evident that F(x,t; y,s;m -I) [ = F( Q;u)] is the sum over n 
of d" (Q;u). In fact this sum provides a proper definition of 
F. More specifically the following proposition is found. 

Proposition 1: Assume the potentials a and v are in class 
(A). Let Uo < (2ektYT) -I. 

(a) For each (Q;u)ETA XRd XRd X ~,,(uo) the sum 
over n of d" (Q;u) is absolutely convergent and provides a 
pointwise definition of the function F, i.e., 

00 

F(Q;u) = L d n (Q;u). (3.7) 
n=O 

(b) The function F has partial derivatives to arbitrary 
order in x, y that are (jointly) continuous on the domain TA 
XRdXRd X ~,,(uo)· 
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(c) F has first-order partial derivatives with respect to t 
and s that are continuous functions on T~ X lRd X Rd 
X ~,,(uo). 

(d) For each QETA XRd XRd, F(Q;') is holomorphic 
in ~ < (uo) and continuous in ~ " (uo). 

(e) Let K be the propagator defined in Theorem 2. On 
the domain T~ XRd XRd X{mEC+: Im-ll<uo} the func­
tion K admits the factorization (1.4). 

Proof(sketch}: Consider (a) and (d) together. The se­
ries (3.7) and (2.17) are the same, modulo the multiplica­
tive function Ko, so the convergence proof (Ref. 2, Lemma 
10) with obvious modifications applies to (3.7). A minor 
difference in the series (3.7) and (2.17) is that the functions 
dn are nonsingular at the point u = ° and so this point may 
be added to the domain of convergence of (3.7). The esti­
mates obtained in demonstrating the pointwise convergence 
of (3.7) also show for each fixed QETA XRdXRd that the 
sum (3.7) is absolutely and uniformly convergent in 
~ " (uo). Since each dn (Q;') is holomorphic in ~ < (uo) 
and continuous in the compact ~,,(uo), it follows that 
F( Q; .) is holomorphic in ~ < (uo) and continuous in 

~" (uo)· 
Examine (b) and (c). Let Vr, y denote the partial deriv­

ativewith respect to the variable set (xl, ... ,Xd, YI'"'' Yd) that 
is specified by the multi-index Y=(YI'''''Y2d)' Use the 
method of estimating d n (Q;u) found in Eq. (6.25) of Ref. 2 
and which is elaborated on in the proof of Theorem 3 below. 
In this way bounds for Vr,yd" (Q;u) are obtained that show 
the series over n ofVr,yd" is absolutely and uniformly con­
vergent for (Q,u) in arbitrary compact subsets of TA XRd 

XRdX ~,,(uo)·Thus 

Vr,y 52 d" (Q;u) = 52 Vr,y d" (Q;u). (3.8) 
n=O n=O 

Each term in the sum on the right is uniformly continuous in 
the compact subsets selected above and so this sum defines a 
continuous function in TA XRdXRd X ~,,(uo). 

A similar argument verifies that the partial derivative 
on the set tE(S,T) [or SE(O,t)] may be interchanged with the 
sum over n in (3.7). The sum of ad" (Q;u)lat is uniformly 
convergent for compact subsets of T~ X Rd X Rd X ~ " (uo). 

Thus the partial derivative of Fwith respect to t exists and is 
a (jointly) continuous function on the domain T~ X Rd X Rd 
X ~,,(uo). Finally (e) is an immediate consequence of (a) 
and (3.5a). 0 

From now on we use the factored form KoFofEq. (1.4) 
as the preferred representation ofthe propagator K. The be­
havior of K in the neighborhoods of t = sand u = ° is conve­
niently studied with the representation KoF because both 
t = sand u = ° are allowed in the domain of F. 

Proposition 1 is just one of several ways of summarizing 
the conclusions that result from analyzing the convergence 
properties of series (3.7). In the specific form above the val­
ue of Uo was chosen sufficiently small so that the time-dis­
placement condition (2.16) is Ty = T, i.e., no restriction 
beyond the standard requirement (t,s) ETA . Moreover, even 
if the physical mass ofa system is such that 1m- I I> uo, then 
the results of Proposition 1 apply in an altered form. Let 
c> 1 be large enough so that m-IE~" (cuo)' The series 
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(3.7) remains convergent if the time displacement obeys the 
limitation t - s < Tic. 

The holomorphy of F( Q;u) in ~ < (uo) means that for 
each Q, F( Q;u) has a convergent Taylor series expansion 
about every point in ~ < (uo)' Unfortunately this fact is of 
no help in deriving expansion (1.6) since the point u = 0 is 
not in the domain ~ < (uo)' Instead we proceed to derive the 
small u expansion of F( Q;u) by an appropriate restructuring 
of series (3.7). 

To begin with let us consider the behavior of h. in 
~ < (uo) that is critical in the following analysis. Recall that 
an is non-negative and has the simple bound (Ref. 13, 
Lemma 5), 

(3.9) 

If UE~ < the argument of the exponential inh. has a nonposi­
tive real part for all ~n , an and so 12 admits an 
M-term asymptotic expansion. Upon setting 
cj = (j!) -I [IiCt - s)/2i] j we have for M> 1, 

12(~n,an,t - s;u) 
M-I 

= L cjuj(an) j + CMuMHM(~n,an,t - s;u), 
j~O 

(3. lOa) 
where the remainder H M has the u-independent bound 

IHMI«an)M«nkI2)2M (3.lOb) 

for all 0<51 < ... <5n < 1 and all aiESk • 

In addition to the u dependence in h. the integrals 
Sn (Iz,Q;u) acquire u dependence from the measure 
An(j"tn) and the function '1'. A convenient description of 
the latter u dependence is given by the following lemma. 

Lemma 2: Let the symbol L=={n,rj,,/,qJ represent a 
set of summation indices that characterize the functions in 
(3.1a)-(3.1c). Let Ct,s)ETa , i>O, and let UE~ with lui <uo. 
Denote by J (L) the following multiple integral that occurs 
when (3.lOa) is substituted into (3.5b): 

J(L)==J, d~n f dAnu"tn(~n»)[an(~n,an)r 
X exp [ .J=Tbn ] cI>(q,;an ) '1'( q,;an ). (3.11) 

Then J is a polynomial in u of the form 
n-21 

J(L) = L uPAp(L), 
P~O 

whose coefficients obey the bound 

Ct - s)n-,(uo) PIAp (L) I<(t - s) PAp (L), 

Ap (L) == Tn - ,-pen!) -I(nk 12)2i( f.lT 

+ liuonkYT)n - '(YT v(Z~ )'- 21, 

z~ == IX - yl + uonlikT. 

(3.12) 

(3.13a) 

(3.13b) 

(3.13c) 

Proof: The measure An contains n - r factors of 
Pi = f.l - uftp,7 having u dependence, while 'I' of (3.1c) has 
r - 2/ factors each containing one power of u. This leads to 
(3.12). 

Contributions toA p (L) thus arise by selecting a factors 
of u from An, where a = O, ... ,min{n - r,p}. These terms 
contain a measures - ftp,7 of bound IinkYT' n - r - a mea-
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sures f.li of bound f.lT' and r measures IYi I of bound YT' The 
remainingp - a factors of u are selected from '1'. The coeffi­
cient functions of these factors of u in 'I' are bounded by 
lin (t - s)k, while the complementary factors from 'I' are 
bounded by Ix - yl. 

Noting that f < d ~n = (n!) -I and upon employing 
(3.9) these observations give 

(uo) PIAp(L)1 

<~ n i' (n;; ')(liuonkYT )a( f.lT)n - ,- a( YT V( n2k )2i 
n. a~O 

X (r - 2f\(uonlik [t _ s]) p- al x _ yl'- 2/- (p- a), 
p-aJ 

(3.14) 

where (;= !I) is understood to be zero if a> p. Upon multi­
plying (3.14) by (t - s)n -, one can extract Ct - s) p from 
the sum over a, and replace (t - s) n - ,- a by the larger 
Tn - ,- a, since n - r - a>O. Next multiply and divide the 
resulting right-hand side of (3.14) by TP. The result of these 
manipulations is that the factor [t - s] in (3.14) has been 
replaced by T, and a factor (t - s) PT n - ,-P appears outside 
the summation over a. Finally replace the indexp - a with b 
inside l:a and sum over b = O, ... ,r - 2/ to obtain (3.13).0 

The elementary observations made in (3.10) and 
Lemma 2 play a key role in the derivation of the small u 
asymptotic expansion of F( Q;u). It is helpful to first intro­
duce the functions that appear in the remainder term bound 
of this expansion. Define U i : [0,1) - R by the convergent 
series 

"" ui(v)== L ~(n + l)n2i U>O), 
n~1 

and let Ii: R X R - R be 

Ii (V1,V2) = (11)-1(1ik2/S)i(VI)iui(2euoYTkT) 

where 

ci' = (2uolik) -I (f.lTIYT + l/2kT), 

c!{ = (2uoIikT)-I. 

(3.15a) 

(3.15b) 

With these conventions we have the following theorem. 
Theorem 3: Let Uo < (2ey TkT) -I. For all integers M> 1 

and each QETa XRdXRd, F(Q;u) has the small u asympto­
tic expansion in ~ < (uo), 

M-I 
F(Q;u) = L UjPj(Q) + uMEM(Q;u). 

j~O 

(3.16 ) 

Throughout their domains of definition the M complex-val­
ued u-independent coefficient functions ~: Ta XRdXRd 

-C, and the error function EM: Ta XRdXRd X ~ < (uo) 

- C possess continuous partial derivatives up to arbitrary 
order in (x, y). On the more restricted domains T~ X Rd 
XRd and T~ XRdXRdx ~ < (uo), Pj and EM havecontin­
uous first-order partial derivatives with respect to t and s. 

Furthermore, for each (Q,u)ETa XRdXRd X ~ (uo), 
Pj and EM obey the estimates 

IP/Q)I«t-s)j ± Ii(uoT,lx-yl) +OJ,O' (3.17) 
uoT i~O 
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(3.18 ) 

In addition, the derivatives of EM obey the following order 
estimates, as t-s-+O+, uniformly for (x,y,u) in compact 
subsets of Rd X Rd X ~ < (uo). For all I rl > 0 the spatial de­
rivative V~,yEM = 0 (t - S)M), for (t,s)ETt>.. The time de­
rivatives (alat)EM and (alas)EM are O(t-S)M-I) for 
(t,s)ET1. Thus expansion (3.16) may be differentiated to 
first order in the time variables and to arbitrary order in the 
space arguments. 

Proof.' Replaceh inSn (/2,Q;U) with expansion (3.lOa). 
After summing over n to obtain F( Q;u) one finds 

M-I 
F(Q;u) = I. Fi(Q;u) +FM(Q;u), (3.19a) 

;=0 

where 
00 

Fi(Q;u)=CiUi I. Sn(an)i,Q;u)+8i,0' (3.19b) 
n=1 

and 

FM(Q;u) = CMUM .f Sn (HM,Q;u). (3.19c) 
n=1 

Consider the series that sums to Fi (Q;u), and let UE ~ , 
lui ..;uo for the moment. The functionSn «an )i,Q;U) is a finite 
sum of integrals J (L) that are precisely those characterized 
in Lemma 2. Hence uiSn«an )i,Q;U) is a polynomial in 
u, and Fi is given by the multiple series [with c; 
=( _1)n(r-I)n-l- i/(/12 i )], 

n - 21 

Fi(Q;u) - 8i,0 = I. I. c;fl+ l- n 
L p=o 
X (t - S)i+ 1+ n - 'Ui+ I+PAp (L). 

(3.20) 

If we bound the coefficients (t - s) n - 'u PAp (L ) using 
(3.13) then (3.20) has the following majorizing series, 
which we denote as Ii =Ii (Iul,t - s,lx - yl), 

n-21 
Ii = I. I. (/12i) -llIi+ 1- nluli+ l(t - S)i+I+PAp (L). 

L p=o 
(3.21) 

An important property of this majorizing series is that it is 
monotone increasing in each of the three variables I u I, t - s, 
and Ix - yl. This is a consequence ofthe fact that the alge­
braic powers of these variables are always non-negative. 
Thus a bound of Ii found for any particular value of I u I, 
t - s, and Ix - yl is applicable to all smaller values of these 
variables. 

Note that in terms of the indices in the set L, the bound 
(3.21) and (3.13) is independent ofthe more elaborate sets 
j, andq,. In (3.21) one always has (t - s) PT -p..; 1; the sum 
over p has a maximum of n + 1 terms, and there are 
rl[21(r - 2/)!lI] -I terms in the q, sum, thereby 

n-21 
I. I. (t-s)PAp(L) 
q, P=O 

..; (n + l)rIT n
-, (~)2i 

21(r - 2/)Il!nl 2 

X (Il-T + liuonkrT)n - '( rT ),(Z~),- 21. (3.22) 
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Multiply (3.22) by (/12i) -llIi+ 1- n(lul (t - s)V+ I and then 
sum over the additional indices n,r,j,,1 to obtain 

Ii";{ (1I1u l (t - S)k2)i I. (n + ~)n2i (I..)n 
I. 8 n.,,j, n. II 

(3.23a) 

where 

B = r. _n _Ttu_o [,/2] I (ZO)'-I(L.')I 
n"-I~O (r-2l)!l1 T 2Z~' (3.23b) 

One completes the bound study of Ii by using the same pat­
tern of estimates found in (6.22)-(6.25) of Ref. 2. Namely 
in (3.23b) replace V(r - 2/)1 by the larger nl I(r -l)! and 
extend the 1 sum from [r 12] to r. The final estimate for Ii is 

Ii (Iul,t - s,lx - yl) 

(3.24) 

where!j is the function defined by (3.15b). This bound ap­
plies for all i>O, and requires 2euOrTkT < 1 for its validity. 

This convergence property of the infinite series (3.19b) 
of polynomials in u implies that Fi (Q;' ) is holomorphic on 
the complex disk lui < Uo' Let/;,j be its Taylor series coeffi­
cients at the origin, viz. 

/;,j(Q) = (j1)-1 (:UYFi(Q;U)lu=o (j>0). (3.25) 

From (3.20) it is clear that /;,j = 0 whenever j d. Then 
write 

M-I 
Fj(Q;u) = I. u1;,j(Q) + UMJi'i,M(Q;U), (3.26a) 

j=i 

which defines Fi,M for 0 < I u I ..;uo. Combining (3.26a) with 
(3.19a) gives the desired small u expansion (3.16), where 

j 

Pj (Q) = I. /;,j (Q) (j = O, ... ,M - 1), (3.26b) 
i=O 

and the remainder term is 
M-I 

EM(Q;u) = I. Fi,M(Q;U) + u -MJi'M(Q;U). (3.26c) 
;=0 

Consider next the bound (3.17). To compute/;,j from 
(3.25), we may differentiate series (3.20) term by term. In 
this way one finds that/;,j is the coefficient ofthejth power of 
u in the series (3.20), 

n-21 
/;,j(Q) = I. I. 8j ,j+l+pc;lIi+l-n 

L p=o 
X(t-s)n-,+j-PAp(L) +8j,08W (3.27) 

Estimate this sum term by term. First use (3 .13a) in order to 
bound (t - s) n -, A p (L ), next employ the Kronecker 
delta restriction j = i + 1 + P to write T - p 

= T - j + i + IUOj 
+ 1+ p - j and finally replace the Kronecker 

delta with 1. In this way one finds 

1/;.j(Q)I..;8j,08j,0 + ( ::;Y 
n - 21 1 XI. I. _.I?+I-nu~+ITi+l+n-' 

L p=o 112' 

(nk 12)2j 
X (II + lIu nkr ) n - , I r-T 0 T n. 
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X (YT)'(Z~ ),-21. (3.28) 

Summing inequality (3.28) from i = 0 to j leads immediate­
ly to the bound (3.17). 

The error function EM is a sum of terms Pi M and 
U-MjM' ExaminePj,M first. Comparing (3.20) and (3.26a) 
shows that 

n-21 

Pi.M(Q;u)=L L 8U+l+p-M)c;It+ I-n 
L p=O 

X Ct - s)n-r+i+ IU i+ I+P-MAp (L), 

(3.29) 

where 8 is the Heaviside function with value 1 for argument 
O. After taking the modulus of each term in (3.29) employ 
inequality (3.13a) and use the restriction i + 1+ p;pM to 
replace luli+l+p-Mby U~+I+p-M and [Ct-S)/T]i+I+p 

by [Ct - s)/T ]M, then replace the Heaviside function by 1. 
Now proceed in the same fashion as in the estimate (3.23) to 
show that 

IPi,M(Q;U) 1«Ct - s)/uoT)Mli (uoT, lx - yl)· (3.30) 

The final function to bound is u - Mj M' Upon using 
( 3 . lOb ) the series (3 .19c) for PM is majorized term by term 
by 1M (Iul,t - s,lx - yl). Since the series 1M has only posi­
tive powers of I u I, with the least power equal to M, it follows 
that 

lu -MjM(Q;U) I <Uo-MjM (uo,t -s,lx - yl) 
«Ct - s)/uoT)MIM(uoT,lx - Y/)' 

(3.31) 

where the final inequality has utilized (3.24) with i = M. 
Adding inequalities (3.30) and (3.31) establishes (3.18). 
Observe that lj is of order Ct - s) j and EM is of order 
(t _S)M. 

It remains to verify the differentiability claims for Pj , 

since those for Em then follow from Proposition 1 and 
(3.16). The basic idea is to show that the integrals defining 
Ap (L) have the desired differentiability, and then that series 
(3.27) has the required absolute and uniform convergence. 
This lengthy but elementary task can be carried out using 
similar methods to the one sketched in Proposition 1. The 
order estimates for Vr, yE M and the time derivatives of EM 
are obtained by a direct (similar to that above) majorization 
of their defining series. D 

Several remarks about Theorem 3 and the analysis lead­
ing up to it are warranted. It is natural to question why ex­
pansion (3.16) is an asymptotic expansion of arbitrary order 
M and not a convergent series expansion in u. If one attempts 
to write (3.16) as a series by setting M = 00 one must re­
place asymptotic expansion (3.lOa) by the related Taylor 
series for h. After making this substitution and using the 
estimates (3.22 )-( 3.24), then expansion (3.16) would form 
a convergent series if the sum over i;pO of I j were finite. 
However, a little study shows that this sum is divergent. This 
negative result does not entirely rule out the possibility that a 
convergent series expansion of F( Q;u) in u exists, but rather 
indicates the methods found in this section, for bounding the 
multiple series expansion of F( Q;u), are not precise enough 
to resolve this issue. 
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The new feature used in estimating the series (3.7) and 
its companion series such as (3.29), which was not utilized 
in Ref. 2, is the observation that the majorizing series like 
(3.21) are monotone increasing in the variables lui, t - s, 
and Ix - yl. As an example consider the bound for series 
(3.7). After employing the inequality 1121<1 and upon us­
ing the fact that only non-negative powers of u and t - s 
occur in the majorizing series we find 

IF(Q;u)I<(l- 2euoYTk T)-1 exp(c;' + c2'lx - yl)· 
(3.32) 

This bound is an improvement on (6.30) of Ref. 2, in that it 
is uniform with respect to all compact subsets of T!l. X Rd 
XRdX ~.;; (uo)· 

IV. GAUGE-INVARIANT RECURRENCE RELATIONS 
AND EXPANSION COEFFICIENTS 

This section completes and consolidates the derivation 
of the large mass asymptotic expansion (1.6). It is estab­
lished that the propagator K, as constructed by Theorem 2, is 
a solution of the time-dependent SchrOdinger equation ( 1.2) 
interpreted as a classical partial differential equation in the 
open region T~ X Rd X Rd. If the boundary points t = S are 
added to T~, the propagator determines the fundamental 
solution of (1.2). The series (3.7), which defines F, is expli­
citly summed for u = 0 in order to determine the co­
efficient function Po(Q). It turns out that Po(Q) 
= exp[ Ufz) -lJ(Q)], where J(Q) is given by (1.7). By in­
troducing the representation 

F(Q;u) = T(Q;u)exp[Ufz)-lJ(Q)], (4.1) 

the function F is split into a gauge-dependent part 
exp [ (iii) -I J] and a gauge-independent function T. The 
small u expansion for T follows from representation (4.1) 
together with expansion (3.16) of Theorem 3. The resultant 
coefficient functions ~ are shown to be determined by a 
manifestly gauge invariant recurrence relation. Bound esti­
mates for all ~ are found and explicit formulas are given for 
Tl and T2• 

First, let us find the specific form of Po(Q). The asymp­
totic expansion (3.16) is applicable if u = 0, i.e., 

Po(Q) = F(Q;O) = i: dn (Q;O). (4.2) 
n=O 

The following is a consequence of formulas (3.5b) and 
(4.2). 

Lemma 3: For all QET!l. X Rd X Rd, 

PoW) =exp[Ufz)-lJ(Q)]. (4.3) 

Proof: It will be shown that for all integers n;PO, 

dn(Q;O) = (1in!)[Ufz)-lJ(Q)]n. (4.4) 

Given identities (4.2) and (4.4) the result (4.3) follows at 
once. In order to establish (4.4) use 

dn (Q;O) = Sn (h,Q;O). 

Note the various simplifications of (3.4) that occur if u = o. 
(a) All terms on its right-hand side with 1>0 vanish 

since they contain a mUltiplicative factor ul and the remain­
ing functions in the integrand have no negative powers of u. 
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(b) The measure An(jr,tn ) ofEq. (2.13) hastheu =0 
form 

A(n) (jr,tn ) I u=O 

=.A'on) (jr,tn ) 

= V(tl) X··· X Ir(tj, )1'" X Ir(tj) I'" Xv(tn)' (4.5) 

On the right-hand side of (4.5) all measures pj (tj), iE!:jr' in 
A (n) (jr,tn ) have been replaced by their u = 0 values v(tj ). 

(c) For u = 0 we havefz = 1, and for 1= 0 the function 
<I> has value 1. Furthermore the sum over qr has one term qr 
= jr so that 

r 

'I1(qr;Un )11=0 = II 1/(tj"aj)·(y-x). (4.6) 
;=1 

Taken together properties (a)-(c) imply that 

dn(Q;O) = (Hj)-n i L (t-s)n-rf d~n 
r= 0 j, < 

X f dA~U"tn (~n »)expUbn ) '11 (jr;un ) 11=0' 

Observe the simple product form now assumed by the r, jr 
sum 

L dA~Ur,tn (~n ) )'I1(jr,un ) (t - s) - r 

rJ,. 

Since expUbn) factors into a product of exponentials each 
with argument being iaj ' [y + Sj (x - y)], the n-fold multi­
ple integral over Un becomes a product of n integrals, viz., 

dn (Q;O) = (Hi) - n { d ~n Jill {[ (t - s)dv(tj (Sn») - (x - y) 'dr(tj (~n »)]exp(iaj ' [y + Sj (x - y)])} 

= (Hi) - n { d ~n J!X [(t - S)V(W(Sj») - (x - y) 'a(w(Sj»)] (4.7a) 

UIi~! - n {f ds [(t _ s)v(w(s») _ (x _ y) 'a(w(s»)] } n. (4.7b) 

Employing the identities (2.5a) and (2.5b) shows that the 
second equality follows from the first. The integrand of 
(4.7a) is invariant with respect to permutations among the 
set {S I""'S n}. Using this symmetry leads to (4. 7b), which is 
just the statement (4.4). 0 

The next task is to establish that the propagator K is the 
pointwise solution of (1.2) which in the limit t--+s+ obeys 
the initial condition (1.3). As a preliminary it is useful to 
recall the following multidimensional stationary phase 
asymptotic formula. 

Lemma 4: Let 8> 0 and let h: JRd X U& .;; (8) --+C be a 
function satisfying the following. 

(i) There exists a compact set YCJRd
, whose interior 

contains supp h (',A) for allAEU& .;; (8). 
(ii) For every d-component multi-index r of length 

Irl<d, the partial derivatives VYh: JRdXU&.;;(8)--+C exist 
and are continuous. 

For O:;6AEU& .;; (8) define the complex-valued integral 

1(.1) =. -. exp L h (y,A )dy. ( 
1 )d 121 [ i 2 ] 

triA Rd A 

Then 

lim 1(.1) = h(O,O). (4.8) 
A-O 

Proof: We omit the details that demonstrate this familiar 
result. For real values of A the principal termh(O;O) of (4.8) 
is the same as that found in Theorem 2.2 of Fedoriuk's re­
view articlel4 on the stationary phase method and pseudodif­
ferential operators. However, our hypotheses differ from 
those of Ref. 14. The result above is most easily obtained by 
treating the multidimensional integral on the left-hand side 
of (4.8) as d iterated one-dimensional integrals and then 
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applying iteratively Fedoriuk's method for deriving the sta­
tionary phase expansion for one-dimensional integrals. The 
y differentiability of h is necessary since the proof depends on 
integration by parts with respect to y. 0 

We denote the nth-order continuously differentiable 
functions of compact support on JRd by C ~ (JRd). 

Proposition 2: Let uo< (2ekTrT)-1 and m- I 

E U& .;; (uo) " {O}. The propagator K of Theorem 2 satisfies the 
Schrodinger partial differential equation 

iii ~K(x,t;y,s;m) = H(x, - iIiV,t,m)K(x,t;y,s;m) at 
(4.9a) 

identically for all (t,s;x,Y)ET~ XJRd XJRd. Furthermore, for 
all ¢EC~ (JRd), 

!~'!! f K(x,t;y,s;m)¢(y)dy = ¢(x), xEJRd, SE[O,T). 

(4.9b) 
Proof: It is most convenient to use representation (1.4) 

for K, wherein F is defined by series (3.7). Fix SE[O,T). 
Theorem 3 tells us that within the domain JRd X (s,T) 
X JRd, F(x,t; y,s;m -I) has continuous partial derivatives to 
first order in t and to second order in x. In view of the explicit 
form (1.5) for Ko(t - s;x - y;m) it follows that both the 
left- and right-hand sides of (4.9a) exist and are continuous. 

Suppose¢EDonL ~ (JRd). Let the function <1>: JRd x (s,T) 
-+ C be the integral 

<I>(x,t) = f K(x,t;y,s;m)¢(y)dy. (4.10) 

From Theorems 1 and 2 one has that <1>(' ,t)EL 2(JRd) and 

U(t,s;m)¢ = <I>("t), tE(S,T). (4.11) 
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We claim that cf>(' ,t)eC2(R~), te(s,n; <l>(x,' )eC I (s,T) 
for each xeRd; and furthermore that 

Vrcf>(x,t) = J VrK(x,t;y,s;m)t/J(y)dy, Irl<2, (4.12a) 

!... <l>(x,t) = f !...K(x,t;y,s;m)t/J(y)dy. (4.12b) 
at at 

The proof of ( 4.12) uses the theorem in analysis justify­
ing the interchange of partial derivative of a parameter and 
integration. Consider (4.12a) first. Under the hypotheses 
that (i) fora.a.yeRd,K(·,t;y,s;m)t/J(y) isC2(R~); (ii) for 
every xeRd, and r such that Irl<2, VrK(x,t;',s;m)t/J(-) is 
L I(R:); and (iii) for every compact XCRd and r with 
1 rl = 2, there exists a function g~eL I (R:) such that for all 
(x, y)eX X Rd, IVrK(x,t; y,s;m)t/J(y) 1 <g~ (y), then cf>(' ,t) 
eC2(R~) and (4.12a) is valid for every xeRd and every r 
with Irl <2 (cf. Ref. 15, Appendix B.3). The specific form of 
Ko and Proposition l(b) shows that (i) is valid. Require­
ments (ii) and (iii) are also a consequence of Proposition 
1 (b). In particular, note that for I rl <2, VrF(x,t; y,s;m -I) is 
C(R~ XR:), thereby VrK(x,t;y,s;m) has a uniform bound, 
A (r,X) < 00 on the compact set X X supp t/J. This fact togeth­
er with t/JeL 2(Rd

) suffices to establish (ii). In (iii) an 
acceptable choice for the x-independent L I (R:) majorizing 
function g~ (y) is A( r,x) It/J(y) I. Thus cf>(. ,t)eC2(R~) and 
(4.12a) holds. A revision of this argument using Proposition 
1 (c) and (d) verifies (4.12b) for each (x,t)eRdx (s,n. 

Consider the effect of H (t,m) on cf> ( . ,I). By (4.11), 
(2.3a), and (4.12a) one has that cf>(' ,t)eDonC2(R~). On 
functions of this class the action of H( t,m) is the same as that 
of the classical differential operator H(x, - iIiV,t,m), i.e., 
for almost all x, 

[H(t,m )<l>(' ,t)] (x) = H(x, - iIiV,t,m )<l>(x,t). (4.13a) 

Identity (4.12a) shows that 

[H(t,m )<l>(' ,t)] (x) 

= f H(x, - iIiV,t,m)K(x,t;y,s;m)t/J(y)dy. (4.13b) 

A similar reduction is possible for the strong t deriva­
tive, (d / dt) <l> ( . ,t), which exists by virtue of Definition 1 (5) 
and Theorem 1. Letting hn (t), te(s,n, be the difference 
quotient 

hn(t) =n[<l>(',t+n- I
) -<l>(',t)] 

for suitably large integers n, then (d /dt)<l>(' ,t) is the strong 
limit in K = L 2(Rd) of hn (t) as n- 00. From the L 2(Rd) 
convergent sequence {hn (t)}n we may extract a subse­
quence {hn/t)}j that converges pointwise almost every­
where (Ref. 16, Theorem 3.12). Since cf>(x, )eC I(s,n, this 
pointwise limit is just the classical partial derivative acf>/at. 
In other words, 

-<l>(',t) (x) =- (x,t) [
d ] a<l> 
dt at 

(a.a. x). (4. 14a) 

Applying relation (4.12b) gives 

[ iii ~ <l>(' ,t)] (x) = iii J ~ K(x,t;y,s;m)t/J(y)dy. 
dt at 

(4.14b) 
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The K-valued equation of motion (2.3e) requires that 
the left-hand sides of ( 4.13b) and (4.14b) are equal almost 
everywhere. By continuity it is then true for all x that 

f {iii %t K(x,t;y,s;m) - H(x, - iIiV,t,m) 

XK(x,t;y,s;m) }t/J(Y)dY = O. (4.15) 

For fixed x,t,s,m the function in the curly bracket is C(R:) 
and thus it is L 2 (y) on any compact subset Y C R:. Inter­
preting (4.15) as an inner product on L 2( Y) shows that 
( 4. 9a) holds almost everywhere in R:. They continuity of all 
the functions in (4.9a) show it holds everywhere in T~ X Rd 
XRd. 

Finally consider statement (4.9b). Fix any xeRd and 
se [0, n. In the integral appearing in (4.10) change the vari­
able of integration by y-y + x and define A. = 2liCt - s)/m. 
Then 

<l>(x,t) = (1TiA)-d/2 J eXPC~2)h(Y,A.)dY=I(A.), 
( 4.16a) 

where 

h(y,A.)=F(x,s+ 1A.llml/(21i);.Y+x,s;m- I )t/J(y+x) 
(4.16b) 

isdefinedforallA.e~" (8) with 8 = 21i(T - s)/Iml. Now h 
satisfies the hypothesis of Lemma 4 because (i) we may take 
Yas the closure of any open ball containing - x + supp t/J, 
and (ii) the differentiability and continuity are a conse­
quence of (4.16b), Proposition 1 (b), and the hypothesis 
t/JeCg (Rd). Now take the limit t-+s+ in (4.16a), which im­
plies A. -+ O. Applying (4.8) it is seen that 

lim <l>(x,1) = h(O,O) = F(x,s;x,s)t/J(x) = t/J(x), 
I-S+ 

which is just result (4.9b). The last equality used (3.16)­
(3.18), (4.3), and (1.7). 0 

We note that (4. 9b) implies, in particular, that the fam­
ily oflinear functionals l7 K~s ((t,s)eT~,xeRd) on g; (Rd) 
= CO' (Rd) defined by 

<K~s,t/J) = f K(x,t;y,s;m)<p(y)dy 

satisfies 

where <peg; (Rd) and 8x is the Dirac delta function with 
supportatx. This means thatK~Sis a distribution in g;'(Rd

) 

[the space dual to g; (Rd
) ] and converges in the topology of 

g;' (Rd) to 8x as t -+s+ . In other words, the propagator K of 
Theorem 2 constructs the fundamental solution of the 
Schrodinger equation on the time domain Tb. with initial 
condition ( 1.3 ). 

The function J is real for all arguments, thus 
exp[(ih)-IJ(Q)] is a complex-valued unimodular func­
tion. This lets us use (4.1) as a definition of the function T: 
T b. X Rd X Rd X ~ <; (uo) - C in terms of the known function 
F. Consider the gauge-dependent behavior of T. Let FA' J A' 

and TA be the functions F, J, and T obtained from (3.7), 
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(1.7), and (4.1) whena(x,t) andv(x,t) are replaced by the 
gauge transformed potentials a (x,t;A) and v(x,t;A). Choose 
the time displacement small enough so that both propaga­
tors K(Q;m;A) and K(Q;m) are defined by their construc­
tive series (2.17). A simple calculation shows 

JA (Q) =J(Q) -/!,(x,t) +/!'(y,s). (4.17a) 

Upon writing the gauge transformation identity (2.21) for 
propagators in terms of J,T and JA,TA it is evident that 
(4.17a) implies 

TA (Q;u) = T(Q;u), /!,E[9 (k), (4.17b) 

i.e., that T(Q;u) is the same function for all gauges in [9 (k). 
Clearly J(Q) carries all the gauge dependence of the propa­
gator K. 

The functions T and Fboth suffice to completely deter­
mine the propagator K and both have well-defined small u 
expansions. However, the large mass asymptotic expansion 
of T is of greater interest for physical applications since T 
and the associated expansion coefficients are gauge invar­
iant. 

In order to prepare for the next theorem recall the fol­
lowing formulas from electromagnetism. The vector f Rd 
X [0, T ] -+ Rd will represent the electric force on the system 
plus the contribution from V, 

( 4.18a) 

The magnetic part of the electromagnetic field tensor is giv­
en by 

Aij (x,t) = (Viaj )(x,t) - (V jai )(x,t). (4.18b) 

In (4.18) the indices i and j denote the Cartesian compo­
nents of vectors and rank-2 tensors in Rd. The symbol Vi is 
the partial derivative with respect to the ith component of 
the vector argument xERd. On the other hand, the notation 
V, (and a,) describes the gradient (Laplacian) with respect 
to the first-vector argument of a function, e.g., (V,J) (Q) is 
the x gradient of J. Similarly, J is a partial derivative with 
respect to a scalar argument, in (4.18a) the time argument. 

The functions /; and Aij are well known to be gauge 
invariant quantities. In terms of (4.18) and the path wet) of 
(1.8), we define the function} T/!,. X RdXRd -+Rd by 

l(Q) = f dtt[(t-S)/;(W(t») 

( 4.19) 

Note how similar in form (4.19) is to integral ( 1.7) defining 
J. The function] l(t - s) has the interpretation of a t­
weighted average Lorentz force experienced by a system of 
classical particles moving with constant velocity (x - y)1 
(t - s) fromytox. Because/; andAij are gauge invariant so 
is l. It is helpful to recall a basic identity linking] to J and 
a, namely 

](Q) = - (V, J)(Q) - a(x,t). (4.20) 

Equation (4.20) is verified by using definition (1. 7) for J 
and then forming the partial derivative (V 1 J) (Q). An inte­
gration by parts with respect to t leads to (4.20). For more 
details see the discussion prior to Eq. (4.11) in Ref. 1. Given 
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that a and v are in class (A), it is evident thatl is differentia­
ble to arbitrary order in x, y and differentiable to first order 
in t and s on the domain T~ X Rd X Rd. 

The principal result of this paper is the following. 
Theorem 4: Assume the potentials a and v are in class 

(A) and that uo< (2ekTYT)-" For all integers M>1 the 
gauge-invariant function T: T /!,. X Rd X Rd X ~ < (uo) -+ C 
has the small u asymptotic expansion in ~ < (uo), 

M-' 
T(Q;u) = L ujTj(Q) + U~M(Q;U), 

j=O 
(4.21 ) 

where the coefficients Tj are defined in terms of Pj by 

Tj(Q) =exp[ - (Hl)-'J(Q)]Pj(Q) 

(j=O, ... ,M -1), (4.22a) 

and the error function EM in terms of EM by 

EM (Q;u) = exp[ - (Hl)-'J(Q)]EM(Q;u). (4.22b) 

The functions Tj , EM are the same functions for all 
gauges /!,E[9 (k) and have the same differentiability proper­
ties as Pj and EM' The error term satisfies IEM I = IEM I and 
is bounded in ~ < (uo) by the u-independent estimate 
(3.18). 

For all QET/!,. XRd XRd, To(Q) = 1 and the higher-or­
der coefficient functions Tj (Q) are uniquely determined by 
the manifestly gauge invariant transport recurrence relation 

(t-s) i' Tj(Q) =-- dt{ifz6.,Tj_,(w(t);y,s) 
2 0 

- 2](w(t);y,s)'V,Tj_ t!w(t);y,s) 

+ [(ifz)-j(w(t);y,S)2 

- Vt1'(w(t);y,s)] Tj_1 (w(t);y,s)}. (4.23) 

Proof Expansion (4.21) is obtained from (3.16) by 
multiplication with exp [ - (ifz) -'J( Q)]. Since a and v are 
in class (A) and J is defined by ( 1. 7) and ( 1.8) it follows for 
each (t,s)ET/!,. thatexp[ - (ifz)-'J(Q)] isaCOO(RdXRd) 
function with partial derivatives in x and y that are (jointly) 
continuous functions on T/!,. XRd XRd. Furthermore, the 
phase function J has first-order derivatives with respect to t 
andsthat are continuous on the domain T~ XRdXRd. Thus 
T, Tj, and EM have the same differentiability properties as F, 
Pj , and EM cited in ProposiEon 1 and Theorem 3. Thecoeffi­
cients Tj and error term EM are gauge invariant because 
both T and the expansion parameter u are gauge invariant. 

Consider the recurrence relation (4.23). For (Q,u )ET~ 
XRdXRd X [~< (uo)\ {O}] the representation 

K(Q;u-') = Ko(t - s;x - y;u-') 

Xexp[ (ifz) -'J(Q)] T(Q;u) (4.24) 

follows from Proposition 1 (e) and (4.1). In addition, Prop­
osition 2 states that K(Q;u-') is the pointwise solution of 
(4.9a). The insertion of (4.24) into (4.9a) determines the 
partial differential equation satisfied by T, 

[:t + (ifz) -'(J,J) ] T 
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u -
= - {UII)A1T - 2!-(V1T) 

2 

+ [UII)-y2- (V I1)]T} 

_ {X-y .V1T- (ill)-I [X-y -l+V]T}. 
t-s t-s 

(4.25) 
In obtaining the right-hand side of (4.25) we have employed 
the identity (4.20). In (4.25) the omitted arguments of the 
various functions are T= T(Q;u), v = v(x,t), i=l(Q), 
andJ=J(Q). 

The next step is to substitute expansion (4.21) into 
( 4.25) and then to equate the common coefficients of the 
differing powers of the independent functions u j, 
j = 0 - M - 1. In carrying out this substitution we rely on 
the facts that Tj (Q) and jj; M (Q;u) have x derivatives of or­
der 2 and t derivatives of order 1 that are continuous 
throughout the domain T~ XRdXRdx au" (uo)' Further­
more, we use the fact that the x and t derivatives of jj; M (Q;u) 
are uniformly bounded in au" (uo) for each QeT~ XRd 

X Rd. The coefficient proportional to (u)o cancels identical­
ly by virtue of the definition of J. This mass-independent 
term is exceptional in that it is the only part of (4.25) that is 
gauge dependent. 

The coefficient function Tj (Q) is related to Tj _ 1 (Q) by 
the family [in the parameters (y,s)ERdX [O,T)] of partial 
differential equations 

[ (t - s) %t + (x - y),Vx ] Tj (x,t; y,s) 

= (t-s)gj_1 (x,t;y,s), 
where 

gj_. (x,t;y,s) _ 
= H(ifi)Ax - 2/,Vx 

- [V.-f- UII)-y2]}Tj_. (x,t;y,s). 

( 4.26a) 

(4.26b) 

The continuity of V~ Tj _ 1 for 0< I rl < 3 on T 6, X Rd X Rd and 
thecontinuityofV~aforO<lrl<1 onRdX [O,T] means that 
gj _. is a continuously differentiable function of (x,t)ERd 

X (s,T). Ifj = 1, go is determined from the known coeffi­
cient To. 

In studying (4.26a) it is convenient to have a common 
Euclidean notation for the time and space variables. 
To this end set Xd+ I = t and Yd+ I = s, whereby (x,t) 
= (xl, .. ·,Xd+ I) and (y,s) = (YI'''''Yd+.)· In these vari­
ables (4.26a) reads 

d+1 a 
L (Xi - Yi) - Tj = (Xd +. - Yd + I )gj - I' /;;.1. 
i=1 aXi 

( 4.27a) 

The (joint) continuity ofTj on the set T6, XRdXRd together 
with (4.22a) and (3.17) gives us the condition 

lim Tj(x,t;y,s) = Tj(y,s;y,s) =0, /;;.1. 
(x.t)_(y,s) 

(4.27b) 

For eachj;;. 1, (4.27a) is a linear first-order partial dif­
ferential equation for Tj in the variables {xi }1 + I, containing 
the parameters {Yi}1 + I. Finding the appropriate solution 
Tj of ( 4.26a) subject to the condition (4.27b) is similar to 
the Cauchy initial value problem 18 for this partial differen-
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tial equation. We seek a solution in the region n = Rd 
X [s,T) of (X,f) space. Specifically, if the initial value mani­
fold is chosen to be the plane, cu(o) ={(v,s + O)En: vERd}, 
where oE(O,T - s), then the Cauchy problem is to deter­
mine the solution Tj of (4.27a) provided that the values Tj 
are given on the manifold cu(o) cn. In the problem faced 
here the step of assigning values of Tj on cu(o) is replaced by 
the limiting condition (4.27b). 

The solution for this type of initial value problem can be 
obtained by the method of characteristics. The characteristic 
curves for (4.27a) are the solutions of the autonomous sys­
tem of d + 2 ordinary differential equations, 

d 
d1' Xi (1') =Xi (1') -Yi U= I-d+ 1), (4.28a) 

(4.28b) 

Because (4.27a) is linear, the equations (4.28a) decouple 
from (4.28b) and may be solved independently to provide 
the base characteristics in the space n. The initial conditions 
appropriate for the manifold cu(o) are Xi (0) = Vi U = 1 
-d), Xd+. (0) = s + 0 and z(O) = Tj(v,s + o;y,s). Upon 
introducing the change of variables S = eT the solutions of 
(4.28) are 

Xi (S,v) =Yi + (Vi -Yi)S U= I-d), (4.29a) 

Xd+ I (S,v) = s + oS, (4.29b) 

z(S,v) = Tj(V,s + o;y,s) + iSOgj_dXi(S',V);y,s)ds'. 

(4.29c) 
Equations ( 4.29a) and ( 4.29b) represent a coordinate trans­
formation (S,v) -+ (XI, ... ,xd + I) = (x,t). The Jacobian of 
this transformation is oS d. Thereby it is seen that only the 
point corresponding to S = 0 is singular. This point is 
(x,t) = (y,s). The base characteristics defined by (4.29a) 
and (4.29b) are straight lines that emanate from the singular 
point at (y,s). 

Given any point (X,t)En at which we wish to evaluate 
the solution Tj to (4.27), we may choose a coordinate v(x,t) 
on the manifold cu(o) and S(x,t)ER such that the corre­
sponding base characteristic passes through (X,t) , viz., 
Xi (5'(x,t) ,v(x,t)) = (x,t). Specifically, one finds 

S(x,t) = (t-x)8- 1
, (4.29d) 

V(X,t) = y + 8(t - s) -I(X - y). (4.2ge) 

According to the general method of characteristics, the 
unique C I solution of the initial value problem is given by 
Tj(x,t;y,s) =z(5'(x,t),v(x,t)). This result becomes, after 
employing (4.29d) and (4.2ge) and then changing the inte­
gration variable to S = 0 (t - s) - IS' , 

Tj (Q) = Tj(y + 8(t - s) -I(X - y),s + 8;y,s) 

+ (t-s) t gj-dw(S;Q);y,s)dS. 
).5/(t - s) 

(4.30a) 

Now let 0 -+ 0+. The limiting condition (4.27b) shows that 
the second factor of Tj in (4.30a) vanishes while the contin­
uity properties of gj _ I allow the lower limit of the integral 
term to be replaced by O. Thus we obtain, for t> s, j;;. 1, 
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Ij(x,t;y,s) = (t - s) f gj- dw(s;Q);y,s)ds· (4.30b) 

This is just recurrence relation (4.23). The right-hand side 
of ( 4. 30b) displays the base characteristic transport struc­
ture that is commonly foundl.19-21 in the determination of 
integral recurrence relations for expansion coefficients. 

All the functions of S in the integral (4.23) are gauge 
invariant and thereby the recurrence relation is gauge invar­
iant. Forj = 0, Lemma 3 shows that To(Q) = 1, thus (4.23) 
recursively determines allIj (Q),j> 1. 0 

The recurrence relations (4.23) allow one to obtain nu­
merical bounds on the expansion coefficients Ij that are su­
perior to those that result from their constructive series de­
finition. Inspection of (4.23) reveals that, in order to 
estimate Ij, one also requires bounds on], Ij _ I' and their 
first few spatial derivatives. Hence the recursive process re­
quires estimates of arbitrary partial derivatives of 1 and Ij 
with respect to x, from the outset. 

Bounds for], defined by the average (4.19), are based 
on the following simple bounds obeyed by the potentials. For 
example, using bounds (2.7) one finds (with Y a d-compo­
nent multi-index) 

IVrv(x,t) I = I J ilrlareia·x dv( r) I <.k IrIVy, 

and similarly 

IVrai (x,t) I <. (!k) IrIYT' Ivr aai (x,t) I <. (!k) IrIYT. 
Using these simple facts it is not difficult to obtain the fol­
lowing bound for the components off Setting Z to be 

Z=Z( Ix - yl,t - s) =.[cl YT(1 + k Ix - yl) 

+ (t - S)(kVT + YT), 

then 

Ivr]; (Q) I<.k Irlz( Ix - yl,t - s). 

Note that Z is Y independent and is a monotonically increas­
ing function of its arguments. The final results, stated below, 
use the additional quantities 

L=max{Z,Iik}, Aj ={1 +3 j - I )2. 

Corollary 1: For j> 1 and any multi-index Y the coeffi­
cient functions Ij have the estimate 

IVrIj(Q)I<.k Irl[!(t-s)d] jZLj-1 

X [3lrl(Z/Ii+Ajk)]j. (4.31) 

Proof {sketch}: Estimate (4.31) is verified by induction 
onj. It is simple to verify (4.31) forj= 1, and it may be 
extended to larger j by using (4.23). 0 

Solving the recurrence relation (4.23) for the coeffi­
cients TI and T2 give us the following explicit formulas. First 
it is convenient to set 

0i(z,r)=Oi(z,r;Q) =/;(z,r) + (t-s)-I(x-y)jAij(z,r), 

where i = I-d and (hereafter) the repeated indexj is summed from 1 to d. Then 

TI(Q) = (2Hi) -I(t - S)3 ( dS I ds2g(SI,S2)Oj(W(SI»)Oj(W(S2») J, 

(4.32) 

Here g is the one-dimensional Green's function defined in (3.3e), and In = [0,1 In. The function T2 is more elaborate. One 
finds 

(4.33a) 

where the functions G1 are given by 

Go(Q) = - ~ (t - S)5 ( dS I dS2 ds3g(SI,S2)Oi(W(SI»)Oj(W(S3») 
2 J, 

X [g(S2,S3)V jOi(W(S3») + (t - s) -I a lg(S2,S3)Aij(w(S2»)]' (4.33b) 

GI(Q) = ~(t - S)4 ( dSI dSzg(SI,S2) {g(SI,S2) [ViOj(W(SI») 
4 J, 
+ (SI (t - s) )-I.fj;(W(SI) l] [V iOj (W(S2») + (S2(t - s) )-IAji (w(S2))] 

+ S~S:;: 1{1 - s> )OJ(w(SI))[ aOj (W(S2») + 2(S2(t - S»)-IViAji (w(S2»)] 

+ Sz5 ;:-1 [2s> - (s> + 1 )S2]Oj(W(SI»)[V .iViO i (W(S2») + (S2(t - S))-IV iAij(S2))]), (4.33c) 

G2(Q) = - (8)-I(t_S)3 i dSI[SI{1-SI)]2[a(v·O)](w(SI»)· ( 4.33d) 
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A few comments on the technical aspects of computing 
T. using the recurrence relations are helpful. When Ij _ I and 
it~ derivatives are substituted into the right-hand side of 
(4.23), one may employ the composition law for the linear 
path w, 

W(S;W(A;Q);y,s) = W(SA;Q). 

Then one can change the integration variables A in the inte­
grals arising from Ij_1 to r = SA. It is then possible to pe~­
form explicitly the single integral over S that occurs 10 

(4.23). In this way some of the Green's functions g(S;,Sj ) 
appearing in (4.32) and (4.33) arise, cf. Ref. 1, p. 1704. 

V. CONCLUSIONS 

The two previous sections demonstrate that for each 
space-time coordinate Q = (x,t;y,s), the propagator K ad­
mits the multiple factorization 

K(Q;m) = Ko(t - s;x - y;m) 

Xexp[ (iIi) -IJ(Q)] T(Q;m- I ). (S.1) 

The u = m -I singular behavior of K as well as its gauge 
dependence are completely characterized by representation 
(S.I). Within the closed semidisk lid .;; (uo) and for each val­
ue of Q with t>s, the propagator K(Q;u- l

) has only one 
singular point, namely an essential singularity at u = O. This 
singularity is entirely carried by the free propagator 
Ko(t - s;x - y;m). The mass-independent unimodular 
phase factor exp[ (iii) -IJ(Q)] carries all the gauge depen­
dence of K (Q;m). As a result the function T( Q;u) is gauge 
independent and sufficiently smooth in lid.;; (uo) to be de­
scribed by the asymptotic expansion of Theorem 4. Since u is 
the multiplier of the highest-order differential operator (the 
Laplacian) in the differential equation (4.9a) obeyed .by 
K (Q;u -I), the asymptotic expansion (4.21) together With 
( S.1 ) provide a detailed characterization of the singular per­
turbation behavior as u-+O of the fundamental solution of 
the time-dependent Schrodinger equation (2.1). 

The asymptotic expansion ofKvia (S.1) and (4.21) has 
a number of attractive features. It constructs an approxima­
tion for the propagator that is nonperturbative in the sense 
that it has contributions from the Dyson series to all orders, 
cf. (4.2). In addition the values of the potentials a, t/J, and V 
appear only in J(Q); all expansion coefficients Ij(Q) are 
functions of derivatives of the fields. The expansion is valid 
for all QETtJ" XRdXRd to an arbitrary order M. The expan­
sion has uniquely determined gauge invariant coefficients 
and error term both of which are uniformly bounded for Q 
taking values in compact subsets of TtJ" XRdXRd. The ex­
pansion is robust (stable) in the sense that identity (4.21) 
may be differentiated to first order in t or s and to arbitrary 
order in x and y. The resultant identities are also valid 
asymptotic expansions with an error term whose order esti­
mate remains O( luIM

). This stability feature of the expan­
sion means that one has all the ingredients to determine from 
( 4.21 ) the time evolving expectation values of operators that 
are representable as sums of partial derivatives with locally 
integrable coefficients. This class of operators includes most 
observables (self-adjoint operators) of interest in quantum 
mechanics. 
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Another interesting property of ( 4.21) is that contained 
within the small u expansion is a type of small t - s expan­
sion. Estimates (3.17) and (3.18) together with (4.22) or 
( 4. 30b) allow one to define 

Ij(Q) = (t-s)jTj(Q), 

EM(Q;u) = (t - s)MEt(Q;u), 

(S.2a) 

(S.2b) 

where Tj(Q) has (t,s) independent bounds, i.e., Tj(Q) 
= O(t - s)O) U'>O). In this notation (4.21) assumes the 
form 

M-I 
T(Q;u) = L [u(t - s)] jTj(Q) 

j=O 

+ [u(t - s) ]MEt(Q;u). (S.2c) 

Expansion (S.2c) is not a conventional double asymptotic 
expansion in the variables u and t - s since there is a residual 
t and s dependence in T j. However, in the case where a and v 
have higher-order derivatives in t it is not a difficult calcula­
tion to expand T j ( Q) in powers of t - s in order to find the 
short-time asymptotics of T(Q;u) implied by (S.2c). In ex­
amining the small t - s implications of representation (S.I) 
we have emphasized the behavior of T( Q;u). It is also possi­
ble to expand the phase factor exp [ (iii) -IJ( Q)] for small 
t - s but doing so will break the gauge invariance of the 
representation. A recent overview of the widely studied 
small time expansion of quantum propagators may be found 
in the review22 of Fulling. 

A particular advantage of having solved the evolution 
problem for complex mass is that the representation (S.I) is 
also capable of describing the equilibrium statistical physics 
of our N-body system. First observe that the constructive 
series (2.17) for the propagator K remains valid if the poten­
tial class (A) is enlarged to allow complex valued scalar 
potentials, i.e., the measure v(t) for v(x,t) is in vU'(Sk'C) 
rather than vU'* (Sk'C), Suppose the interactions a, t/J and V 
are static, and replace qt/J + V in the Hamiltonian (1.1) by 
i- I (qt/J + V). If mo > 0 is the physical mass of a particle and 
after setting t - s = ft/3, s = 0, and m -I = U = (imo)-I 
EIId.;; (uo) one finds that the Schrodinger equation (4.9a) 
becomes the Bloch equation which describes the equilibrium 
behavior of the N-body system interacting with static fields 
and having inverse temperature p. In this case the expansion 
( 4.21) provides us with the large mass asymptotics of the 
fundamental solution of 

- ~ K(x,ft/3; y,O;(imo) -I) 
ap 
= [_1_ ( _ ifzVx - qa(x»)2 + qt/J(x) + V(X)] 

2mo 

XK (x,ft/3;y,O;(imo) -I). (S.3) 

Consider in detail the physical meaning of the phase J. 
The construction of the propagator in Theorem 2 requires 
only that the potentials a, t/J, and V be in class (A). How­
ever, the circumstances of greatest interest in physics occur 
when the external fields arise as solutions of Maxwell's equa­
tions. Let index i = 1-N label particles whose coordinate 
positions are specified by r;ER3, i.e., x = (rl, ... ,rN). Each 
particle iinteracts with a four-potential {a; (r;.t),t/J; (r;,t)}. 
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All N four-potentials determine the total fields appearing in 
Hamiltonian (1.1) via 

a(x,t) = (al (rl,t),···,aN (rN,t)), 
N 

t/J(x,t) = L t/J;(r;.t). 
;=1 

( 5.4a) 

(5.4b) 

Now assume that {a;.t/JJf are solutions of Maxwell's 
equations. Structurally J is similar to the well-known Dirac 
magnetic phase factor23 that plays the central role in the 
Aharonov-Bohm effect.24 If r(r',r) is a smooth directed 
path in R3 from initial point r' to final point rand a(r") is a 
static vector potential then the one-body Dirac phase factor 
IS 

exp{ -!!- r a(r") 'dr"} . 
I'll Jnr',r) 

(5.5) 

In comparing J to the Dirac phase it is helpful to split J into 
two parts. Let J v denote the contribution to J that is propor­
tional to V, and write 

(5.6) 

Then JL is defined solely in terms of the electromagnetic 
potentials. Let {w;(s),r(s)} be the projection of path 
w(s;x,t; y,s) onto the space-time coordinates of the ith parti­
cle. If y = (r; , ... ,rN) then w; (s) = r; + s(r; - r;) and 
r = s + s(t - s) so 

JdQ) =q ;tlf [(t-s)t/J;(w;(s),r(s») 

- (r; -r;>·a;(w;(S),r(S))]dS. (5.7) 

For each value of SE [0,1] the integrand above is a Lorentz 
scalar formed by the product of two Lorentz four-vectors. 
Inspecting (5.5) and (5.7) shows that JL is an extended 
version of the Dirac phase in which time-dependent poten­
tials are allowed and in which the scalar fields {t/JJ are ad­
joined in such a way that the phase JL is a Lorentz scalar. 
The static Dirac path r(r',r") is extended to the linear 
space-time path {Wi (s),r(s)}· 

It may appear unexpected that Lorentz invariant fea­
tures appear in a problem whose particle dynamics are strict­
ly nonrelativistic. But of course phase J L is an average of the 
electromagnetic potentials {a;,t/JJ with respect to the path 
{w;(s),r(s)}. The path integrals of the form (5.7) would 
define a Lorentz invariant for any smooth space-time path 
connecting y,s to x,t. The residual effect of our constructive 
solution is that it selects the particular path in JL to be 
w(s;Q)· 

As is well known, quantum systems exhibit semiclassi­
cal behavior if the particle mass is large. The semiclassical 
aspect of the representation (5.1) and its companion asymp­
totic expansion (4.21) is reflected in the geometrical charac­
ter of the transport averages over the linear path w(s;Q) that 
enter the phase factor J(Q) and the expansion coefficients 
1j ( Q). Let r = s + s (t - s) be the running time variable, 
then (1. 8) leads to 

x(r) =y+ [(r-s)I(t-s)](x-y). (5.8) 

Path (5.8) is the geodesic for the free evolution problem 
having initial point (y,s) and end point (x,t). Furthermore 
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note that the one-dimensional Green's function g(s,s ') in 
(3.3e) and (4.32) is also a manifestation ofthis underlying 
two-point classical boundary value problem. These semi­
classical properties have emerged directly from the exact 
Dyson series description of quantum evolution without the 
need to resort to any semiclassical ansatz about the analytic 
character of K near u = O. 

It is interesting to contrast the large mass expansion of 
Theorem 4 with available results for the WKB approxima­
tion for the same dynamical system. A major difference 
between the 'Ii ..... O asymptotics of the propagator and the 
u = m - 1 ..... 0 asymptotics is that 'Ii appears only in the quan­
tum evolution problem (1.2) whereas the variable mass pa­
rameter m enters both the quantum evolution and the com­
panion classical evolution problems. In Ref. 1 a detailed 
comparison of the 'Ii ..... 0 and u -+ 0 limits was used to formally 
obtain expansion (1.6) from the higher-order WKB repre­
sentation of K. Such an approach is instructive in how the 
formula ( 1.6) emerges from the classical trajectories having 
two fixed end points that enter the WKB approximation but 
it suffers from the drawback that it is difficult to make rigor­
ous. Here we have not had to make any ansatz concerning 
single valuedness of the action, the absence of caustics or the 
type of singular behavior the propagator has in the limit 
'Ii ..... O. We note finally that expansion (4.21 ) is relatively easy 
to use in the calculation of observables since the phase factor 
J and expansion coefficients T; are explicitly given expres­
sions of the fields whereas the analogous calculation in the 
WKB approximation for K requires one to first solve the 
difficult two point boundary value problems for the Hamil­
tonian dynamical equations in order to obtain the action 
function and expansion coefficients. 

In the physics literature the factorization (5.1) has been 
postulated a number of times. The first detailed account is 
apparently that given by Valatin. 25 For a related representa­
tion of the propagator for the Dirac equation see Refs. 26 and 
27. Some attempts28

,29 have been made to use the path phase 
factors like J( Q) in the description of the time-dependent 
wave function <P(X,t) , cf. (4.10). However this is unnatural 
(and not very successful) since there is no geometrically 
distinguished initial point y,s for a wave function as there is 
in the case of the propagator K. 

In the special case where the interaction is static and the 
evolution problem is that for the Bloch equation the large 
mass expansion is known to be equivalent to the Wigner­
Kirkwood3o

,31 approximation. Extensive discussions of the 
large mass expansions for the Bloch equation can be found in 
Refs. 32-34. A Wigner function analog of (5.1) is treated in 
Refs. 35 and 36. 

In the theory of stochastic processes37 results parallel to 
ours have been obtained. If i'li is replaced by 1 throughout 
( 1.2) a parabolic differential equation results. This equation 
can be investigated by the constructive Dyson series method 
in the same manner as the Schrodinger equation but it also 
can be studied, unlike the Schrodinger equation, through the 
specific methods of stochastic differential equations. The 
propagator of this parabolic equation has the interpretation 
of the transition probability density for the diffusion process 
starting form position y at time s and ending at x at time t. A 
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singular perturbation problem that includes the m -+ 00 limit 
for the parabolic equation is investigated by Kifer. 38 Upon 
specializing Kifer's asymptotic expansion [Ref. 38, Eq. (4)] 
from a Riemannian to a Euclidean manifold, it can be shown 
equivalent to expansion (4.21). 
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Using the theory of self-adjoint extensions of symmetric operators the precise mathematical 
definition of the quantum Hamiltonian describing a finite number of {j interactions with 
supports on concentric spheres is given. Its resolvent is also derived, its spectral properties are 
described, and it is shown how this Hamiltonian can be obtained as a norm resolvent limit of a 
family oflocal scaled short-range Hamiltonians. 

I. INTRODUCTION 

Recently Antoine et al. I performed a rigorous and sys­
tematic study of the quantum Hamiltonian describing a {j 

interaction with support on a sphere in arbitrary dimensions 
n>2. 

In this paper we obtain a generalization of some of the 
results of Ref. 1 by considering a finite number N of {j inter­
actions with supports on concentric spheres of radii 0 < R I 
<R2 < ... <RN • In fact, using the techniques of Ref. 2 one 
can treat the case N = 00. 

In Sec. II we employ the theory of self-adjoint exten­
sions of symmetric operators in order to give the precise 
mathematical meaning of the formal expression 

N 

H= - a + L aj {j(lxl-Rj)' 0.1) 
j=1 

where 

a 2 a 2 a 2 

a=-+-+-
axi ax~ ax; 

is the Laplacian. 
We show that (1.1) corresponds to the self-adjoint op­

erator H{a/},{R} given by Eq. (2.12), i.e., 

'" 
H{a/},{R} = I~O U-1hl,{a/},{R} U® 1. 

In this section we also derive the resolvent of H{a/},{R}' 

Section III is devoted to the description of spectral prop­
erties of hr,{a/},{R} and finally in Sec. IV we show how 
hl,{aMR} can be obtained as a norm resolvent limit of a fam­
ily of local scaled short-range Hamiltonians. 

II. DEFINITION OF THE HAMILTONIAN 

In this section we give (in dimension n = 3) the precise 
mathematical formulation of the quantum Hamiltonian de­
scribing N {j interactions with supports on concentric 
spheres of radii 0 < R 1 < R 2 ' •• < R N formally given by 

N 

H= -a+ L aj t5(lxl-Rj ). (2.1) 
j= 1 

Consider in L 2 (R3 ) the closed, non-negative minimal opera­
tor 

(2.2) 

where K(O, Rj ) is a closed ball of radius Rj centered at the 
origin in R3. 

Following, e.g., Ref. 3, p. 160, one can decompose 
L 2(R3

) with respect to angular momenta 

(2.3 ) 

(S 2 is the unit sphere in R3
), and introduce the unitary trans­

formation 

U: {L 2(0,00); r dr) ..... L 2(0,00 »), 
j ..... (Uj)(r)=rj(r), r>O, 

(2.4) 

in order to obtain the following decomposition of L 2(R3
): 

00 

L 2(R3 ) = ED U-1L 2(0,00); dr)® [Yi], 
1=0 

I E No, - l<m<l, (2.5) 

where [Y;"] represents the linear span of the spherical har­
monics. 

With respect to the decomposition (2.5) if reads 

• 00 -1. 
H= I~O U ht,{R} U® 1, 

where 

h· _£+ 1(/+ 1) 
I,{R} = dr r 

!fl (hl,{R} ) = {jE L 2«0, 00»1 J,f' E AC1oc(0, 00 »); 

j(O+) =0 if 1=0; j(Rj±) =0; 

-I" +/(/+ l)r- 2 jEL 2(0,00»)}, 

IENo, 1 <.i<N, {R}={R1, ... ,RN }. 

(2.6) 

(2.7) 

Here A C10c ( (0, 00 ») stands for the set of locally absolutely 
continuous functions on (0, 00 ). and 

j(x±) = lim j(x±e). 
£-0+ 

The adjoint .iI. of.iI is given by 

aj On leave of absence from the Department of Mathematics, University of .iI. = ; U - I it T{R} U ® 1, 
Burundi, BP 2700 Bujumbura, Burundi. 1=0 ' 

(2.8) 
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d 2 1(1+ 1) 
h t{R} = - dr + r 
PP (h t{R}) = {/E L ~(o,oo ))I!.I' EACloc (0,00) \ {R}); 

/(0+) = ° if 1=0; 

/(Rj + ) =/(Rj _ ) =/(Rj ); 

-/" +1(1+ 1)r-2/EL 2(0,00»)}, 

(2.9) 

A straightforward calculation shows that the equation 

h t{R} ¢JI (k) = k 2¢JI (k), ¢JI (k) E PP (h t{R} ), 

Imk>O, 

has the solutions 

{
(i1TI2) R)l2 H ~~ 112 (kRj )r

I/2J I+ 112 (kr), r<Rj , 
¢Jlj(k,r) =. 1/2 k 1/2 (I) k R I k 1 (I1TI2)R j JI+ I12 ( Rj)r H I+ 1I2 ( r), r-, j' m >0, <J<N, 

(2.10) 

where J v (z) and H ~I) (!) are, respectively, Bessel and Hankel functions of order v.4 Thus the de~ciency indices of hl,{R} are 
(N,N) [we write def(hl,{R}) = (N,N)], and consequently all self-adjoint (s.a.) extensions of hl,{R} are given by an N 2_ 
parameter family of s.a. operators, 

In this paper we consider a special N-parameter family ofs.a. extensions of hl,{R}. corresponding to the formal expression 
(2.1). The construction of the general (N 2-parameter) family ofs.a. extensi,?ns of hl,{R} will be reported elsewhere.5 

We introduce in L 2( (0,00 ») the following family of closed extensions of hl,{R}: 

d 2 1(1+1) 
hl.{a/},{R} = - dr + r 
PP (hl,{a/},{R}) = {/E L 2(0,00) )[f,f' E ACloc(O' 00) \ {R}); 

(2.11) 
/(0+) =0 if 1=0; /(Rj _) =/(Rj+ )=/(Rj ), 

f'(Rj+) -/'(Rj _) =aj//(Rj ), -I" +1(1+ 1)r-2/EL 2«0,00»)}, 

{al} = {all"'"aN/}, -oo<aj/<oo, IENo, 1 <J<N. 

A simple integration by parts shows that hl.{a/},{R} is 
symmetric. Moreover, since def(hl,{R} ) = (N,N) and the N 
boundary conditions in Eq. (2.11) are symmetric and linear­
ly independent it follows from Ref. 6, Theorem XII, 4.30 
that hl,{a/},{R} is self-adjoint. 

The case aM = 00 for somejo E {1, ... ,N} in Eq. (2.11) 
describes a Dirichlet boundary condition at Rjo while aj/ = ° 
for all j = 1, ... , N (i.e., {al} = 0) coincides with the free 
kinetic energy Hamiltonian hl,o for fixed angular momen­
tum/. 

By definition the operator h{a/},{R} defined in L 2 (lR3
) by 

00 

H{a/},{R} = I~O U-Ihl,{a/},{R} U® 1 (2.12) 

describes N 8 interactions with supports on concentric 
spheres of radii O<RI < ... <R N • Actually H{a/},{R} pro­
vides a slight generalization of (2.1) since aj : 1 <J<N may 
depend on I E No. If {al} = 00, then Hoo,{R} coincide with 
the Laplacian with Dirichlet boundary conditions at 

aK(O,Rj ), 1 <j<N. Thecase{al} = ° yields the free Ham-
iltonian 

Ho = - A, PP (Ho) = H2,2(lR3
), 

where H 2,2 (.n) is the Sobolev space of indices (2,2).7 

The resolvent of hl,{a/},{R} is given by the following 
theorem. 

Theorem 2.1: If aj/ o:I=O,j = 1, ... ,N, then the resolvent of 
hl,{a,},{R} is given by 

(hl,{a/},{R} - k 2)-1 

N 

= (hl,o - k 2) -I + I PiJ" (k)(¢JIJ" ( - k),' )¢Jlj (k), 
U=I 

k 2 Ep(hl,{a/},{R})' 1m k>O, IE No 

[p(.) the resolvent set], where 

with 

gl,k = (hl,o - k 2)-I, 1m k>O, 

the free resolvent with integral kernel; 

(2.13) 

(2.15) 

{
(i1TI2)rI/2 H~~ 112 (kr)r'1/2 J I+ 112 (kr'), r'<r, 

gl,k(r,r')= (i1T12)r'1/2H~~1I2(kr')rI/2JI+1I2(kr), r'-,r, Imk-,O. 
(2.16) 

Proof: Equation (2.13) except for the factorsPiJ" (k) fol­
lows from Krein's formula. 8 In order to determine the fac­
torsPiJ" (k) we proceed as follows. 

Letgl EL 2(0,00») and define 

(2.17) 
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where k is chosen in such a way that detp(k) 0:1=0. Since 
XI E PP (hl,{a/},{R})' it follows from Eq. (2.11) that XI satis­
fies the following boundary conditions: 

(2.18 ) 
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(2.19) 

(hl.{aMR} - k
2

) X/)(r) 

= - x;,(k,r) + (/(/ + 1)/r) XI (k,r) - k 2XI (k,r) 

= gl (r), r> 0, r=lRj' 1 <J<.N. (2.20) 

The verification of the boundary conditions (2.18)-(2.20) 
gives the factors ,uil (k). The resolvent of H{a/},{R} mayeasi­
ly be obtained using Eqs. (2.12) and (2.13) . We get 

(H{a/},{R} - k2)-1 

00 I N 

= (Ho - k2)-1 + EB EB L ,un' (k) 
I=Om= -ljJ=1 

X(I'I-l tPIJ ( -Ie) Y?,,·) 

xl'I-ltPIJ(k) Y?" k
2

Ep(H{a/},{R})' 

1m k>O, / E No. (2.21) 

III. SPECTRAL PROPERTIES OF h,,{a,),{R) 

Spectral properties of hl,{a/},{R} are contained in the fol­
lowing theorem [u(·), U ess (.), U ac (.), Usc (.), up (.) de-

I 

note the spectrum, essential spectrum, absolutely contin­
uous spectrum, singularly continuous spectrum, and point 
spectrum, respectively. 9 ] 

Theorem 3.1: Assume ajl =10, 1 <J<.N. If all ajl =I 00, 

then hl,{a/},{R} has at most N eigenvalues which are all nega­
tive and simple. If ajl = 00 for at least onej E {I, ... ,N}, then 
hl,{a/},{R} has at most N negative eigenvalues (counting mul­
tiplicity) and infinitely many non-negative eigenvalues ac­
cumulating at 00. The remaining part of the spectrum is 
purely absolutely continuous and covers the non-negative 
real axis 

Uess (hl,{a/},{R}) = Uac (hl,{a/},{R}) = [0,00), 
(3.1 ) 

Proof Since hl,{R} >0 and def(hl,{R} ) = (N,N) it follows 
from Ref. 10, p. 246, that hl,{a/},{R} has at most N negative 
eigenvalues counting multiplicity. Suppose 0< R I < R2 

< .. ·RN· If lajd < 00, 1 <J<.N, then following, e.g., Ref. 11, 
one can define 

Rm <.r<.Rm + I' l<.m<.N - 1, 

r>RN' Imk>O, k=lO, 

(3.2) 

where am + I and bm + I are unique nontrivial solutions of the system 

am+ 1 HI~1I2(kRm) +bm+ 1 J I + 1I2 (kR m) =am HI~1I2(kRm) +bm JI+1/2(kRm)' 

am+ 1 [rl/2HI~1I2(krn~=Rm +bm+ 1 [rl/2JI+1I2(kr)]~=Rm 
(3.3 ) 

- am [rl/2 Hl~ 112 (kr) ]~=Rm - bm [r
l12

J I+ 112 (kr) ]~=Rm 

= ami [am+ IR ~2 Hl~ 112 (kRm) + bm+ I R ~2 J I + 112 (kRm n, 

A straightforward computation shows that the function 
.,pI (k,r) satisfies the boundary conditions 

.,p1(k,Rj+) =.,pI(k,Rj _), (3.4) 

.,pi(k, Rj+ ) - .,pi(k, Rj _ ) = ajl .,pl(k, R), 

j= 1, ... , N. (3.5) 

Furthermore, the uniqueness of the coefficients am + I and 
bm+ 1> 1 <.m<.Nimplies that.,pl (k,r) is the unique solution of 
the differential equation 

d 2 /(/+ 1) 2 - dr .,pl(k,r) + r .,pI (k,r) = k .,pI (k,r), 

r>O, r=lRj' j= 1, ... ,N, (3.6) 

satisfying the boundary conditions ( 3.4 ) and (3.5) . If k 2 > 0, 
then .,pI (k,r) E L 2(0,00») if and only if aN+ I = bN+ I = 0, 

i.e., .,pI (k,r) = 0. Since the same argument may be used for 
k = 0, we conclude that 

up (hl,{a/},{R}) C ( - 00,0). 

Suppose now that k 2 < 0. The simplicity of this eigenvalue 
follows from the uniqueness of .,pI (k,r). (We observe that 
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I 
k 2 < ° is an eigenvalue of hl,{a/},{R} if and only if b N + I = 0.) 

Consider now the case when exactly one a jl = 00, e.g., 
a jol = 00 and N>2. The boundary condition at r = Rjo be­
comes a Dirichlet boundary condition and therefore divides 
(0,00) into two independent intervals (O,Rjo) and (Rjo' 00) . 

The operator hl,{a/},{R} with aM = 00 is then a direct sum, 

hl,{a/},{R} = h U~/},{R} EB h n~/},{R} 
acting in L2(0,00»)=L2(0,Rj.,))EBL2(Rjo'00)) (and 
satisfying a Dirichlet boundary condition at r = R jo ). Hence 
h H~/},{R} in L 2( (O,Rjo») has a pure point spectrum in (0,00) 

accumulating at 00. The relation (3.1) follows from Weyl's 
theorem (Ref. 12, p. 112) and the absence of singularly con­
tinuous spectrum follows, e.g., from Ref. 13, Lemma 2.4. 

IV. APPROXIMATION OF hl,{a,),{R) BY A FAMILY OF 
LOCAL SCALED SHORT-RANGE HAMILTONIANS 

In this section we show how h,,{a/},{R} can be obtained as 
a limit of a sequence of local scaled short-range Hamilto­
nians. Let AjI: [0,00)'" R, I E No be analytic near the origin 
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with Aj/(O+) = ° and denote by UE the unitary dilation 
group in L 2( (0, 00 »), given by 

(UE/)(r) =E- 1/2 j(r/E), E>O, jEL 2(0,00»). 

(4.1 ) 

For allj = 1, ... ,N, let Jj: R-+R be measurable, Jj (r) =0 for 
r < 0, Jj E L I( (R, 00 »), and define 

Vj (r) = I Jj (r) 11/2, Uj (r) = I Jj (r) 11/2 sgn [Jj (r>]. 

(4.2) 

Next we introduce 

B/,E (k): L 2( (0,00 »)N -+L 2( (0,00 ) )N, 

N 

[B/'E (k)(gl"'" gN)]j = L B/,EJ! (k) gl' 
1=1 

(4.3) 

gj E L 2( (0, 00 ) ), 

where 

B/,EJ! (k) = Aj/(E)Uj g/,k vj ' E>O, 

Imk>O, j,j' = 1, ... ,N, 
(4.4) 

with 

uj (r) = uj(r - (l/E)Rj ), Vj (r) = vj(r - (l/E)Rj ), 

E>O, j= 1, ... ;N, (4.5) 

andg/ k given by Eq. (2.15). 
F~llowing, e.g., Ref. 11, one can show that B/,E,iJ" (k), 

j,j' = 1, ... ,N, extend to Hilbert-Schmidt operators for 
1m k>O, k :to. 

Let us define the form sum 14 in L 2( (0, 00 »): 

(4.6) 

with resolvent given by 

(h/(E) _ k2)-1 
N _ 

=g/,k - L (g/,k vj ) [1 +B/,E(k)]-I(UI,g/,k)' 
j,l= 1 

E>O, k 2 Ep(h/(E»), Imk>O. (4.7) 

Next we define the Hamiltonian h/,E in L 2( (0,00 »): 

(4.8) 

The scaling behavior 

andatranslationr-+r + E- I Rj,E>O,j = 1, ... ,N, then yields 

663 

N 

= g/,k - E-
I L A/,E,j(k) [1 + B/,E(k)]o 1 
j,l= 1 

XA1/(E)C/,E.! (k), E>O, k 2 Ep(h/,E)' 

1m k>O, (4.10) 

J. Math. Phys., Vol. 29, No.3, March 1988 

where the Hilbert-Schmidt operators A/,E,j(k), B/,E,i! (k), 
and C/,E,j (k) are defined through their integral kernels 

A/,E,j (k,r,r') = g/,k (r,Er' + Rj )Vj (r'), 1m k> 0, 

(4.11 ) 

B/,EjJ (k,r,r') = E-1Aj/(E)uj(r) 

Xg/,k (Er + Ri'EY + RI )v1 (r'), 1m k>O, 

( 4.12) 

(4.13) 

Next we define the rank 1 operators A/,j (k), B/,jj (k), 
and C/,j (k) via their integral kernels 

(4.14) 

B/,i! (k,r,r') = A ;/ (O)g/,k (Rj' RI )uj (r)vl (r'), 

1m k>O, k :to, (4.15) 

Lemma 4.1: For fixed k, 1m k > 0; and for allj = 1, ... ,N, 
A/,E,j(k), B/,E,jj (k), and C/,E,j(k) converge in Hilbert­
Schmidt norm toA/,j (k), B/,j/ (k), and C/,j (k), respective­
ly, as E-+O+. 

Proof: Using dominated convergence, one can easily 
show that 

v:~~~ B/,E,if (k) = B/,if (k), 

w-lim C1Ej(k) = C1j(k). 
E-O+ " , 

By Theorem 2.21 of Ref. 15 it suffices to prove 

!~~+ IIA/,E,j(k)lb = IIA/,j(k)lb, 

}~~+ IIB/,E,if 112 = IIB/,if (k) Ib 

}~~+ IIC/,E,j(k)lb = IIC/,jlb, 

( 4.17) 

(4.18 ) 

which can be easily done, again using dominated conver­
gence. 0 

Now we can state the main result of this section. 
Theorem 4.2: Forallj = 1, ... ,N, let Jj: R-+Rbemeasur­

able, Jj (r) =0 for r < 0, and Jj E L I«R,oo »). Then h/,E con-
verges in norm resolvent sense to h/,{a/},{R} as E-+O+, i.e., if 
k 2 E p(h/,{a,},{R} ) then k 2 E P(h/,E) for E small enough and 

(4.19) 

where 

ajl = A;/ (0) Leo dr Jj (r), I E No. (4.20) 

Proof' By (4.10) and Lemma 4.1 we obtain 
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N 

n-lim (h l,£ - k2)-1 =gl,k - L AI,j(k) 
£-0+ j" ~ I 

x [1 + BI(k) 1i I A I (O)C, (k), 

k 2 EC'\R, Imk>O, (4.21) 

where BI (k) is defined by 

BI (k): L 2((0, 00 »)N ---L 2((0,00 »)N, 1m k;;;.o, k =1=0, 
N 

[BI(k)(gl,oo.,gN»j = L BI.iI(k)g" (4.22) 
'~I 

gjEL 2((0,00»), 1 <J<N. 
But 

BI,iI (k) = A ;1 (O)gl,k (Rj , RI ) (vj ,·) uj 

implies 
N 

(4.23) 

[1 + BI (k».i 1= loil - A;I (0) L gl,k (Rj , Rm) 
m~1 

(4.24) 

where 

j1(k) = [Oil + A;I (O)(vpuj )gl,k (Rj , RI >1;;, ~ I' 
1m k>O. (4.25) 

If A;I (O)(vp uj ) =1=0 for all j = 1,oo.,N then a comparison 
with Eq. (2.14) shows that 

[ j1(k) lo-:;- 1 A II (0) (VI ,U1 ) 

= - [,u(k)1.o-:;-t, ajl =A;I(O)(vj,uj ), 

j,j' = 1,oo.,N, (4.26) 

which by (2.13) completes the proof after inserting (4.26), 
(4.14), and (4.16) into (4.21). • 

Formulas (4.21), (4.24), and (4.26) show that bound 
states (resp. resonances) of hl,{a/},{R} are given by zeros of 
the Fredholm determinant det[1 + BI(k» in the upper 
(resp.lower) k-halfplane. 
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Properties of the Lie algebra gl(n,C) are described for a basis which is a generalization of the 
2 X 2 Pauli matrices. The 3 X 3 case is described in detail. The remarkable properties of that 
basis are the grading ofthe Lie algebra it offers (each grading subspace is one dimensional) 
and the matrix group it generates [it is a finite group with the center ofSL(n,C) as its 
commutator group] . 

I. INTRODUCTION 

The purpose of this paper is to exploit recent results in 
mathematics1

•
2 in order to generalize the 2X2 Pauli matri­

ces to the n X n case. The generalization is unique up to nor­
malization and change of basis. For n = 3 it is very different 
from the familiar generalization of the generators of the Lie 
algebra su(2) to su(3), known as the Gell-Mann matrices.3 

We start by asking the following question: What is the 
most important property of the Pauli matrices? A definitive 
answer to this question cannot be given since "importance" 
is relative to the purpose one may have in mind, and because 
the familiar case of2 X 2 Pauli matrices is too small in size to 
really appreciate the analogous properties for larger values 
of n. However, it is well known that the 2 X 2 Pauli matrices 
have other nontrivial properties besides spanning the Lie al­
gebras su(2) and sl(2,C) (real and complex parameters, re­
spectively). We list their properties in Sec. II. The general­
ization of the Pauli matrices is thus related to what one 
considers to be the defining important properties of these 
matrices. 

In this paper we adopt the following point of view: The 
first one of the defining properties of what will henceforth be 
called the generalization of the Pauli matrices and denoted 
by g; n is that they provide a finest grading of the Lie algebra 
gl(n,C). The role g; n plays in grading gl(n,C) has two 
aspects: The adjoint action of g; n on gl(n,C) provides the 
grading group, and the generators of the graded gl(n,C) are 
found among the elements of g; n • 

The second defining requirement is that the set of n X n 
matrices g; n generates a subgroup ofSL(n,C) with the cen­
ter ofSL(n,C) as its commutator subgroup. It simply means 
that the group commutator of g; n must be as large as possi­
ble given its role in the grading of gl(n,C). Throughout this 
paper we try to emphasize those basic properties of g; n that, 
in our opinion, should find a reflection in any lasting applica­
tion of the results in physics. 

Until now the role of the gradings in physical applica­
tions of Lie algebras and their representations were rarely 
noticed or emphasized except perhaps for the Z2 gradings 
underlying the classification of real forms of simple Lie alge­
bras, the structure of superalgebras, and the Wigner-Inonii 
contractions of Lie algebras. Also the affinization A of finite 
simple Lie algebra A involves an infinite Z grading of the 

algebra A. Implicitly another type of grading underlies the 
Cartan or root space decomposition of simple Lie algebras 
(finite and Kac-Moody ones). 

The role of gradings of a Lie algebra in physics cannot be 
overestimated. In conventional terms it means the existence 
of preferred bases of the Lie algebra which admit additive 
quantum numbers. Naturally one wants to know all such 
bases and all nonequivalent choices available in a given situa­
tion. Moreover, such bases "force their way" into physics 
even if one is not set up to study them. Thus the matrices A 
and D below which generate g; 2n + 1 are encountered in 
physics literature.4 

In general terms a grading of a Lie algebra L means that 
L can be written as a direct sum of linear subspaces, 

L =Xa EIlXb EIlXc Ell''', a,b,c,oo.eS, (1.1) 

labeled by a set S of finite sequences of integers or integers to 
a module a = {a 1,a2 ,oo.,am}, b = {b 1,b2 ,oo.,bm}. The set S 
may be finite or infinite, there may be more than one integer 
labeling each subspace, etc.; the subspaces are supposed to be 
not zero, often even of dimension greater than 1. The decom­
position (1.1) of L is called a grading provided the nonzero 
commutation relations of L have the following form: 

( 1.2) 

foranyxa'Yb ofL forwhicha,beS,xaEXa'YbEXb' [Xa'Yb] 

#0 so that a+beS, Za+bEXa+b' Note that the m-tuple 
a + b is formed componentwise and it must also be a part of 
the labeling set S. Practically grading L means to find gener­
ators of L and a labeling set S such that (1.2) is satisfied. 

In the case of a Z2 grading the decomposition ( 1.1) con­
tains exactly two subspaces labeled by integers mod 2. Such 
gradings most often can be refined to gradings with more 
than two components, they are coarse gradings. Of interest 
to us here are the fine gradings, where the sum in (1.1) con­
tains as many subspaces as possible given the requirements 
of (1.2), among which are the finest gradings in case all 
subspaces X j in (1.1) are one-dimensional. The finest grad­
ings of An algebras are described here for the first time al­
though we exploit results of Refs. 1 and 2. 

Furthermore, it may be possible to grade simultaneous­
ly the Lie algebra and its representations, decomposing a 
representation space V of L into a direct sum of subspaces 
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V= Vd ES Ve ES VfES"', d,e,jES, 

with the property 

xaIYd)eVa+ d, a,d,a+dES; IYd)EVd . 

( 1.3) 

( 1.4) 

The relations (1.3), (1.4) contain (1.1), (1.2) as the partic­
ular case of the adjoint representation of L. 

In quantum mechanics the labels of the set S are the 
admissible additive quantum numbers, which are eigenval­
ues of a chosen set of mutually commuting diagonable opera­
tors. In the case of a semisimple or reductive Lie algebra L, 
or of the Kac-Moody algebras, the traditional choice of the 
"diagonal" operators are the generators (i.e., a basis) of a 
Cartan subalgebra ~ = {h l ,h2, ••• ,hJ. The remaining genera­
tors of the Lie algebra are then taken to be the eigenvectors of 
~. This is the traditional scenario which leads to the shift-up 
and shift-down generators similar to L + and L _ generators 
of the angular momentum theory. If the rank of L is r, then 
each label has r components. Such a label is called a weight of 
L; in the case of the Lie algebra these weights are the roots of 
the algebra, and the decomposition (1.1) of L is a grading 
called either the root space decomposition or the Cartan de­
composition of L. Such a grading is fine but not the finest 
since dim ~ = r> 1 for all but the 2 X 2 case. Note how re­
strictive the grading concept is in comparison with arbitrary 
decompositions of a Lie algebra into linear subspaces [cf. the 
matrices (2.2) below], that is, most decompositions do not 
admit a labeling of the generators with the property (1.2). 

Our construction departs from the traditional approach 
by the observation that the 2 X 2 Pauli matrices generate a 
very particular maximal nilpotent subgroup 9 2 of SU (2), 
the quaternion group of order 23. This group is non-Abelian 
and therefore it is not a subgroup of the maximal torus of 
SL(2,C). However, its adjoint action on the Lie algebra 
sl(2,C) is Abelian and hence in many standard situations it 
can be used instead of the maximal torus. 

Since the features of the general case appear already in 
the lowest case, n = 3, we describe them in detail for the 
3 X 3 example in Secs. III and IV often leaving to the reader 
the verification of the properties by straightforward compu­
tation. In Sec. V the general (2n + 1) X (2n + 1) case is 
dealt with because it is somewhat simpler than the even size 
generalization presented in the last section. The 4 X 4 exam­
ple is also briefly considered there. 

The matrices 9 n of any degree n provide a finest grad­
ing of An _ I' But not every finest grading of An _ I is conju­
gate under SL(n,C) to the grading provided by the group 
9 n • The general theory of Ref. 2 provides the answer that all 
finest gradings of An -I (with the exception of some low 
rank cases) are obtained upon using the Kronecker product 
groups 

9 ®9 ®···®9, m l m 2 ···m.=n. m. m 2 m) ) 

An appropriate name for these matrices would be general­
ized Dirac matrices since the ordinary Dirac matrices corre­
spond to 9 2 ® 9 2, 

II. PROPERTIES OF THE PAULI MATRICES 

The set of matrices 
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(2.1) 

(0 i) (i 
U 2 = N i 0' U 3 = N 0 

with any complex nonzero normalization constants N, N' we 
shall call the Pauli matrices. Sometimes it is convenient to 
admit also the value N' = 0 and thus consider U I, U 2, and U 3 
as the Pauli matrices without the identity matrix uo' In phys­
ics the most common normalization is N' = 1, N = - i, 
which makes all four matrices Hermitian. 

A well known 3 X 3 analog of (1.1) are the Gell-Mann 
matrices, 3 

(2.2) 

~ ), 
-2 

The matrices (2.2) generalize (2.1) in that their R- or C­
linear combinations span the Lie algebras u(3) and gl(3,C), 
respectively, just as the Pauli matrices span the Lie algebras 
u(2) and gl(2,C). However, the Pauli matrices have other 
remarkable properties not shared by (2.2). They are as fol­
lows. 

(1) With N= 1, N' = 1 the Pauli matrices (2.1) 
(equipped with matrix multiplication) generate the maxi­
mal nilpotent subgroup 9 2 ofSL(2,C), a group of order 23. 
Explicitly the group 9 2 consists of the following elements: 

± (~ ~), 

± (~ ~), 

± (~1 ~), 

(
i 0) 

± 0 -i . 

(2.3 ) 

Note the coincidence of the centers of the groups 9 2, 

SL(2,C), and SU(2). All the matrices (2.3), except themul­
tiples of identity, belong to the same conjugacy c1a~s of 
SL(2,C) elements of order 4 denoted5 by [11]. It is the 
unique class of the lowest order regular elements. Note also 
that the Hermitian normalization of (2.1) would generate a 
finite group which is quite different from 9 2, 

(2) The adjoint action of the Pauli matrices on them­
selves is diagonal and does not depend on N =f 0, N' =f 0: 

_ I {Uk' if j = k or k = 0 or j = 0, 
UPkUj = _ Uk' if O=fj=fk =f0. 

(2.4) 
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Existence of the group q; n satisfying (2.4) and the irreduci­
bility of q; n are the requirements defining the generalization 
of Pauli matrices in this paper. 

Among the interesting consequences of (1) and (2) let 
us point out the following. 

(3) With N = i/2 the commutation relations of (2.1) 
have integer structure constants. The normalization of 0'0 is 
irrelevant for this property since 0'0 commutes with all the 
others. 

( 4) Introducing the following notations for the genera­
tors ofs1(2,C): 

0'1 = (1,0), 0'2 = (1,1), 0'3 = (0,1) , 

the grading of the algebra is made obvious: 

[( p,q)( p',q')] = const( p + p',q + q') , (2.5) 

wherep,q,p',q',p + p',q + q' are integers mod 2. 

Let us note the following properties which find some reflec­
tion in the generalization. 

(5) The Lie algebra su(2) [or sl(2,C)] decomposes 
into a sum of one-dimensional real (or complex) subspaces 
generated by 0'1,0'2,0'3 each of which is a Cartan subalgebra. 
For n = 2 this means that 0'1,0'2,0'3 are diagonable. 

(6) The three Cartan subalgebras are pairwise orthogo­
nal, 

tr(O'Pk) = 2NDjk (j,k = 1,2,3) . (2.6) 

The properties listed above are not independent of each 
other. The general theory can be found in Ref. 2. 

III. THE GENERALIZATION 

We will repeatedly use in Secs. III and IV the constants 
0) = e211-i/3 and 5 = e21Ti

/
6 and the obvious identities they 

satisfy. 
Consider the following 27 matrices: 

A, ~w'G ~ !} A ,- ~w-'G ~ 

~ ~'} B, ~w-'G ~, 
~' ~} c, ~w-'G ~ 

D, ~w'G 
0 

~} D ,- ~w-,(~ 
0 

~). 0) 0)2 

0 0)2 0 0 

I, ~w'G 
0 n 1 with k an integer mod 3. 

0 
(3.1) 

The set of matrices (3.1) is the 3 X 3 analog q; 3 of the 
group q; 2 of (2.3). Under matrix multiplication they form a 
subgroup of SL(3,C) of order 33 whose center, 
{J k' k == 0, ± 1 mod 3}, coincides with the center of both 
SL( 3,C) and SU (3). All but elements of the center belong to 
the unique SL(3,C) conjugacy class [111] oflowest order 
regular elements.5 ,6 

Any linearly independent subset of (3.1) is a basis of the 
Lie algebra g1(3,C). Our choice of the sl(3,C) linear genera­
tors will be (dropping the SUbscripts and writing the genera­
tors in bold characters) 

A~G !} B~G 
0) 

~,} 0 0 

0 0 

C~G 
0)2 

~} D~G 
0 

~} 0 0) 

0 0 0)2 

A-~G 
0 

~} B-~G 
0 n (3.2) 

0 0 
1 0)2 

c-~G 
0 W) ( 0 

D 0 ~ , 0- = ~ 0)2 

0) 0 
The Lie algebra gl(3,C) is generated by (3.2) and by the 
identity matrix I. Note that the matrices Band B-, C and 
C- are not inverse to each other, their products are multiples 
of the identity. Such a choice makes them a particular case of 
(5.6) below. 

It would be possible from now on to consider only Her­
mitian (or anti-Hermitian) linear combinations of the gen­
erators (3.2), but this would reveal little of the general struc­
ture and introduces many cumbersome complications (as 
happens in the angular momentum theory) although it 
could prove useful in some applications, for instance where 
the pairwise orthogonality of the generators with respect to 
the Killing form is required. The Hermitian version of (3.2) 
is thus 

A+~A+A-~G 
1 

l} B+ ~B+W'B- ~(~' 
0) 

~} 0 0 
0) 

A_ ~ itA -A -) ~ ( -: -~} B_ ~i(B-w'B-) ~( 0 - iO) 

-i~'). 0 i0)2 0 
-i -i iO) 

667 J. Math. Phys., Vol. 29, No.3, March 1988 J. Patera and H. Zassenhaus 667 



                                                                                                                                    

D+~D+D~C -) C+ ~C+.,c- ~G 
0)2 

~). -1 0 
0)2 

(3.2') 

D_ ~i(D-D-) ~v'2r J. C_ ~i(C-.,c-) ~( 
0 - i0)2 

-~) iO) 0 
-i i0)2 

The matrices (3.1), besides spanning the Lie algebra 
g1(3,C) (under matrix commutation), form at the same 
time a finite subgroup of SL ( 3, C) (under matrix multiplica­
tion). Thus any matrix (3.1) can be interpreted as a group 
element or a Lie algebra element. The two interpretations 
differ by the implied composition law: commutation and lin­
ear combinations for the Lie algebra, and matrix multiplica­
tion for the group. 

The generators (3.2) make obvious a decomposition of 
the Lie algebra sl(3,C) into a sum of four two-dimensional 
subspaces 

(3.3 ) 

where the subspaces are spanned by two commuting genera­
tors, 

gA = {A, A -}, gB = {B,B-}, 

ge = {C,C-}, gD = {D,D-}. 
(3.4) 

Hence each of the four subspaces is a Cartan subalgebra of 
s1(3,C) and, taking suitable linear combinations of genera­
tors, also of the su ( 3 ). Furthermore, one easily verifies the 
pairwise orthogonality of the subspaces gAogB,ge,gD with 
respect to the Killing form, 

trXY=O, forXEgx , YEgy, X#Y. (3.5) 

The commutation relations of the generators (3.2) are 
summarized in Table I. The nonzero structure constants are 
cyclotomic integers of the form 

5 k +5 k
+

l
• (3.6) 

Finally observe that the property (2.4) of the Pauli ma­
trices also generalizes to higher ranks. Namely, 

Xk Yk.X ;; I = O)iyk. 

or equivalently 

Xk Yk· = O)iYk,Xk 

(3.7a) 

(3.7b) 

and also 

XkYk,Xk-IYk---;I=~ (3.7c) 

for any Xk,Yk.E&' 3' The factor O)i is given in Table I as the 
power of 52i in the structure constant in [X, Y ] 
= (5 2i + 52i+ I)Z. 

The finite group &' 3 of the matrices (3.1) is obviously 
non-Abelian. Hence it is not a subgroup of the maximal 
torus ofSL(3,C). Nevertheless its action (3.7a) on the gen­
erators of sl( 3,C) is Abelian. As a result of that it can be used 
instead of the maximal torus in many ways. 

IV. SOME FURTHER PROPERTIES 

A. The cyclotomic quarks and antlquarks 

In (3.2) we have a new basis of sl(3,C) with unique 
properties. Now let us consider the elementary representa­
tion theory in terms of the new basis. 

The natural (quark) representation of the generators of 
sl(3,C) coincides with (3.2). Let us choose the basis vectors 
(quarks) of the three-dimensional representation space as 
the eigenvectors of the generator D, label them by the power 
p(mod 6) of 5 in the eigenvalue 5 P ofD, and call them the 
cyclotomic quarks (most of the relevant numbers related to 
them in the representation theory are cyclotomic integers). 
Thus we have the quarks 

10) ~ G)' 12) ~ (!) · 14) ~ G) 
defined by 

DI p) = 5 PI p), p = even integer mod 6. 

One verifies directly that 

Dlp)=5 PIP), D-IP)=5- P lp), 

Alp) = Ip-2), A-Ip) = Ip+2), 

(4.1 ) 

(4.2) 

TABLE I. The commutation relations of the sl(3,C) generators (3.2). The 0 blocks on the diagonal indicate the presence of the generators off our Cartan 
subalgebras in our basis. Only the upper part of the table is shown. 

A A- B B- C C- D D-

A 0 0 (1 + t)C- (1 + 5'5)D- (1 +t5)B- (1 + t)D- (1 + t)B- (1 + t 5 )C 
A- 0 0 (1 + t 5)D (1 +t)C (1 + t)D (1 + t 5)B (1 + t 5 )C- (1 + 5')B-
B 0 0 (t 4 +t 5 )A- (t 2 +t)D (1 + t)C (1 + t 5 )A 
B- 0 0 (t 2 +t)D (t 4 +t 5 )A (l+t5)A- (1 + t)C-
C 0 0 (1 +t)A (1 + t 5)B 
C- O 0 (1 + 5'5)B- (1 + t)A-
D 0 0 
D- O 0 
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Blp)=5"Plp-2), B-lp)=5"-Plp+2), 

qp) =5" -Plp-2), C-Ip) =5"Plp+2). 
(4.3) 

The relations (4.3) are rewritten in (4.15) below in a com­
pact form using different notation for the generators. 

Note the "rotating" action of A, B, C and that of A -, 
B -, C- on the quarks and the fact that during commutation 
the rotations add up. Neither of the generators is a "shift­
up" or "shift-down" operator. Symbolically one has 

----.. ...----
Ip) Ip+2) Ip) Ip+2) 

(4.4) 

In order to consider other representations, say the anti­
quark one, it is helpful to distinguish between the abstract 
generators, which we denote by A, B, C, D, A -, B -, C -, 
D -, and their representations. Thus the matrices (3.2) 
stand for the s1(3,C) generators in the quark representation 
q. The abstract generators in the antiquark representation q 
are represented by matrices which are the negative transpose 
of those of (3.2). In particular, 

q(D) =D, q(D) = _DT= -D. (4.5) 

Therefore the antiquarks I p) are 

11), 13), 15), (4.6) 

defined by 

- DI p) = 5" PI p), p = odd integer mod 6. (4.7) 

Thus to every quark I p) there corresponds an antiquark 
I p + 3). Transformation properties of the antiquarks analo­
gousto (4.3) are given in (4.15c). 

B. The finest grading of sl(3,C) 

Before proceeding further in this direction, it is useful to 
consider a grading of the Lie algebra s1(3,C) unique to our 
basis. 

The rotating action of the generators on the quarks al­
lows one to decompose gl(3,C) into three subspaces L d , 

d = 0, ± 1 mod 3, spanned by the generators 

LI = {A - ,B-,C-}, Lo = {D,D- ,I}, 

L_I = {A,B,C}, 
(4.8) 

with the grading property 

[Lr,Ls]~Lr+smod3' (4.9) 

The subspaces (4.8) can be defined as eigenspaces of the 
adjoint action (3.7a) of the generator D, 

L d = {XIDXD- 1 = CUd X} . (4.10) 

Thus (4.10) allows one to label each gl(3,C) generator by an 
integer d which can take three values. However, (3.7a) is 
valid not only for D but for any generator (3.2). Therefore 
we can use any other generator of s1(3,C), or all of them 
simultaneously, and label the generators by up to eight three­
valued integers. In order to label completely all the genera­
tors without redundancy of notation, it suffices to use any 
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two of them which do not commute. Choosing in addition to 
D, for instance, the generator A, and using its eigenvalues to 
label the generators, we end up with a new notation for the 
generators, 

D = (1,0,), A = (0, -1), 

B = (1, - 1,), 

C = ( - 1, - 1,), 

A- = (0,1,), 
B- = ( - 1,1,), 
C- = (1,1,), 

D- = ( - 1,0,), 

1=(0,0,), 
( 4.11) 

where the first label refers to A and the second to D [cf. 
(4.10)]. The Abelian property of the adjoint action (3.7a) 
assures the grading structure of the commutation relations 

[(k,j),(k ',j')] = const(k + k ',j + j') mod 3 (4.12) 

of gl(3,C) with th~ structure constants given as before in 
Table I. Since no two generators are labeled by the same 
symbol in (4.11), the grading (4.12) of gl(3,C) cannot be 
further refined. We say that it is· fine. Note that (4.9) is a 
coarsening of (4.12) obtained when one ignores the first la­
bel. The decomposition (3.3), however, is not a grading. 
Moreover, since the subspaces {(i,j)} generated by each 
(i,j) are one dimensional the grading is finest. We then have 
the fine decomposition of the Lie algebra gl(3,C) into a sum 
of one-dimensional subspaces: 

1 

g1(3,C) = L {(i,j)}. (4.13) 
i,j= -I 

Finally, note that the grading (4.11) allows us to write 
the commutation table (Table I) in a compact form. Name­
ly, 

[(k,j),(k ',j')] = (cukl - cuk1)(k + k ',j + j') mod 3, 
(4.14) 

and that the transformation properties (4.3) of quarks by 
the generators (r,s) of ( 4.11) including the matrix elements 
can be written in a simple form: 

(r,s)lp) =5"rPlp+2s). (4.15a) 

In (3.2) and (4.11) we have identified the abstract genera­
tors (r,s) with their matrix (quark) representation q(r,s). 
Without such convention the relations (4.15a) should have 
been written as 

q(r,s) I p) = 5" rpi p + 2s) (r,s mod 3; P even mod 6) . 

(4.15b) 

The corresponding relations in the antiquark representation 
q (r,s) of the generators are then 

q(r,s)lp) = -5"(p-3)rlP-2s) 

(r,s mod 3; p odd mod 6) . (4.15c) 

c. The gl(2,C) and 0(3,(;) subalgebras of sl(3,C) 

There are two maximal subalgebras of gl(3,C) which 
are often used. Let us now write their generators in our basis 
ofgl(3,C). 

First note that the 3 X 3 matrices Eij, i,j = 1,2,3, with 1 
at the intersection ofthe ith row andjth column and 0 else­
where, can be written as follows: 

E -.!.. ~ O-i)mDm E. =E .. A k - i 
u- £..,lIJ "k II • 

3 m= 1 

( 4.16) 
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The subalgebras are now generated for instance by 

gl(2,C): E32 = E33A -, E23 = E22A, 

E22-E33=j(S4+S5)(D-D-), (4.17) 

2EII - E22 - E33 = D + D- ; 

0(3,C): EI2 + E23 = j(2 + S -ID + sD-)A, 

E21+E32= -j(2+D+D- I)A- I , (4.18) 

Ell - E33 = j((1 + S -I)D + (1 + s)D- I). 

D. The Weyl group and the weight lattice 

Among the most important tools of the general repre­
sentation theory is the Weyl group Wand the weight lattices 
and weight systems of representations. We finish this section 
by pointing them out in the new basis. 

The sl(3,C) weight lattice is usually given as the integer 
span of the two fundamental weights, 

Q=ZVI+ZV2' (4.19) 

Here Z denotes any integer. In our notations the fundamen­
tal weights are written as the highest weights of the quarks 
and antiquarks, 

VI = 1 and V 2 = S . (4.20) 

Hence the weight lattice Q consists of all the points 

Q = Z + Zs = Z + leu . ( 4.21 ) 

The Weyl group action in Q is generated by two reflec­
tions, 

rl(a + bs) = rl(a + b + bm) 

= - a + (a + b)s = b + (a + b)m, 

r2(a + bs) = r2(a + b + bw) (4.22) 

=a+b-bs=a-bm. 

In particular all quark sl(3,C) quantum numbers (weights) 
are found on the same Weyl group orbit, 

SO=I~O, s2=r l s o = -1+s~2, 

s4=r2r l s O = -s~4. 

Similarly one finds the antiquarks on another orbit, 

s~l, s3=r l r2s= -1~3, 

s5=r2s=l-s~5. 

(4.23) 

(4.24) 

The standard representation theory can be developed in 
terms of this basis, irreducible representations are construct­
ed in tensor products of the quark and antiquark ones, etc. 

V. THE GENERAL CASE OF gl(2n+1,q 

The properties of g1(3,C) described in Secs. III and IV 
are particular cases of those which will be described here. 
Similar properties of gl(2n,C) also exist; however, some 
modification is necessary there. They are described in Sec. 
VI. 

The finite group f!jJ 2n + I represented as a group of 
(2n + 1) X (2n + 1) matrices of determinant 1 is generated 
by the cyclic permutation matrix 
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o 
o 

A= (5.1 ) 

o 
and by the diagonal matrix 

D=diag{I,;,;2, ... ,;2n}, ;=e21TiI2n+l. (5.2) 

The group consists of (2n + 1)3 matrices given by 

K kad = ;kA aDd, k,a,dEZ2n + I , (5.3a) 

which means that k,a,d assume integral values 
mod(2n + 1). Equivalently we could have chosen 

Kkad=;kDdAa, k,a,dEZ2n +l , (5.3b) 

instead of (5.3a). The transfer between the two conventions 
is made as follows. Because 

ADA -I =;D ¢:}DAD -I =; -lA, 

one has 

(5.4) 

A aDdA -a = ;adD d ¢:}DdA aD -d =; -adA a (5.5) 

and therefore 

K kad = ;adKkad . (5.6) 

Rewriting (5.5) in terms of K kad, we establish easily the 
crucial property of the group f!jJ 2n + I which generalizes 
(2.4) and (3.7). Namely, 

KkadKk'a'd' (Kkad ) -I = ; ad' - a'dKk'a'd" 

a,a',d,d'EZ2n +l . (5.7) 

Linear combinations of the matrices (5.3) with complex 
coefficients span the Lie algebra g1(2n + I,C). A suitable set 
of generators can be chosen, for example, by putting k = 0 in 
(5.3a). To be specific we choose the generators 

(5.8) 

In particular, the one-dimensional center of gl(2n + I,C) is 
generated by the identity matrix 

Koo =Kooo; 

the matrices A and D are also among the generators 

A =KIO=KolO , D=Kol =Kool ' 

Moreover, the subgroup ofSL(2n + I,C) generated by A,D 
has as its commutator subgroup the whole center of 
SL(2n + I,C). 

When it is possible to decompose s1(2n + I,C) into the 
algebraic sum 

n 

sl(2n + l,C) = f) + L f)d (5.9) 
d= -n 

of2n + 2 Cartan subalgebras? It can be done, according to a 
conjecture in Ref. 1, if and only if2n + 1 is a prime power. If 
2n + 1 is a prime number then we find the following solution 
for which we conjecture that our solution is the only one that 
can be refined to a finest grading: 

f)d = {(KId )a, 1 ..;;a..;;2n} , 

while f) is the Cartan subalgebra of diagonal matrices, 

f) = {KOd ,I..;;d..;;2n} = {D,D2,D3, ... ,D2n}. (5.10) 
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The property (5.7) specialized for the generators, i.e., 
k = k' = 0, allows one to label the generators by the eigen­
values of other generators acting as in (5.7). Thus the 
(2n + 1)2 basis elements of gl(2n + I,C) can each be la­
beled by (2n + 1) 2 eigenvalues. A voiding redundancy of no­
tation, it suffices to use eigenvalues of any two generators 
which generate 9 2n + 1 upon multiplication. Our choice of 
labeling generators from now on is A and D. 

A generator Kad is labeled by the eigenvalues of the 
transformations 

A KadA -I = ;dKad , DKadD -I =; -aKad . 

For simplicity of notation we write 

Kad = (d, -a). 

(5.11 ) 

(5.12) 

Here - a and d are integers mod(2n + 1). Note that each 
generator of gl(2n + I,C) is labeled by a distinct pair 
(d, - a). The identity Koo is labeled by (0,0). 

Consider the commutation relations 

[Kpq,Kp'q' ] = [(q, - p),(q', - p')] 

= (q, - p)(q', - p') - (q', - p')(q, - p) . 

Since 

(q, -p)(q', -p') =A PDqA p'Dq' 

=A p+pA -p'DqA p'Dq' 

=; -p'qA P+P'Dq+q' , 

all the commutation relations of our generators of 
gl(2n + I,C) can be written in the explicit form 

[A aDd,A a'D d'] = (; -a'd _; -ad')A a+a'D d+d', 

(5.13a) 

[(a,b)(a',b'» = (;a'b - ;ab')(a + a',b + b'), (5.13b) 

where the addition of the generator labels a,b,a',b' is under­
stood mod(2n + 1). The finest grading of g1(2n + I,C) re­
alized by our basis (5.10) is made obvious in (5. 11 ). Note 
that (5.11) is valid also for sl(2n + I,C) which requires the 
exclusion of (0,0) from the set of generators of the algebra. 

There are 2n Casimir operators ofsl(2n + I,C). In our 
basis they are written in an obvious way. Indeed, 

C(2)= I (PI,ql)(P2,q2); 
p, +p,=o 
q, +q, =0 

C(3) = I (PI,ql)( P2,q2)( P3,q3) ; 
PI +P2 +P3 =0 
q, +q,+q, =0 

C (2n+l) = ~ ( )( ) L PI,ql P2,q2 
PI + ... + P2n + I = 0 

q) + ... + q2n + I = 0 

x ... X ( P2n + 1 ,q2n + 1 ) • 

(5.14) 

It is understood that only the generators of sl (2n + 1, C) do 
appearin (5.14), i.e., (0,0) is excluded. 

Finally observe that also the relations (4.16) generalize 
in an obvious way: 
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1 2n + 1 
Eii =--- I ;O-ilmDm, 

2n+1 m=1 

Eik = EiiA k - i, 1";;i,k..;;2n + 1 . 

VI. THE GENERAL CASE OF gl(2n,C) 

(5.15) 

The development in this case follows the same line as in 
Sec. V. Differences occur in two ways2: the generating matri­
ces A and D have to be modified in order to assure that their 
determinant is 1, and the orthogonal decomposition of 
gl(2n,C) into Cartan subalgebras holds only for n = 1. 

The group 9 2n of 2n X 2n matrices of determinant 1 is 
generated by 

0 0 
1 0 

A= . . . 
0 
-1 0 

and by the diagonal matrix 

D = diag {7],7]3, ... ,7]4n-I}, 

D 2n= -I. 

0 
0 

, A 2n= -I, (6.1 ) 

0 

7] = e21ril4n , 
(6.2) 

Similarly as before 9 2n consists of (2n) 3 matrices given by 

(6.3) 

The property (5.7) of the group 9 2n' which lies at the 
origin of our interest in it, is written as 

KkadKk'a'd' (Kkad)-I = 7]2(ad'-a'd)Kk'a'd" jEZ2n . (6.4) 

It is verified directly using (6.3) and the relations 

ADA -I = 7]2D, DAD -I = 7]-2A . (6.5) 

Choosing the labeling elements A,D and using the nota­
tions 

Kad = KOad , a,d integers mod 2n 

for the basis of g1(2n,C), we have 

A = KIO = (0, - 1), D = Kol = (1,0) , 

A a = (KIO)a = (0, - a), Dd = (K01)d = (d,O) . 

(6.6) 

(6.7) 

The subgroup ofSL(2n,C) generated by A,D has as its com­
mutator subgroup again the whole center ofSL(2n,C). 

A generator Kad is labeled by the eigenvalues of the 
transformations 

A KadA -I = 7]2d Kad , DKadD -I = 7] - 2aKad . (6.8) 

For simplicity of notation we write Kad = (d, - a) [cf. 
(5.12)] rat4er than Kad = (7]2d,7] - 2a). 

Then the commutation relations of our basis of gl (2n,C) 
are given by (5.13a) where; = e21ri

/2
n. In the case of (5.13b) 

one should remember that now, because ofthe identity xm 
- X m + 2n for X = A and D, we have 

[( p,q),( p',q')] = E( 7]2P'q - 7]2pq')( P + p',q + q') . 
(6.9) 

Here E = - 1 if either O";;q + q' < 2n<.q + q' <4n or 
O<.q + q' < 2n..;;q + q' < 4n, and E = 1 otherwise. The 
2n - 1 Casimiroperatorsofs1(2n,C) have the structure giv­
en by (5.12). Also the relations (5.15) hold practically with-
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out change taking into account that A is of order 4n in the 
present case, 

1 2n 
Eu =- L t o - 2;lmD m , 

2n m=1 

E;k = E;;A k - ;, 1 <i,k<2n . 
(6.10) 

(1,0) ~D~V( i J, (2,0) ~D' ~( 
-1 

(0,3) ~A ~( ~ 
0 

D C 0 1 2 0 
0 0 

(0,2) =A = 
-1 

-1 0 0 0 
i 0 

Finally let us briefly consider the generalized Pauli ma­
trices of degree 4. The subgroup 9 4 of GL( 4,C) is of order 
43

• It is faithfully represented by the following 16 matrices 
each multiplied by ± 1 and ± i: 

-i J, (3'0)~D'~V( -J i -i 

0 

u' c 
0 0 

~) 0 0 -1 0 0 
0 0 (0,1) =A 3 = ~ -1 0 
-1 0 0 -1 

-i 0 

(1,3) ~AD~V( ~ 0 -1 ~) 2 0 C (2,3) =AD = O. 
0 ~} 0 0 -I 0 0 -I 

-1 0 0 0 -I 0 0 0 

(3,3) ~AD' ~ V( ~ . 
0 

~} 0 -i 
0 0 

-I 0 0 

c 
0 -1 

~) (2,2) ~A'D'~( ~. 
0 

~i) 2 0 0 0 0 0 
(1,2) =A D=7] 

0 0 o ' 0 0 o ' -1 -I 

0 -i 0 0 0 0 0 

c 
0 -i 

~1) 2 3 0 0 0 
(3,2) =A D =7] . 

0 0 o ' -I 

. 0 -1 0 0 

0 0 0 0 

-1 c (1,1)=A
3
D=7] ~ 

0 0 ~) 3 2 - i c (2,1) =A D = ~ 
0 0 ~i) 

-i 0 
0 

C 
0 0 

~) -i 0 0 
(3,1) = A 3D 3 = 7] ~ -1 0 o ' 

0 i 0 

(O,Q)~I~( J 
Here 7] = exp(21TiIS). The 16 matrices above are linearly 
independent and all but the identity are traceless. Equipped 
with the commutation relations they generate the Lie alge­
bra gl ( 4,C). One can also verify that among them one does 
not find the Dirac matrices given relatively to an uncommon 
basis. Similarly they do not belong to the symplectic or or­
thogonal subgroups ofGL(4,C). 
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For the stationary axisymmetric Einstein vacuum equations in cylindrical coordinates we find 
that both the Ernst equation and the two real equations which alternatively describe the 
stationary axisymmetric problem separate, leading to Painleve transcendents. The boundary 
and asymptotic behaviors of the resulting space-times are investigated in both cases. Two 
families of solutions are determined which, away from the symmetry axis, become 
asymptotically flat. The analysis provides an example to the conjecture that the Painleve 
property implies integrability. 

I. INTRODUCTION 

The Einstein vacuum equations with one timelike and 
one spacelike commuting Killing fields (the stationary axi­
symmetric problem) reduce either to the complex Ernst 
equation (for the squared norm 'I' and the twist potential <I> 
of one of the Killing fields) or to two real Ernst-type equa­
tions (for suitable combinations of the metric coefficients X, 
(U). In the present paper we investigate the separable solu­
tions that these two sets of equations admit in cylindrical 
coordinates. Although the equations are nonlinear we find 
that the (axial) z dependence of the solutions can be expo­
nential or sinusoidal and that the radial amplitudes satisfy 
( ordinary) differential equations of the Painleve type V or 
III. We investigate the boundary (near the axisp = 0) and 
the asymptotic (for p --+ 00 ) behavior of the resulting space­
times and we determine two families for which the metric 
becomes, away from the axis, asymptotically flat. 

That the complex Ernst equation separates in cylindri­
cal coordinates and the separation leads to Painleve equa­
tions is known even more generally than the vacuum 1-4 case, 
for the Einstein-Maxwell equations,5 and the Einstein equa­
tions coupled with any number of U (1) gauge fields. 6, 

7 It 
seems to have escaped notice, however, that the system of 
two real, Ernst-type equations separate as well. We should 
clarify at this point that the real Ernst-type equations arise 
only in the studies of the vacuum Einstein equations; they do 
not arise in the Einstein-Maxwell theory. 

All previous investigations have essentially confined 
themselves to the study of the Ernst equation. None of them 
has investigated the boundary and asymptotic behaviors of 
the resulting solutions, nor the integration of the remaining 
two Einstein equations, leading to the determination of the 
conformal two-dimensional geometry "orthogonal" to the 
two Killing fields. These two problems are addressed sys­
tematically in the present investigation. In fact the reduction 
of the separated equations to Painleve ones is such (the re­
quired transformations are not analytic) that the asymptotic 
behaviors can be obtained with difficulty from the behaviors 
of the Painleve transcendents, if the latter were known. So, in 

the Appendix, we determine the behaviors ofthe solutions of 
the separated system of equations before their reduction to 
Painleve equations. 

There is a long standing conjecture8
•
9 that an ordinary 

differential equation is integrable when it possesses the Pain­
leve property, meaning that all movable singularities are 
simple poles. A partial differential equation is integrable lO 

when the ordinary differential equations obtained by an ex­
act reduction of the partial equations possess the Painleve 
property. The stationary axisymmetric problem is complete­
ly integrable: it possesses an infinite number of conserved 
currents 11,12 and it has been integrated by the inverse scatter­
ing method. 13,14 That the (complex) Ernst equation reduces 
to one of the Painleve equations (which are actually charac­
terized by the Painleve property) is one of the few standard 
examples of the conjecture, The conclusion of the present 
paper that the real equations of the stationary axisymmetric 
problem also possess the Painleve property provides addi­
tional new evidence in favor of the conjecture. 

II. THE FORMALISM 

For stationary axisymmetric space-timesl5 in the Papa­
petrou l6 gauge the metric is of the form 

(dS)2 = p[X(dt)2 - (lIX) (drp - {Udt)2] 

(2.1 ) 

where (a / at) and (a / arp) are the two Killing fields. Setting 

X + {U = (1 + F)/(1- F), X - {U = (1 + G)/(1- G), 
(2.2) 

the vacuum Einstein equations become 

(1-FG)D 2F= - 2G(DF)2, 

(1 - FG)D 2G = - 2F(DG)2, 

II. =L (X X -{U (U ) r,Z 2X2 ,p ,z ,p ,z 

_ p(F,pG,z + F,zG,p) 
- (1_FG)2 

(2.3 ) 

(2.4a) 
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(2.4b) 

where D is the gradient operator in three-dimensional flat 
space but acting on scalar fields with azimuthal symmetry; 
thus, in particular, 

D2H=H,pp + (l/p)H,p +H,zz' 

(DH)(DH) =H,pH,p +H,zH,z' 

for any two scalar fields H and H. 
Alternatively, if instead of Eqs. (2.2) we set 

(2.5) 

\II = piX, <I>,p = (pIX2)OJ,z, <I>,z = - (pIX2)OJ,p' 
(2.6) 

and introduce the complex Ernst potentials Z and E by 

\II + i<l> = Z = (1 + E)/(1 - E) (2.7) 

the vacuum Einstein equations (2.3) and (2.4) become, re­
spectively, 

(EE* - 1)D2E = 2E*(DE)2, (2.8) 

(p +! In \II),z = (pI2\112) (\II,p \II,z + <I>,p <I>,z) 

_ p(E,pE~z + E~E,z) 
- (EE* - 1)2 

(2.9a) 

(p + pn \II) ,p = (p/4\112)(\11~ - \II~z + <I>~ - <I>~z) 

_ p (E,p E~ - E, z E~z ) 
- (EE* - 1)2 

(2.9b) 

Equations (2.3) and (2.8) are the two real and the one com­
plex Ernst equations, respectively, associated with the met­
ric functions (X,OJ) and the norm and the twist potential 
(\II, <1» ofthe azimuthal Killing field (a I atp). 

Finally we mention that setting 

X = i/ee - (;?), OJ =@/(i2 _@2), (2.10) 

and repeating all previous steps with the variables (i,@) one 
obtains the Ernst potential and the Ernst equation associated 
with the Killing field (a I at) . 

More generally, setting 

i=.K.., 
1Tt 

_ (8+OJ-8OJ)(1-8-8OJ)+8(1-8)x2 
OJ= , 

(1 - 28 + 2(2)1Tl 
1Tt =(1-8-8OJ)2-8 2X2, 0.;;;8.;;;1, 

with inverse 

x= (l/1T2)(1-28+28 2)2i, 

OJ = - (l/1T2){(1 - 8 + 8(1- 28 + 2( 2 )@) 

X [8 - (1 - 8)( 1 - 28 + 2( 2)@) 

+ 8(1 - 8) (1 - 28 + 2( 2)2i2}, 

1T2 = [1-8+8(1-28+28 2)@]2 

- 8 2(1 - 28 + 2( 2)2i2, 

(2.11 ) 

(2.12) 

and repeating the previous steps with the variables (i,@) 
one would obtain the Ernst potential and the Ernst equation 
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associated with the Killing field (alaQ;) = (1-8)(al 
atp) + 8(a lat), i.e., an arbitrary linear combination of (a I 
atp) and ca I at). It should be noted, however, that the trans­
formation (2.11) for 8 = 1 should be followed by the "tri­
vial" transformation (x,OJ) - ( - X, + OJ), which also pre­
serves Eqs. (2.2) and (2.3), in order to reduce to Eqs. 
(2.10). 

Since the boundary (near the axis) and the asymptotic 
(at infinity) behaviors ofthe Killing fields should be differ­
ent for the azimuthal and the time-translational Killing 
fields, any solution of the Ernst equation should be investi­
gated as representing either the untilded or the tilded quanti­
ties. Note, however, thatp remains invariant in passing from 
the untilded to the tiided variables. 

For a solution to be physically interesting it should de­
scribe a reasonable space-time at least in some region, name­
ly, either near the axis p-O + or at infinity p- 00. Such 
solutions should have the following behavior. 

(i) Near the axis 

X",,",ctp-I, OJ",,",C2 P-I, p",=,const, 

where CI > 0 and c2>0 are constants. 
(ii) Asymptotically (away from the axis) 

X",=,C3 P-I, OJ = O(p-2), p",=,const, 

where C3 > 0 is a constant. 

(2.13) 

(2.14) 

These conditions should be checked for both sets X, OJ, P 
as well as i, @, ji. 

III. SEPARABLE SOLUTIONS OF THE REAL 
EQUATIONS 

It does not seem to have been noticed that the two real 
equations (2.3) admit separable solutions in cylindrical co­
ordinates (p, z). Thus setting 

F= e= f(p), G = e-azg(p), a = const, (3.1) 

and changing to dimensionless coordinates x = ap, ; = az, 
Eqs. (2.4) reduce to 

(fg - 1)(1" + (1lx)f' + f) = 2g(f'2 + f2), 

(fg - 1)(g" + (l/x)g' + g) = 2f(g,2 + gZ), 

(3.2a) 

(3.2b) 

where the prime denotes differentiation with respect to x. 
Equations (3.2) admit the integral 

x(fg' - f'g)/(fg - 1)2 = k = const. (3.3) 

Moreover, with the substitutions (3.1), Eqs. (2.4) reduce 
considerably; they read 

x(fg' -f'g) 
I/. - -k 
r,~ - (fg_1)2 - , 

1 x(f'g' + fg) 
p,x = - 4x + (fg - 1)2 

(3.4) 

From Eqs. (2.2), (3.1), and (3.4) we find that the resulting 
solution is determined from 

(3.5) 

p = k; + PI (x), 
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where 

dpI(x) = __ 1_+ x(lg+f'g') . 
dx 4x (Ig - 1)2 

(3.6) 

The expressions (3.5) and (3.6), with I and g satisfying 
Eqs. (3.2), determine a lour-parameter lamily olsolutions. 
Because of the presence of the term -! In x in the expres­
sion for p, arising from the integration ofEq. (3.6), the re­
sulting space-time is not regular near the axis. 

Asymptotically (x --+ 00) we find, after an elaborate 
analysis which is demonstrated in the Appendix, that the 
solutions ofEqs. (3.2) behave like 

1= (alei'l' + aTe- i<P)x- l12 + O(X-3/2 ), 

g = kl (alei'l' + aTe- i'l')x- 1/2 + O(X- 3/2 ), 

where 

tp=x+ (4k la laT>lnx, 

(3.7a) 

(3.7b) 

(3.8) 

and al and kl are complex and real constants, respectively. 
From the expressions (3.5)-(3.8) we find that 

x = 1 + O(x- I12 ), (J) = O(X- 1/2 ), 

P = k~ + 4kla laTx + O(lnx). 

The resulting space-time is not asymptotically flat. 

(3.9) 

In the presence of the integral (3.3) one would expect 
that the system of equations (3.2) would be essentially one 
of the third order. We shall now show, instead, that it can be 
reduced to a second-order Painleve equation. For the reduc­
tion we set 

1= PeQ, g = EPe- Q, (3.10) 

where E = + 1 or - 1 depending on whether I g>O or 
I g < 0, respectively. Note that this transformation is locally 
one-to-one and invertible, but it is not analytic. The integral 
(3.3) then becomes 

xP 2Q'/(E_p2)2= -Ek/2. (3.11) 

Using Eq. (3.11) to eliminate Q we find that P satisfies the 
second-order equation 

(P 2 _ E)(P" + ~ p') - 2Pp'2 

(3.12) 

Then setting 

P = l1(EW) -1 / 2, (3.13) 

where 11 = + 1 or - 1 depending on whether P>O or P < 0, 
respectively, we obtain 

W" _ (_1_ + _1_)W'2 + J.. w' 
2W W-l x 

-{3 (W+ I)(W-l)3 _{j W(W+ 1) =0 (3.14) 
x 2 W W-l' 

with {3 = k 2/2 and {j = 2. This is a particular case of the 
Painleve equationl7 of type V. Note that Eq. (3.14) is inde­
pendent of E and 11, i.e., independent of the signs of J, g, and 
P. 

Much simpler is the case when k = 0 in Eq. (3.3) (in­
stead of a constant). Then I/g = const and without loss of 
generality we can choosel = g = y (say), since the constant 
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of the ratio 1/ g can be absorbed in a shift of the origin of the z 
coordinate. Equations (3.2) then reduce to the single equa­
tion 

( y2 _ 1)( y" + (l/x) y' + y) = 2y( y'2 + y2). (3.15) 

Now y is smooth near the axis, exhibiting the behavior 

y = ao + [ao(a~ + 1 )/4(a~ - 1) ]X2 + O(x4
), (3.16) 

where ao is a real constant different from ± 1. Hence we get 

1-y2 
X = -------=--:--

(1 - e~y)(1 - e-~y) 

1-a2 

o + O(x2
), 

(1 - aoe~)( 1 - aoe -~) 

2y sinh ~ (J) = --.....::...----'''---:--
(1 - e~y)( 1 - e-~y) 

( 3.17) 

200 sinh ~ + O(x2 ), 

(1 - aoe~) (1 - aoe -~) 

p = k~ -! lnx + O(x2
), 

and the space-time is not regular on the axis x = O. 
The general asymptotic expansion of y is given in the 

Appendix. As a special case we find, with a I = (1 - i) /2, 
that 

y = (cos tp + sin tp)x- 1/2 + O(x-3/2 ), 

tp =X + 2lnx, 
(3.18 ) 

from which we can find the behavior of the metric coeffi-
cients 

X= 1 + (2cosh~/rx)(costp+sintp) +O(x- 1
), 

(J)= (2sinh~/rx)(costp+sintp) +O(x- 1
), (3.19) 

p = 2x + O(lnx). 

The space-time is not asymptotically flat. 
Finally we note that by the substitution y = (w - 1)/ 

(w + 1) Eq. (3.21) reduces to 

" W,2 1 , {j (3 1 ) 0 w --+-w +- w -- = , 
w x 4 w 

(3.20) 

with {j = 1, which is a special case of the Painleve equation of 
type III. 

IV. SEPARABLE SOLUTIONS OF THE COMPLEX 
EQUATION 

The complex Ernst equation (2.8) also admits separable 
solutions.2,3 Substituting 

E = ei~H(x), ~ = az, x = ap, a = real const 
(4.1 ) 

into Eq. (2.9) we obtain 

(HH*-I)(H" + (l/x)H'-H)=2H*(H,2_H2 ). 

(4.2) 

This equation admits the integral (as a similar equation in 
Ref. 4), 

x(HH*' - H'H*) . 
----'------=2:--'-- = iA, A. = real const (4.3) 

(HH* - 1) 

as it can be shown by direct differentiation. 
As in Sec. III, Eq. (4.2), essentially a system of two 
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ordinary differential equations, can be reduced to a single 
second-order equation. Setting 

H=Ho(x)e il1
(X), Ho=IHI, O(x) = real, (4.4) 

the integral (4.3) reads 

xH~O'(x)/(H~-1)2= -AI2, (4.5) 

while Eq. (4.2) reduces to 

(~ -l)(Hg + (lIx)HQ) - 2HoH02 + Ho(~ + 1) 

X [1 +A2(H~ -1)4/4x2H~] =0. (4.6) 

This is similar to Eq. (3.12) and with the substitution 
Ho= W- 1/2 reduces to Eq. (3.14) and{3= -A 2/2 and 
{j = - 2, i.e., a Painleve equation of type V. The reduction of 
the (complex) Ernst equation to the Painleve equation of 
type V was first noticed by Marek, 1 and later, independently, 
by Uaute and Marcilhacy.2 

Using Eqs. (2.6) and (2.7) it is straightforward to ex­
press the metric coefficients (X,w ) in terms of any solution of 
Eqs. (4.2). We find 

X = pi'" = [pl(1 - HH*)] 

X (HH* - Hei; - H*e- i
; + 1), (4.7) 

and 

W,p = - [xl(HH* - 1)2][H(HH* + 1)ei
; 

+ H*(HH* + 1)e- i
; - 4HH*], (4.8a) 

w, z = - [ixl(HH* - 1 )2][ (H' - H 2H*')ei
; 

(H*'-H*2H')e i;] +U. (4.8b) 

The remarkable thing is that Eqs. (4.8) can be integrated for 
w, using only the knowledge that H satisfies Eq. (4.2). We 
find that 

W = - [xla(HH* - 1 )2] [(H' - H 2H*')ei
; 

lity, that H is real, satisfying the equation 

(H2 1)(H" + (lIx)H' - H) = 2H(H'2 _ HZ). 
(4.14) 

Note that Eqs. (3.15) and (4.14) differ only in the signs of 
the last terms in the two sides. By the transformation 
H = (w - 1)/(w + 1) Eq. (4.14) transforms to Eq. (3.20) 
with {j = - 1, which is a Painleve equation oftype III. 

In terms of any real H we obtain from Eqs. (4.7), 
(4.9),(4.10), (4.12), and (4.13) that 

2xH' cos; dW I W - + W - a(H2 _ 1) I' dx 

(4.15) 

( 4.16) 

and 

= 2..ln( H2 + 1 - 2H cos; ) () 
f-t 2 1 _ HZ + f-tl X , 

df-tl _ X(H,2 H2) 
(4.17) 

dx (H2 _1)2 . 

Since the condition A = 0 is necessary but not sufficient 
for a solution to be well behaved near the axis, we shall inves­
tigate the behavior of the solution ( 4.15 )-( 4.17) as well as of 
the solution (i,m, f-t) obtained from Eqs. (2.10) or (2.11). 

Near the axis Eq. (4.14) admits the smooth solution 

H=bo + [bo(b~ + 1)/4(1-b~)]X2+0(X4), (4.18) 

where bo=l= ± 1 is an arbitrary real constant. Using this ex­
pansion we obtain 

X = [(b ~ + 1 - 2bo cos ;)/a(1 - b ~)]x + O(x3
), 

( 4.19) 

W = [boX2Ia(bo + 1)2] + O(X4), (4.20) 

f-t = pn[ (b~ + 1 - 2bo cos ;)/(1- b~ >] + O(X2). 
(4.21 ) 

+ (H*' - H*2H')e- i;] + Uz + w1(x), (4.9) From Eqs. (2.10), (4.19), and (4.20) we find that 

where 

dW I (x) _ 4xHH* 
dx a(HH* - 1)2 . 

(4.10) 

The last metric coefficient f-t is obtained from Eqs. (2.9). We 
find 

(f-t + pn "'>,; = - A, (4.11) 
(f-t +! In "'),x =x(H'H*' - HH*)/(HH* _1)2, 

from which we obtain 

i= -a(1-b~)/(b~ + 1-2bocos;)x+O(x), 

m=abo(1-bo)2/(b~ + 1-2bocos;)2+0(x2), 
(4.22) 

when we interchange the two Killing fields. Similarly from 
Eqs. (2.11) we find that 

i = [(b~ + 1 - 2bo cos ;)/a(1- b~)(1 - 0)2]X 

+ O(x3
), (4.23) 

m = 01(0 - 1) + O(x2
), 

f-t = - aAz - !1n(pl x) + Itl (p), 

where 

df-tl x(H'H*' - HH*) 

(4.12) when we consider a mixture of the two Killing fields, for 
o < 0 < 1. None of the resulting space-times behaves well 
near the axis. 

dx = (HH* _1)2 
(4.13) 

A. Solutions smooth on the axis? Nol 

When Hand H' are finite at x = 0, from Eq. (4.3) we 
obtain A = 0 and therefore we should have HH*' = H'H*, 
for every x. It is then easy to show that H equals to a real 
function (of x) times a complex constant which can be ab­
sorbed into the factor i az by a linear transformation of z. 
Thus when A = 0 we can assume, without any loss of genera-
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B. Solutions leading to asymptotically flat space-times 

For large x we shall consider space-times arising from 
solutions of Eq. (4.2) for which Hand H' are finite as 
x -+ + 00. From the analysis in the Appendix we find that 
these solutions of Eq. (4.2) behave like e- xx.- 1/2 as 
x -+ + 00. Applying the integral (4.3) asymptotically we 
find that A = O. Thus we shall have HH*' = H'H* every­
where and, as in Sec. IV A, without any loss of generality we 
can assume that H is real. 
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We shall consider solutions of Eq. (4.14) but referring 
to the Ernst equation for the tilded potentials 

qJ + i<l> = (1 + E)/(1- E), (4.24) 

corresponding to the interchange of the Killing fields (a I at) 
and (a larp). . 

The expressions (4.15 )-( 4.17) are now applicable if we 
replace (X,liJ) by (f,m). Using the asymptotic behaviors 
(All) and (AI2) for a real parameter A we find 

j =p _Aa-l.,fiiixI/2e-x cos ~ + O(x- 1/2e- X
), 

m = Aa-1.,fiiixI/2e -x cos ~ + O(x-1/2e -X), 

I' = - A ~1TI2xe - x cos ~ + O(x- 3/2e - X). 

Then from Eqs. (2.10) we obtain 

(4.25) 

(4.26) 

(4.27) 

X = 1/ p + aA .,fiiix-3/2e - x cos ~ + O(x-S/2e - X), 

(4.28) 

liJ = aA.,fiii x-3/2e - x cos ~ + O(x-S/2e- X). (4.29) 

For large p the corresponding metric (2.1) tends to 

(dS)2 = (dt)2 _ (dp)2 _p2(dtp)2 - (dZ)2, (4.30) 

i.e., to aflat metric. It should be pointed out, however, that 
for large z but near the axis the metric does not tend to a flat 
metric (it depends sinusoidally on z). 

For completeness we ~lso investigate the possibility of 
using the solution of Eq. (4.14) but now referring to the 
Ernst equation for the potential 

'l'e + i~e = (1 + Ee)/(1 - Ee ), (4.31) 

corresponding to the arbitrary mixing of the two Killing 
fields. Now X and liJ are obtained from Eqs. (2.12), where 
(j,m) are given again by Eqs. (4.25) and (4.26). As we have 
mentioned in Sec. II, I' will remain the same and it will be­
have as in Eq. (4.27). We find that 

q/= (1-H2)(H2+1-2Hcos~) 

(1 - H2)2 + [c(H2 + 1 - 2H cos~) + 2H sin ~ F' 

1T2 = - 02( 1 - 20 + 2(2)2p2 + (1 _ 0)2 

+ 2Aa-20 2( 1 _ 20 + 20 2)2.,fiiix3/2e - x cos ~ 

( 4.32a) 

X= - (110 2p)[1 +((1-0)2/02(1-20+202)2p2) 

+ A .,fiiix- 1/2e - x cos ~ + O(x-3/2e- x)], (4.32b) 

liJ = [(1 - 0)/0 ][ 1 + (0 2(1 - 20 + 2(2)p2)-1 

(4.32c) 

For large p the metric (2.1) tends to 

(dS)2 = _ 0 -2(dt)2 + p2[O(dtp) + (0 - 1 )(dt)]2 

- (dp)2 - (dZ)2, (4.33) 

i.e., to a locally flat but physically unacceptable metric. 

v. AN EHLERS TRANSFORMATION 

The simplest expression of the Ehlers transformation 
asserts that whenever Z = 'I' + i~ is a solution of the Ernst 
equation, so does 

- 1 - 'I' 
Z=-- or '1'= , 

Z + ic '1'2 + (~ + c) 2 (5.1) 
- ~+c 
~=------=---

'1'2 + (~ + C)2 ' 

where c is a real constant. 
We apply the Ehlers transformation to the solution of 

Sec. IV B for the tilded potentials qJ and <1>, i.e., the squared 
norm and the twist potential of the Killing field (a lat). 
Since 

qJ = (1 - H2)/(1 + H2 - 2H cos ~), 

<I> = 2H sin ~ I( 1 + H2 - 2H cos ~), 
(5.2) 

where H is any (real) solution of Eq. (4.14), we find that 

(5.3a) 

~ = _ [c(H2 + 1 - 2H cos~) + 2H sin ~] (H2 + 1 - 2H cos ~) . 
(1 - H2)2 + [c(H2 + 1 - 2H cos~) + 2H sin ~]2 

(5.3b) 

Then i is readily obtained from i = plq/. 
Using the asymptotic expansion (All) and (AI2) we 

find that 

i =p(1 + c2) +Aa- 1[2c sin ~ + (1- C2)COS~] 

xe-x~21Tx + O(x- 1/2e- X), (5.4) 

q/ = 1/(1 + 2) - [A 1(1 + C2)2][2c sin ~ 

+ (1 - c2)cos ~ ]e-X~21Tlx + O(x-3/2e- x), (5.5) 

~ = - cl( 1 + c2) - [A I( 1 + C2)2] [( 1 - c2)sin ~ 

-2ccos~]e-X~21Tlx +O(x-3/2e- x), (5.6) 

and that 

(5.7) 
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I 
Also 

W = - (A la)[2c sin ~ + (1 - c2)cos ~] 

Xe-x~21Tx + O(x- 1/2e- x). 

Moreover from Eqs. (2.9) we find that 

Therefore for p -+ + 00 the metric tends to 
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(dsl) = (dt)2/( 1 + c2) - (1 + c2) 

X [(dp)2 + p2(drp)2 + (dZ)2J, (5.10) 

which isflat ! As in the previous case, local flatness fails near 
the axis of symmetry. This should have been anticipated, 
since an asymptotically flat solution should be matched to an 
interior solution, i.e., a solution ofthe inhomogeneous Ein­
stein equations that are appropriate for a region that in­
cludes the axis. 

VI. CONCLUSIONS 

We have investigated the separable solutions of the sta­
tionary axisymmetric problem in cylindrical coordinates. 
For all these solutions we have obtained explicit expressions 
for all of the metric functions and we have determined the 
behavior of these solutions near the axis and asymptotically. 
For one of these solutions we found that, for large distances 
away from the axis, the metric tends to a flat metric. A sec­
ond space-time with the same property has been obtained by 
applying an Ehlers transformation. 

The separated equations always admit a first integral; 
and the radial functions reduce to certain Painleve equations 
of type III or V, depending on whether the integral vanishes 
or not. Since the Painleve transcendents are determined 
uniquely from the studied functions, we have, in fact, also 
determined the near the axis behavior and the asymptotic 
expansions ofthese (particular) Painleve transcendents. 

The solutions (4.27)-(4.29) and (5.4), (5.8), and 
(5.9) go to a flat space-time exponentially as p -+ 00. Fur­
thermore, they are both periodic in the z direction with peri­
odzo =21Tla [seeEqs. (4.15)-(4.17)J while the first cor­
rections of the asymptotic expansions change signs when t 
takes values in the intervals ( - 1T/2, 1T/2) and (1T/2, 31T/2). 
Ifwe were to allow ourselves to speculate, we could probably 
say that such gravitational fields may be generated by a mat­
ter distribution which is periodic along the z axis and whose 
rotation reverses itself every !:.z = 1Tla. In addition we could 
say that the resulting curvature is very strongly localized 
around the axis of rotation. It should be pointed out, how­
ever, that any rigorous interpretation of the solutions would 
require considerations of the inhomogeneous Einstein equa­
tions around the axis. And that any interior solution ob­
tained should be joined, with a C 2 matching, with the asymp­
totically flat solutions of the present paper. Clearly, this 
project is beyond the scope of the present investigation. 
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APPENDIX: ASYMPTOTIC BEHAVIOR 

We determine the asymptotic (x-+ 00) behavior ofthe 
solutions of the system (3.2). It is convenient to set 

1= Xl/2 II' g = x 1/2g l; (Al) 

then the system becomes 

17 +11 = - (2Ix)f1 - 2xgl(l? +/7) 

+xllgl(/i' + II) - (1I4x2)/1 

- (1I4x)/igl' 

gi' +gl = - (2Ix)gi - 2x/1(gi2 +gi) 

+xllg l(g7 +gl) - (l/4x2)gl 

- (1I4x)gi II' 

(A2a) 

(A2b) 

We seek an asymptotic expansion of II and g I that would 
satisfy Eqs. (A2) to leading order. After a lot of trials we 
find that 

II = (aleUp + a2e - iw)X- 1 + O(x-2), 

gl = (ble- irp + b2e
iw )x- 1 + O(x-2), 

where 

rp = x + a In x, (j) = x + P In x, 

(A3) 

(A4) 

and ai' a2' bl, b2, a, andp are free parameters, satisfy Eqs. 
(A2) to O(x- I

). In fact, the only nontrivial step is theverifi­
cation that 

17 + II = O(x-2), gi' + gl = O(x- 2). (A5) 

Obviously, the expansions (A3) have too many free param­
eters, a freedom necessary for the expansion to be continued 
to higher orders. 

To restrict the parameters we consider the asymptotic 
expansion of the solution ofEqs. (A2) to O(x- 2

). Thus we 
assume that 

II = (aleirp + a2e - iw )x- 1 

+ (Allrp +A2e- i"')x- 2 + O(x-3 ), 

gl =:= (ble-irp+b2eiw)x-1 

(A6a) 

+ (Ble- irp + B2e
iw )x-2 + O(x-3 ), (A6b) 

and we demand that the system ofEqs. (A2) is satisfied to 
O(x- 2) as well. We find that the conditions to O(x-2) im­
pose restrictions on the parameters ai' a2, bl, b2, a, andP of 
the O(x -I) expansion, which do not involve the parameters 
A I' A2, B I' and B2• Using 

Ii' +11 = - 2 [(a + i)aleirp 

+ (P - i)a2e - iwJX- 2 + O(x-3 ), (A 7a) 
gi'+gl= -2[(a-i)ble-Up 

+ (P + i)b2e
i"'Jx-2 + O(x- 3 ), (A7b) 

we obtain the conditions 

and 
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The further requirement that the solutions (A6) are real and 
nontrivial to order O(x- 1

) give that 

a2 = aT, b1 = k 1aT, b2 = b T, a = f3 = 4k1a1aT, 
(A8) 

where a1 and kl are arbitrary complex and real constants, 
respectively. 

For kl = 1,11 = gl and the method gives the asympto­
tic behavior of the solution ofEq. (3.15). We find that for 
real y the asymptotic expansion is 

y = (a 1e
i'l' + aTe- i'l')x- 1/2 + O(x- 3/2 ), 

(j'J =X + 4a 1aT lnx. 
(A9) 

We determine now the asymptotic behavior of H that 
satisfies Eq. (4.2) and goes to 0 at infinity. Since the nonlin­
ear terms will go to 0 faster than the linear terms, the leading 
term of the expansion is determined by the linear equation 

H" + (l/x)H' - H = O. (AW) 

This is the differential equation for the modified Bessel func­
tion. 18 The solution that goes to 0 at infinity is 

(All) 

Hence the (complex) solution of Eq. (4.2) that goes to zero 
at infinity is 
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(AI2) 

where A is an arbitrary complex constant and the complex 
terms 0 (e - 3x) are obtained from the nonlinear terms of Eq. 
(4.2). 
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The Hauser-Ernst homogeneous Hilbert problem (HHP) approach, formerly used in 
connection with the derivation of stationary axisymmetric fields, is here adapted to the 
derivation of colliding gravitational plane wave solutions of the vacuum Einstein equations. 
Proceeding from Kasner metrics, and using a double-Harrison transformation, the HHP 
approach yields a three-parameter generalization of a two-parameter family of colliding wave 
solutions found recently by Ferrari, Ibanez, and Bruni. In the present paper we provide the 
details concerning the derivation of this new family of solutions, and we set the stage for future 
applications of the HHP approach in connection with gravitational waves. 

I. INTRODUCTION 

A. General problem being considered 

In this series of papers 1.2 we are concerned with the in­
teraction of two gravitational plane waves moving in oppo­
site directions. In particular, we have focused attention upon 
plane waves that do not interact at all until a certain moment 
called the "moment of collision." At the leading edge of each 
of the Petrov type N plane waves, we permit the existence of 
a Dirac delta function behavior of the curvature tensor, i.e., 
an impulse, and we permit the existence of a jump discontin­
uity of the curvature tensor, interpreted as a gravitational 
shock wave. 

It is convenient to describe the colliding wave solution 
in terms of four space-time regions, separated from one an­
other by null surfaces. In region I the metric is simply that of 
Minkowski space. In the adjacent regions II and III, the 
metric is, generally, a Petrov type N plane wave solution of 
the field equations, although in the particular case of the 
Nutku-Halil solution3 the metric is fiat in the interior of 
regions II and III. Finally, in another region, region IV, sep­
arated from regions II and III by null surfaces, the interac­
tion of the plane waves takes place. As a result of the interac­
tion of the gravitational plane waves, curvature singularities 
may prevent region IV from being extended indefinitely. 

In fact, the solutions of the colliding plane wave prob­
lem that have been found thus far were found by working 
backwards. First, one finds a solution of the vacuum field 
equations in region IV, the region of interaction. Then one 
attempts to join this solution to appropriately chosen plane 
wave solutions in regions II and III, and to join the latter to 
Minkowski space in region I. 

In Paper II we identified a simple condition that the 
solution has to satisfy in region IV in order that it be joinable 
to appropriately chosen plane wave solutions in regions II 
and III. This colliding wave condition plays a role roughly 
analogous to the asymptotic flatness condition usually im­
posed in connection with stationary axisymmetric fields. 

B. Drawing upon experience with stationary 
axisymmetric fields 

The search for an effective way to construct all asymp­
totically fiat stationary axisymmetric vacuum fields began 
with a speculation ofGeroch4 that perhaps all such solutions 
could be derived from a single solution, e.g., Minkowski 
space, through the action of a group, the free product of two 
SL(2,R) groups. 

The first really useful realization of the Lie algebra of 
the Geroch group was formulated by Kinnersley and 
Chitre,5 who displayed the action of the infinitesimal ele­
ments of the group in terms of an infinite hierarchy of poten­
tials. Kinnersley and Chitre, as well as Hoenselaers, Kin­
nersley, and Xanthopoulos,6 exploited this formalism to 
derive new asymptotically fiat stationary axisymmetric solu­
tions, and also to demonstrate that certain famous solutions, 
such as the Kerr solution, could be regenerated using these 
techniques. 

Two of the present authors, Hauser and Emst,7 intro­
duced a realization of the finite elements of the Geroch 
group, and ultimately showed8 that Kinnersley-Chitre 
transformations could be carried out by solving an appropri­
ate homogeneous Hilbert problem (HHP). In particular, 
they employed the HHP approach in order to prove9

,10 the 
Geroch conjecture. 

In Paper II we described, within the context of colliding 
gravitational plane waves, how the Geroch group arises as 
the free product of two SL(2,R) groups. We also drew atten­
tion to the utility of augmenting the Geroch group with a 
Kramer-Neugebauer involution. II In the present paper we 
shall replace the rather formal realization of the group de­
scribed in Paper II by a realization better suited to the gener­
ation of new solutions from old ones. We shall formulate an 
HHP that is particularly adapted to the problem at hand, 
and we shall show how we used it in order to derive a three­
parameter generalization of a two-parameter family of solu­
tions discovered recently by Ferrari, Ibanez, and Bruni. 12 It 
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should be mentioned that these authors used a formalism 
that involves solving a different Riemann-Hilbert problem I3 

from the one that we solved. 

II. THE HAND F POTENTIALS 

A. A class of vacuum space-times for which a linear 
problem is known to exist 

During the last decade much progress has been made 
handling not only the Einstein field equations but also other 
nonlinear systems of partial differential equations. Invaria­
bly, the key to success is the reduction of the nonlinear prob­
lem to a linear one, to which traditional methods may be 
applied. In general relativity this proved to be possible under 
certain restrictive assumptions, the principal one being the 
existence of two commuting Killing vector fields. No one has 
yet had any success when less symmetry is assumed. More­
over, even when two commuting Killing vector fields are 
assumed, additional assumptions prove to be necessary if a 
reduction to a linear problem is to be achieved. Fortunately, 
the vacuum and electrovac cases fall within the province of 
problems that can be handled in this way, at least in the 
absence of a cosmological constant. 

We shall be concerned here with vacuum space-times 
for which the line element may be expressed in the form 

2 

L gab (u,v)dxa dxb + 2guv (u,v)du dv. (1) 
a.b= 1 

Here Xl: = a lax I and X2 : = a lax2 are Killing vectors, 

gab: = Xa'Xb (2) 

has signature + +, guv < 0, and 

(3) 

over the domain of the chart which consists of all (xl,x2 ,u,v) 
such that (XI,X2)E R2, and (u,v) is a member of a connected 
open subset of R 2. This class of vacuum space-times contains 
the Kasner solutions as well as the set CW 1 of vacuum met­
rics which we defined in Paper II. It is sufficiently broad to 
cover all conceivable vacuum space-times that we are likely 
to consider in the current sequence of papers. 

B. The H potential 

When one considers vacuum space-times that possess 
two commuting Killing vector fields, it is useful to introduce 
a 2 X 2 matrix generalization H of the Ernst potential1&' . 14 It 
should be mentioned that the H potential was originally in­
troduced by Kinnersley l5 in quite a different way from the 
way we shall now employ. Moreover, throughout the follow­
ing discussion, the reader should bear in mind that we invar­
iably suppress the wedge symbol /\ in exterior products of 
differential forms. 

1. Definition of the H potential 

We begin with the fact that the Lie derivative of a p-form 
Y with respect to a vector field X is expressible in the form 

2'xY= (-l)P[XdY -d(XY»). (4) 

When, as in this equation, we write a vector field immediate­
ly to the left of a differential form, we intend that the differ-
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ential form should be evaluated as a linear functional acting 
upon the vector field. Thus, for example, we have 

Xp dxv=t5;. (5) 

More generally, if u is a p-form, v is a one-form, and w is a 
vector field, then such contractions are to be evaluated using 
the relation 

w(uv) = u(wv) - (wu)v. (6) 

Suppose now that Xl and X2 are commuting Killing 
vector fields. It then follows that 

2' X.Xb = ° (a,b = 1,2), (7) 

where Xb is the covector of Xb. Since 

XaXb =gab (a,b = 1,2), 

it follows from Eq. (4) that 

dgab = XadXb· 

(8) 

(9) 

The expression dXb is a two-form, which can be separat­
ed into self-dual and anti-self-dual parts. Assuming that Xb 
is real, we may express dXb in the form 

(10) 

and we may identify Wb as a self-dual two-form, W; as an 
anti-self-dual two-form. Hence Eq. (9) may be reexpressed 
as 

(11) 

Now, observe that the Lie derivative of the two-form 
Wb with respect to the Killing vector field Xa must also 
vanish. It follows from Eq. (4) that 

d(Xa Wb) = Xa dWb· (12) 

However, in the case of a vacuum space-time, it can be 
shown that 

(13 ) 

Therefore, there exists a complex potential Hab such that 

Xa Wb = dHab · (14) 

Because of Eq. (11), the constants of integration may be 
chosen so that 

- Re(Hab ) = gab (a,b = 1,2). (15) 

2. The self-duality relation 

As a result of the self-dual nature of W, the H potential 
satisfies a relation which we like to call the "self-duality rela­
tion." This relation may be expressed in the form [Ref. 8, 
Eq. (31)) 

!(H+Ht)fldH= (z-p*)dH, 

where H t is the Hermitian conjugate of H, 

fl = (~i ~), 
the real field z is defined by 

(16) 

(17) 

2iz: = H12 - Hw (18) 

and * is a two-dimensional duality operator such that 

*du= +du, *dv= -dv. (19) 
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3. The z and p fields 

The real field z defined by Eq. (18) is intimately related 
to the field p defined by Eq. (3). In fact [Ref. 8, Eqs. (26) 
and (30)], 

*dp = - dz, *dz = - dp. (20) 

Of course, one can use the fields z and p, which are like the 
Weyl canonical fields in the stationary axisymmetric field 
problem, as coordinates, but it should be kept in mind that 
- p then plays the role of a time coordinate. Generally, 

however, we prefer to use coordinates u and v such that, in 
region IV, 

z = u2 - v2, P = 1 _ u2 - v2, (21) 

and we shall do so throughout this paper. 

4. Relationship to Ernst potentials 

Both HII and H22 can be shown to satisfy the Ernst 
equation. 14 We shall arbitrarily choose to denote H22 by IF. 
As we saw in Paper II, it is convenient to follow Chandrasek­
har and Ferrari,16 and introduce a second Ernst potential E 
which is directly related to the metric tensor components by 

E: = (g22) -I(p + ig12 ). (22) 

In practice, the H potential can be computed from 
IF = I + iX or from E = F + iOJ by employing three equa­
tions derived from the real or imaginary parts of three com­
ponents of Eq. (16): 

1-ldX= -F-I*dOJ, 

d(lm H 12 ) = F*dl + OJ dX, 

(23) 

(24) 

d(lm H II ) = - 2p*dOJ + 2g12*dF - 1-lglI dX. (25) 

It should be noted that 

1= -g22' IF= -po (26) 

Thus, for example, one may first evaluate E = F + iOJ andl 
directly from the metric, then evaluate the twist potential X 
by integrating Eq. (23). This provides 

H22 = IF =1+iX· 

The real parts of the other components of the H matrix are 
determined by Eq. (15), while the imaginary parts are deter­
mined using Eqs. (18), (24), and (25). 

5. The H potential of the Kasner metrics 

Let us denote by h the 2 X 2 matrix whose elements are 
gab (a,b = 1,2). In the case ofthe Kasner metrics, we have 

(
pl+n 0) 

h
K

= 0 pl-n' (27) 

where we shall refer to the exponent n as the Kasner param­
eter. Using Eqs. (23 )-(25) we can easily establish that 

H K = ( 
_pl+n 

-i(1+n)z 
i(1 - n)z) . 
_pl-n 

6. The class CW, of colliding wave solutions 

(28) 

In Paper II, Eq. (2.30), we identified a simple criterion 
for a solution of the vacuum field equations to be designated 
as a colliding wave solution. It is a necessary and sufficient 
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condition that each of the numbers 

k : = lEv (0,0)/2F(0,0) 1
2

, 

I: = lEu (0,0)12F(0,0) 1
2

, 

(29) 

(30) 

equals 1. Here subscripts are used to denote partial deriva­
tives with respect to u and v, and the fields are evaluated at 
u =v=O. 

c. The F potential 

1. Definition of the F potential 

The F potential is a 2 X 2 matrix field that depends not 
only upon the nonignorable space-time coordinates, but also 
upon a complex parameter t analogous to the "spectral pa­
rameter" of which others often speak. The Fpotential itself 
plays the role assumed by Lax pairs in analyses of other 
exactly soluble systems, and it is the generator of the infinite 
hierarchy of complex potentials of Kinnersley.15 From our 
perspective, however, the analytic properties of the F poten­
tial, regarded as a function of t, assume the greatest impor­
tance. 

For a given H potential, the F potential is defined to be 
any 2 X 2 matrix solution of the equations 

dF(t) = r(t)nF(t), 

F(O) = n, 
F(O) =H, 

where 
r(t): = t[l - 2t(z - p*)] -I dH 

(31) 

(32) 

(33) 

(34) 

is a 2 X 2 matrix of one-forms (which can be computed from 
the H potential), and where F( t) denotes the partial deriva­
tiveof F(t) with respect to t. For fixed (z,p),F(t) is required 
to be holomorphic in a neighborhood of t = O. Moreover, we 
require that F( t) be chosen so that, for fixed (z,p) , it is holo­
morphic on the t plane minus two cuts that lie on the real axis 
intervals t>~ or t< - !, and join 00 to the branch points8 at 
t = 11 [2 (z + p )]. Even with this gauge restriction, note 
that F( t) remains arbitrary up to multiplication on its right 
by any space-time independent 2X2 matrix U(t) that is an 
entire function of t and satisfies U(O) = I and il(O) = o. 

It is important to have a clear understanding of the cuts 
of F(t). Since, in region IV of the space-times we shall con­
sider, z and p are given by Eqs. (21), we conclude that 

z + p = 1 - 2V2 and z - p = 2u2 
- 1 (35) 

both lie in the interval [ - 1, + 1]. Therefore, both branch 
points lie outside the interval ( - !, + 1)' 

When Izl <p, 

1I[2(z-p)]<-!, 1I[2(z+p)]>+~. (36) 

In particular, the origin lies within the gap between the two 
branch points. We shall introduce a pair of cuts along the 
real axis of the t plane, one extending leftward to infinity 
from the branch point at t = 11 [2 (z - p )], and the other 
extending rightward to infinity from the branch point at 
t= 1I[2(z+p)]. See Fig. 1. 

When z > p, the branch point 11 [2 (z + p)] lies at or to 
the right of t = +!, and the other branch point is further to 
the right. The cuts are then chosen as shown in Fig. 2. When 
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1 
2(%-p) +! J 

2 2(%+p) 

t plane 

FIG. 1. Cuts associated with u(t) and F(t) when Izl <po 

z = p, the layout is similar except that the cut from II 
[2 (z - p)] to 00 reduces to the singlet set{ 00 }. 

Whenz<p, the branch point 1I[2(z - p)] lies at or to 
the left of t = -~, and the other branch point is further to 
the left. The cuts are then as in Fig. 3. Whenz = - p, the cut 
from II [2 (z + p)] to 00 is the singlet set{ 00 }. 

2. The F potential of the Kasner metrlcs 

In the case of the Kasner metrics, a solution of Eqs. 
(31 )-( 33) may be constructed from the well-known F po­
tential of Mink ow ski space by using a general expressions for 
the Fpotential corresponding to those space-times for which 

t plane 

FIG. 2. Cuts associated with u(t) and F(t) when z>p. 
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t plane 

FIG. 3. Cuts associated with u(t) and F(t) when z < - p. 

gl2 = 0 in the line element (1). The result is given by 

FK(t) 

= _1_( - t(p2/A) (1 +,,)/2 

A(t) - iA (I - .. )/2 

iA(I+n)/2 ) 

_ t(p2/A)(l-n)/2 ' 
(37) 

where 

A(t) : = ~(I- 2tz)2 - (2tp)2, 

AU) : = HI- 2tz +A(t)]. 

(38) 

(39) 

The field A(t) plays a fundamental role in the general 
theory of the F potential. For example, one can prove8 that a 
space-time-independent factor U(t) which multiplies F(t) 
on its right can always be chosen so that 

detF(t) = - IIA(t), 

[F(t*)]*= [-IIA(t)][I-t(H+H T )!l]F(t), 
(40) 

which can readily be shown to hold for the FK given by Eq. 
(37) and which are imposed as a matter of convention on all 
F potentials. Note that this still leaves F(t) arbitrary up to 
multiplication by a U(t) that, in addition to the properties 
already given, has unit determinant and is real for real t. 

The field A (t) has branch points at t = II [2 (z + p) ] . 
We introduce the cuts defined in Sec. II eland select that 
branchofA(t) for which A (0) = I, whereuponFK(t) isho­
lomorphic in the cut t plane and satisfies all stipulated equa­
tions. Observe that, for any point to on the cuts that to#: II 
[2(z +p)] and to=l= 00, the limits of FK(t) as t-to, either 
from above or from below the cuts, exist and are finite. 
Moreover, the branch points at 1I[2(z+p)] are of index 
- !, and t = 00 is generally a pole or branch point whose 

order or index, as the case may be, is n dependent. This type 
of singularity structure is typical not only of the Kasner F 
potentials, but also of the colliding wave F potentials that we 
shall encounter later. 

Ernst, GarcIa D., and Hauser 684 



                                                                                                                                    

III. A HOMOGENEOUS HILBERT PROBLEM FOR 
EFFECTING KINNERSLEY-CHITRE 
TRANSFORMATIONS 

In Paper II we introduced the Geroch group as the/ree 
product of two SL(2,R) groups, one of which induced ra­
tionallinear transformations of the E potential, and one of 
which induced rational linear transformations of the '1i' po­
tential. We shall in this section introduce a homogeneous 
Hilbert problem, the solution of which permits one to effect 
any given Kinnersley-Chitre transformation. As our first 
application of the HHP approach, we shall reproduce the 
two SL(2,R) groups of transformations we considered in 
Paper II. Then we shall formulate and give the solution of 
the HHP that arises when one considers a double-Harrison 
transformation. 

The realization of the Geroch group we shall use here is 
the multiplicative group of all space-time-independent, 2 X 2 
matrices u(t) that (i) are real in the sense that u* = u, 

where 

u*(t): = [u(t*)]*; (41) 

(ii) have determinants equal to 1, and (iii) are each holo­
morphic in a neighborhood of 00 except perhaps at 00 itself. 
This group will be denoted by K[SL(2,R)]. We shall also 
have occasion to use the group K[SL(2,C)], which is de­
fined in the same way except that the reality condition on 
u (t) is dropped. 

For any given u(t) in K[SL(2,R)], consider the Fpo­
tential of some space-time that you would like to transform, 
and restrict attention to those space-time points for which 
u(t) is holomorphic everywhere on the cuts of F(t), except 
perhaps at t = 00. (By definition, every cut is understood to 
include its end points.) Our homogeneous Hilbert problem 
involves identifying a matrix field F I (t), holomorphic in the 
same cut plane as F(t), and a matrix field X _ (t), holomor­
phic on both cuts of F(t), and satisfying 

F'(t)u(t)F(t)-1 =X_(t), (42) 

F'(O) = O. (43) 

One may establish8 that F I (t) is the F potential of a space­
time, and that H': = PI (0) is the H potential of that space­
time. The metric is computed using h': = - Re H'. 

A. Example: Rational linear transformations of the E 
potential 

It is very easy to identify a u (t) that generates rational 
linear transformations of the E potential; namely, any t-inde­
pendent u(t). If we express such a u matrix in the form 

u(t) = O-IWO, (44) 

where 

w=(; ~, (45) 

and aD - /3r = 1, then the solution of the HHP (42) is quite 
obvious; namely, 

X_(t) = W, 

F'(t) = wF(t)wT. 

It follows immediately that 
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(46) 

(47) 

H'=wHwT, 

h' =whwT. 

(48) 

(49) 

As we already pointed out in Paper II, the transformation 
(49) induces a rational linear transformation, 

E' = ;(aE + ;/3)/(rE + ;0), 

of the E potential. 

(50) 

B. Example: Rational linear transformations of the '1i' 
potential 

Consider a u (t) of the form 

u(t) = (rta- 1 ~), (51) 

where aD - /3r = 1. By expanding each t-dependent matrix 
in Eq. (42) in a neighborhood oft = 0 one easily determines 
the form of X _ (t) everywhere. This, of course, also deter­
mines F I (t). The details of this calculation have been given 
elsewhere. 17 In particular, it has been shown that the trans­
formation (51) induces the rational linear transformation 

'1i" = ;(a'1i' + i/3)/(r'1i' + ;0) 

of the '1i' potential. 

C. Example: The double-Harrison transformation 

(52) 

When the so-called double-Harrison transformation l8 

was applied for the first time l9 to derive a colliding wave 
solution from a Kasner metric, some of the subtleties asso­
ciated with the transformation were not well understood. 
There seemed, in particular, to be a mysterious minus sign in 
the transformed metric h'. We now understand this phenom­
enon much better. 

For the caseF(t) = FK(t), we should like to consider a 
double-Harrison transformation l8 of the form 

u(t) = ef'lU), 

j2=I, 

Trj=O, 

7J(t) = !In[ (1 + 2t)/(l - 2t)], 

(53) 

(54) 

(55) 

(56) 

(57) 
where the cut for 7J(t) is chosen to be the straight line seg­
ment which joins its branch points ±!, and where we select 
that branch for which 7J( 00) = - hrl2. Also, we restrict 
(z,p) to values for which 

1![2(z-p)]# -! 
and 

1![2(z+p)]# +!, 
i.e., according to Eq. (35), u#O and v#O. The solution, 
whose derivation will be given in Sec. III C 1, is as follows: 

Y'(t) = ~7J(t)F(t)e-j7J(t), 

X_(t) =~7J(t), 

A: = [(M +MT)O]![(M _MT)O], 

M: =F( -!)!(l +j)O[F( + !)]T. 

In particular, the transformed H potential is given by 
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JIt" = H + 2AO, (62) 

except for an inconsequential gauge transformation. 
The catch is that u(t) does not satisfy the reality condi­

tion. To understand this, note that, on the real axis to the 
right of + ! and to the left of - !, the imaginary part of 1] (t) 
is - hr/2. Therefore, the provisional u (t) given by Eq. (54) 
is imaginary! It is a member of K[SL(2,C)], but not of 
K[SL(2,R) ]. 

Nevertheless, we knew that this K[SL(2,C)] transfor­
mation did, except for the mysterious sign change in h I, yield 
the N utku-Halil colliding wave solution when it was applied 
to the isotropic Kasner metric. 19 It turns out that what one 
should really identify as a double-Harrison transformation is 

u (t) = e jTJ( t) iO" 3' (63) 

wherej and 1](t) are as before, and 

0"3 = (~ ~ J 
is a Pauli spin matrix. The revised u-matrix (63), unlike the 
original one (54), does satisfy the reality condition. Further­
more, the following theorem explains both why the original 
K[SL(2,C)] transformation worked and why there was a 
change in sign of h'. 

Theorem 1: Suppose u(t) is any given member of 
K[SL(2,C)),F(t) is the Kasner Fpotential ofEq. (37), and 
F'(t) is the solution of the HHP 

F'(t)u(t)F(I)-1 =X_(t). 

Then 

,7'(t): = - [F'(t*)]* 

and 

X_(t): =X_(t*)*i0"3 

satisfy the HHP 

,7'(t)[ - U*(t)i0"3]F(t)-1 = X_(t). 

The theorem follows easily from the relation 

[FK(t*)]* = 0"3FK(t)0"3' (64) 

which is implied by Eq. (37). 
Identifying u (t) with the expression in Eq. (63), we see 

that - U*(t)i0"3 turns out to be nothing but the expression in 
Eq. (54). Moreover, if we define JIt': = jr (0), then 

JIt' = - H*. (65) 

Thus, the metric is given by 

h = - ReH = + ReJlt'. (66) 

D. Derivation: The double-Harrison transformation 

Our derivation will be divided into phases (A), (B) and 
(C). Phases (A) and (B) will detail how we arrived at the 
solution (58)-(61) by a mixture of educated guessing and 
deduction. Phase (C) will contain the actual proof that Eqs. 
(58)-(61) constitute a solution of the HHP (53). In this 
connection, there is a general theoremS that guarantees the 
uniqueness of the solution if it exists. 

(A) We shall first make an educated guess about the t 
dependence of X_ (t). 
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From Eqs. (54)-(57) and the fact that (l ±j)/2 are 
projection matrices whose product is zero, it follows that 

u(t) = ~ (I + j ) ~ 1 + 2t 
2 1- 2t 

+~(l_.)~1-2t (67) 
2 J 1+2t' 

whereupon the analytic properties required of the various 
factors in the HHP (53) inform us that the only t-plane 
singularities of X _ (t) are branch points of index! or - ~ at 
t = ±~. This suggests that perhaps 

X (I) = A ~ 1 + 2t A ~ 1 - 2t (68) 
- I 1 _ 2t + 2 1 + 2t ' 

where Al and A2 are t-independent matrix fields. Now, 
u(O) = ± I is implied by Eq. (67), and X_ (0) = ± I is 
then implied by Eqs. (32) and the HHP (53). Therefore, 
from Eq. (68), 

Al +A2=I. 

It follows that there is a t-independent matrix field A such 
that 

X_ (t) = ~ (l + A) ~ 1 + 2t 
2 1 - 2t 

+ ~ (l - A) ~ 1 - 2t . (69) 
2 1 + 2t 

A remains to be determined. 
(B) We shall next grantthat X_ (I) has the form (69), 

and show that the HHP then implies that A is given by Eqs. 
(60) and (61), and that X_ (t) and ,7'(t) are given by Eqs. 
(59) and (58), respectively. 

Upon expressing the HHP (53) in the alternative form 

,7'(t) =X_(t)F(t)u(t)-\ (70) 

and substituting (67) and (69) into the above, we obtain 

,7'(t) =!(l+A)F(t)(l+j) 

+ !(l-A)F(t)(l-j) 

+!(l+A)F(t)(I-j) 1+2t 
1- 2t 

+ ! (I - A )F(t) (l + j) 1 - 2t . 
1 + 2t 

(71) 

Multiplication of the above by (1 - 2t) (1 + 21), followed 
by setting t = ~ or, alternatively, t = -~, yields the equa­
tions 

(I+A)F(~)(l-j) = (I-A)F( -P(l+j) =0 (72) 

or, equivalently, 

AF(!)!(I- j) = - F(!)!(I-j), 

AF( - !)!(l + j) = F( - !)!(I + j). 

(73) 

(74) 

Note that any traceless 2 X 2 matrix multiplied by 0 is sym­
metric. Therefore, if Mis defined as in Eq. (61), 

MT = - F(!)!(I- j) OF T( - !). (75) 

Upon multiplying Eq. (73) on the right by OFT( - P and 
Eq. (74) on the right by OF T (!), we obtain 
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AMT = _MT, AM=M, (76) 

which are equivalent to Eqs. (73) and (74), respectively. 
Now, Eqs. (75) and (76) imply that 

(M _MT)Oi=O. 

Moreover, any antisymmetric 2 X 2 matrix times 0 is a mul­
tiple of the unit matrix. Hence Eqs. (76) yield that expres­
sion for A given by Eqs. (60) and (61). 

Equations (76) also imply that the two eigenvalues of A 
are ± 1. Therefore, 

tr A = 0, A 2 = I, (77) 

from which we see that X_(t), as given by Eq. (69), is ex­
pressible in the neat form (59). The expression (58) for 
Y'(I) then follows from Eqs. (54), (59), and (70). 

Finally, we complete this phase of the derivation by not­
ing that Eqs. (32), (33), and (71) imply 

JY' = 7'(0) = H + 2AO - 2Oj. (78) 

For any given metric, the H potential is arbitrary up to addi­
tion of any constant matrix that is both imaginary and sym­
metric. Therefore, in the above equation, we can drop the 
term - 20j with impunity. The result is that expression for 
JY' which is given by Eq. (62). 

(C) We next prove that Eqs. (58)-(61) constitute a 
solution of the HHP (53). 

First,notethattheexpressions (58) and (59) forY'(t) 
and X_ (t) satisfy the HHP identically when substituted 
into it. Second, X_ (t) as given by Eq. (59) is clearly holo­
morphic on the cuts ofF(t) , andY'(t) as given by Eq. (58) 
is clearly holomorphic at I = 0 and satisfies Y' (0) = O. To 
complete the proof, it remains only to show that Y'(t), as 
given by Eq. (58), is holomorphic on the same cut plane as 
F(t). We shall employ Eq. (72), which is equivalent to Eq. 
(58). 

Consider the definitions (60) of A and (61) of M. Equa­
tion (61) implies that M has rank equal to 1. Therefore, 

MOM TO =MTOMO = (detM) 1=0, 

which imply Eqs. (76), which, in turn, imply Eqs. (77). 
Recall that Eqs. (73) and (74) are equivalent to Eqs. (76), 
which are, in turn, equivalent to Eqs. (72). 

Equations (59) and (77) imply that the expression (69) 
for X_(t) holds. Substitution of (69) and (67) into Eq. 
(58) then yields the expression (72) for Y'(I). 

Let us next apply Eqs. (72) to the right side of the 
expression (72) for Y' (t), whereupon it is seen that the only 

I 

I-plane singularities of this expression lie on the cuts of F( t). 
That completes the proof. 

As regards prior efforts on the material that we have 
covered in Secs. III C and III C 1, the solution of a similar 
but different HHP has been given by Hauser.20 Part of the 
derivation in Sec. III C is patterned after a derivation of that 
solution due to Hauser and Ernst. 17 

IV. APPLICATION OF DOUBLE-HARRISON TO THE 
KASNER METRICS 

A. The solution for the output H potential 

We begin by evaluating FK(t) at I = ±!. It is conven­
ient to write 

FK(t) = F~(t)S, 
where 

(
2,,/2 

S·-.- 0 

Then 

M=F~( -!)Mo[F~( + pV, 
where 

Mo: =S!(l + j )OST 

(79) 

(80) 

(81) 

(82) 

is a constant matrix, which may be parametrized as follows: 

i (-p - p' q + q' ) Mo =- (83) 
2q - q + q' - P + p' , 

where 

p = cos v, q = sin v, p' = cos v', q' = sin v'. (84) 

The values of F~(t) at 1= ±! are best expressed in 
terms of (x,y) coordinates, where 

z = xy, p = XY, X: = .JT""=?, Y: = .JI=r . (85) 

This we do by identifying 

..1.( + p =x -Y, 

A.(-!)=x+y, 

A( +p =!(1 +x)(I-y), 

A( - !) = ~(1 + x)( 1 + y), 

p2/ A ( + !> = 2 (1 - x) (1 + y), 

p2 / A ( - !) = 2 (1 - x) (1 - y). 

We then find that 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

1 (- [(1-x)(1 +y)](I+"l/2 

[F~( +~)]T = ,fi(x-y) i[(1 +x)(1-y)](I+"l/2 

- i[ (1 + x) (1 _ y)] (I - "l/2) 

- [(1-x)(1 +y)](I-"l/2 
(92) 

and 

1 ([(1-X)(1_y)](I+IIl/2 

F~(-~)= ,fi(x+y) -i[(1+x)(1+y)](I-"l/2 
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i[ (1 + x)( 1 + y)] (I +IIl/2) 

[(1-x)(I-y)](I-"l/2 . 
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It is then simple to evaluate Musing Eq. (81) and to com­
pute the output H potential using Eq. (62). 

If one introduces the notation 

T(n,v,v'): = J.. X [(p + p,)(l _x)n/2 
2 1 +x 

+ (p -P')G ~:rl2] 
+ i y[(q + q,)( 1 _ y)n/2 

2 l+y 

+ (q-q')C ~~r/2], (94) 

then the output H potential may be expressed in the follow­
ingform: 

q;p ( ') I +n T(n + 2,v,v') 
c7l II n,v,v = P , 

T(n,v,v) 

n T(n - 2,v,v') 

T(n,v,v') 

n)z - 2i 

(95) 

(96) 

x uVT(n,v',v) - v~T(n,v"v)* (97) 
T(n,v,v) 

As regards the above solution for the output H poten­
tial, recall that the points (u,O) and (O,v) in region IV were 
necessarily avoided in the HHP (53). It is important to note 
that, in spite of this avoidance, the final solution can be ana­
lytically continued in the (u,v) plane so that the extended 
domain covers the points (u,O) and (O,v). 

B. The metric components 9.b and the E potential of the 
solution 

Using the identity 

IT(n,v,v') 12 = Re[T(n -l,v,v)T(n + l,v',v)*], (98) 

one may express the metric components gab = Re :ffab in 
the following way: 

_ 1+ n IT(n + 1,v',v) 12 
gIl -p IT(n,v,v') 12 ' (99) 

_ 1- n 1 T(n l,v',v) 12 
g22 -p IT(n,v,v'W 

(100) 

Im[T(n l,v',v)T(n + I,v',v)*] 
g12= -p 

IT(n,v,v') 12 
(101) 

From these expressions it is clear, furthermore, that the 
complex E potential, 

E: = (p + ig12 )/g22' (102) 

is given by 

E{n,v,v') 
n T(n + l,v',v) p ,. 

T(n - I,v,v) 

c. The computation of 9uv (i.e., of N),A, and B 

The field equations which govern guv are 

2uru = 1 P IEJ2F12, 
2vrv = 1 P I Eul2F 12 , 
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( 103) 

(104) 

(lOS) 

where 

(106) 

The solution may be constructed from E, which was given in 
Eq. (103). The result may be expressed as 

e2r N /UV, 

N pn2/21 T(n,v,v') 12 , 

or, if one prefers, 

E A/B, 

( 107) 

(l08) 

(109) 

N Re(AB*), (110) 

A p[(n + 1)2 - 1l/4 T(n + I,v',v) , (111) 

B=p[(n-l)2-11/4T(n_I,v',v). (lI2) 

It should be noted that the resulting three-parameter 
family of solutions of the vacuum Einstein equations belongs 
to the set CW I that we introduced in Paper II. This follows 
from the fact that the constants k and I defined by Eqs. (29) 
and (30) both evaluate to 1. 

V. PERSPECTIVES 

In this paper we have exploited a double-Harrison trans­
formation to generate from the F potential of the Kasner 
metrics a three-parameter generalization of the two-param­
eter family of colliding wave solutions discovered by Ferrari, 
Ibanez, and BrunLIt should be noted that the solution (58)­
(61) of the associated HHP (53)-(57) holds even when 
F =/=FK. However, Theorem 1, which was used in order to 
cope with the fact that u(t) did not satisfy the reality condi­
tion, must be replaced by the following more generally appli­
cable theorem. 

Theorem 2: Let F' be the solution of the HHP 

F'ei>liu~ 1 = X_, 

and Y' be the solution of the HHP 

Y'e/1JF 1= X_, 

wherej': U 3 jU3• Then 

Y' U3F'u3, X_ = iu~_. 
The derivation of new colliding wave solutions through 

the application of the double-Harrison transformation to 
other input F potentials will be the subject of a future paper. 
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On the collision of planar impulsive gravitational waves 
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Exact continuous solutions to the Einstein field equations are determined under the 
assumption that the subspaces of space-time spanned by the variables X A (A = 1,2) admit the 
three-dimensional group of motions ofa two-plane, and the Ricci tensor RAB (A,B = 1,2) 
vanishes. The space-time is assumed to contain two colliding planar impulsive gravitational 
waves. Each wave may be followed by a distribution of null dust. It is shown that the Cauchy 
data on a spacelike three-surface does not lead to a unique solution of the Einstein field 
equations unless additional requirements are imposed on the stress-energy tensor in the region 
of interaction of the waves. 

I. INTRODUCTION 2 .. '_--4 B ds =gij dx'dx1 -gAB dX" dx , 

where i,j = 0,3, A,B = (1,2), 

gij = e"'1Jij = e"'(6ij - 26:6J), gAB = eP6AB . 

Equation (1.1) is equivalent to 

ds2 = eW du dv - eP(dx2 + dy2) , 

with 

u t - z, v = t + z . 

(1.1 ) 

( 1.2) 

( 1.3) 

(1.4) 

Chandrasekhar and Xanthopolous have shown that 
there is an ambiguity in the evolution of a space-time con­
taining two colliding-plane impulsive gravitational waves 
whose leading edges are followed by distributions of null 
dust. This result follows from their two papersl

•
2 in which 

they report two different exact solutions of the Einstein field 
equations in space-times admitting two commuting space­
like Killing vectors in which two such gravitational waves 
collide. In the first paper the region of interaction of the 
waves is shown to contain a perfect fluid with pressure equal 
to the energy density. In the second one this region is shown 
to be filled with a mixture of two noninteracting null dusts 
moving in opposite directions. 

The functions w and P depend on only the variables u and v. 
The nonvanishing components of the Ricci tensor are given 
by 

It is purpose of this paper to discuss plane-symmetric 
space-times containing planar colliding impulsive gravita­
tional waves. That is, space-times admitting three spacelike 
Killing vectors that generate the group of motions of a two­
dimensional plane will be treated. In such a space-time, co­
ordinates may be introduced (cf. Ref. 3) in which the line 
element contains only two functions of two coordinates. The 
Einstein field equations are simpler than those solved in 
Refs. 1 and 2, and classes of solutions of these equations are 
readily obtained. The nature of the ambiguity in the evolu­
tion of such a space-time containing two colliding planar 
waves with or without trailing distributions of null dust can 
be determined. 

The discussion given below will be modeled after that 
given in Refs. 1 and 2. Namely, we shall discuss solutions of 
the Einstein field equations in the region ofinteraction ofthe 
impulsive planar gravitational waves and extend these solu­
tions to the regions of space-time prior to the instant of colli­
sion by requiring that the metric tensor be continuous across 
the null hypersurfaces describing the boundary between the 
various regions. The derivatives of the metric tensor need 
not be continuous and the curvature tensors of the space­
times discussed will be distribution valued. The formalism 
developed in Ref. 4 will be used in the sequel. 

It has been pointed out in Ref. 3 that coordinates in a 
plane-symmetric space-time may be chosen so that the line 
element may be written as 

Ruu = P.uu + ;P2.u - P.uw.u , 

Ruv = P.uv + ;P.uP.v + w.uv , 

Rvv = P .•• + ;p~v - P.vw.v , 

( LSa) 

(1.5b) 

( LSc) 

RAB = 2gABe - W(P.uv + P.uP.v) = 2e - weeP) .uv6 AB . 
( LSd) 

The scalar curvature 

( 1.6) 

and the non vanishing components of the Einstein tensor 

Ga{J = RaP - ~apR 

are 

Guv = - (P.U" + P.uP.v) , 

Gvv =Rvv, 

GAB = - gUVRuvgAB , 

where we have used the notation 

aj aj 
lu = au' Iv = av' 

a'l a'l a'l 
luu = au2' luv = au av' Ivv = av2 . 

(1. 7a) 

(1.7b) 

( 1.7c) 

( 1.7d) 

The indices u and v are related to indices a (a = 0,3,1.2) by 
the equations 
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It may be shown that the non vanishing components of 
the Reimann curvature tensor are 

R ABCD = e - 6)p,uP,v (gADgBc - gACgBD) , 

R uABu = !RuugAB , 

R uABv = !(Ruv - "',uv )gAB , 

R vABv = ~RvvgAB , 

II. RAB =0 AND P,uP,v ¢O 

( l.8a) 

(l.8b) 

( l.8c) 

( l.8d) 

( l.8e) 

It follows from these conditions and Eqs. (l.5d) that 

P = 1 + U(u) + V(v) , (2.1) 

where U( u) and V( v) are arbitrary nonconstant functions of 
their arguments. Let 

'" = n -!u + In( U'V') -In(AB) , (2.2) 

where the prime denotes the derivative of a function with 
respect to its argument and 

A = U'(O), B = V'(O) . (2.3) 

The line element given by Eq. (1.3) is then given by 

ds2 = ± dU dVenlAB(1 + U + V)1/2 

- (1 + U + V) (dx2 + dy2) , (2.4) 

where the sign of the first term is to be chosen so that the 
coefficient of dU dV is positive. 

It is no restriction to set 

U+ V=Au+Bv. 

In addition we may take 

Au+Bv= ±k(v±u), 

(2.5) 

(2.6) 

where k = + lAB 11/2, the sign of u is the same as the sign of 
AB and the sign of k is the sign of A when AB is positive and 
the sign of B when AB is negative. 

Equation (2.4) then becomes 

dS 2 = en du dvl(l +Au + Bv) 1/2 

- (1 + Au + Bv) (dx2 + dy2) , (2.7) 

where there are four nonequivalent choices for Au + Bv giv­
en by Eq. (2.6) (only two if we admit the transformation 
u .... - u, v .... - v). 

It follows from Eqs. (2.1) and (2.6) that Eqs. (1.5a)­
( l.5c) become 

(1 +Au + Bv)Ruu = -An,u, 

Ruv = n,uv' 

(1 + Au + Bv)R vv = - Bn,v . 

The integrability conditions for these equations are 

-Ruv = ((1 +Au +Bv)A -IRuu),v 

= ((1 +Au + Bv)E -IRvv),u . 

(2.8a) 

(2.8b) 

(2.8c) 

(2.9) 

These equations are equivalent to the Bianchi identities. 
When they are satisfied we have 

n= - J (1+Au+Bv)(A-IRuudu+B-IRvvdv). 

(2.10) 
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The line integral in this equation may be taken along an 
arbitrary curve in the u-v plane joining an arbitrary point 
(s,7]) to the point (u,v). 

In the subsequent discussion in this section we shall be 
mainly concerned with the region of the u-v plane where u>O 
and v>O. The line integral in equation will be evaluated on 
the curve consisting of the interval of the v (u) axis from 
(0,0) to (O,v) [(u,O)] and the line parallel to the u (v) axis 
joining (O,v) [(u,O)] to (u,v). 

We may also write 

n = ~ + In(a(u)p( v»), 

where 

Alna(u)= f (1 + As)Ruu (s,O)ds , 

B lnp( v) = f (1 + B7])Rvv (O,7])d7] , 

~ = !au f Ruv du dv . 

Equation (2.7) may then be written as 

d~ = a(u)p( v)ecJ> du dvl( 1 + Au + Ev) 1/2 

- (1 + Au + Bv)(dx2 + dy2) . 

(2.11 ) 

(2.12a) 

(2.12b) 

(2.12c) 

(2.13 ) 

Note that the line element given by Eq. (2.7) [or 
(2.13 )] is completely determined in the region u > 0, v> 0 
when Ruv is given as a function of these variables in this 
region and Ruu(u,O) (u>O) and Rvv(O,v) (v>O) are 
known. 

If n(u,v) is a C 2 function of u and v in the region u>O, 
v>O, Eq. (2.7) determines the line element of space-time and 
Eqs. (2.8) determine the Ricci tensor in this region. Note 
that when n(u,v) is required to be continuous across u = 0 
(v = 0), then n.v (n,u) is continuous across this null hyper­
surface. 

III. PARTICULAR SOLUTIONS 

Case (a): When 

it follows from Eq. (2.9) that 

(3.1 ) 

(3.2) 

That is, when Eqs. (3.1) hold, the space-time must satisfy 
the Einstein vacuum field equations. Equations (2.8) then 
imply that n is a constant which may be taken to be zero. 
Equations (2.6) and (2.7) then give two nonequivalent met­
rics that satisfy the vacuum field equations. When the plus 
sign in the coefficient of u is used in Eq. (2.6), the metric is 
one of the Kasner vacuum solutions given in Ref. 3. When 
the minus sign is used, it becomes the stationary plane-sym­
metric vacuum solution given in that reference. The metrics 
given by Eqs. (2.6) and (2.7) are also given by Dray and 
't Hooft5 and said by them to be "sometimes referred to as 
Robinson's nullicle." 

Case (b): RAB = Ruv = n,uv = O. The only nonvanish­
ing components of the Ricci tensor are 

Ruu = -€I and Rvv = -€2 

and the Einstein tensor is given by 
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- Gap = E)la1p + E2n a n p , 

where 

fa = u,a and na = v,a , 

with 

It'P1a1p = ~nanp = O. 

Hence 

la;/31P = fp;o'!P = 0, n a;/31P = np;anP = 0, 

where the semicolon denotes the covariant derivative. 
The Bianchi identities 

GaP;/3=O 

then imply that 

(E1la);a1P + (Ezna);anP = O. 

(3.4) 

(3.5) 

Since I a and na are linearly independent we must have 

(E1/a);a = (Ezna);a = O. 

That is, the source of a gravitational field given by Eq. (3.4) 
is that of two noninteracting null fluids. For such a source 
the line element is given by Eqs. (2.7) and (2.10). It is also 
given by Eq. (2.13) with <I> = 0, and a and /3 may be deter­
mined from the values of n on the U and v axes. The latter is 
the line element used by Dray and 't Hoofts in their discus­
sion of colliding planar shells of matter, i.e., colliding impul­
sive gravitational waves. 

Case (c); It is a consequence of Eqs. (2.9) that if 
RAB =Oand 

RuuRvv - (Ruv)2 = 0, 

i.e., Rap is of rank 1 so that 

RaP = -1'a1'p , 

then there exists a function u( u,v) such that 

1'a = u,a 

(3.6) 

(3.7) 

In other words, if Eqs. (2.9) and (3.6) hold, then the stress­
energy tensor that describes the source of the gravitational 
field is that due to the gradient of a massless scalar field or 
equivalently of a perfect fluid with pressure equal to energy 
density. The planar space-times satisfying the Einstein field 
equations for such a source were discussed by Tabensky and 
Taub.6 TheproofthatEq. (3.7) follows from Eqs. (3.6) and 
(2.9) is immediate, since if we substitute for Ruu and Rvv 

from Eq. (3.6) into (2.9) we obtain 

2(1 + Au + Bv)1'u,v = 2(1 + Au + Bv)1'v,u 

=(A1'u+B1'u)' (3.8) 

It follows from these equations that 

Tu,v = 'Tv.u 

and hence Eq. (3.7) obtains 
Equation (3.8) then becomes 

2( 1 + Au + Bv)u,uv = - (Au,v + Bu,u) . (3.9) 

For every solution of this partial differential equation for U 

there is a space-time whose source is given by the stress­
energy tensor determined by the gradient of U (i.e., a perfect 
fluid with energy density equal to pressure). The line ele­
ment of this space-time is given by Eq. (2.7). 
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The line element used in Ref. 6 may be obtained from 
that given in Eq, (2.7) with plus signs used in Eq. (2.6) by 
the simple transformation 

u=u-(2k)-1, v=v-(2k) I, 

followed by a rescaling of the coordinates. Then Eq. (3.9) 
becomes 

2(u + v)u,uv = (u,u + u,v) . (3.10) 

Solutions of this equations are determined from the val­
ues of u on the null hypersurfaces u = 0 and v = O. Given 
such a solution we may determine n(u,v) from Eq. (2.10) 
or (2.11) by using the equations 

Ra{3 = - u,au,p • 

Note that the particular solutions discussed above may 
be characterized as follows: case (a), n = 0; case (b), 
n,uv 0, n,u #0, and n,v #0; and case (c), n given by Eq. 
(2,10) or (2.11) where 

RaP = - u,au,p (3.11) 

with U given as a solution ofEq. (3.9). Different solutions 
may be obtained from different specifications of the function 
n(u,v) via different solutions of the Bianchi identities, Eqs. 
(2.9), and the field equations, (2.8). 

IV. RAB =0 AND P.uP,v =0 

These conditions imply that the functions U(u), V(v) 
of Eq. (2.1) are such that either one or both are constant. In 
case fL is a constant it follows from Eqs. (1. 5) that the only 
nonvanishing component of the Ricci tensor is R uv ' when 
OJ. uv #0. In this case the Einstein tensor is of the form 

Gap = GAB{jA a{jBp = - gABgUVRuv{jAa{jBp . 

That is, the Einstein tensor has no nonvanishing timelike 
proper value and hence cannot be equated to a physically 
plausible stress-energy tensor. 

Thus for physical reasons we must set OJ,uv = 0 when 
P.u = fL.v = O. In this case the Riemannian curvature tensor 
vanishes and the space-time is flat. 

The situation that obtains when fL.v = 0 may be derived 
from that which holds when fL.u = 0 by replacing the vari­
able v and V( v) by u and U( u), respectively. When fL.u = 0, 
U(u) is a constant and with no loss of generality, we may 
take it to vanish. Equation (2.1) becomes 

fL = In(l + V(v»). (4.1) 

If we now define 

OJ=n-y.t+ln(V'/B) , (4.2) 

the line element given by Eq. (1.3) becomes 

ds2 = ± eH dV du/B(l + V) 1/2 - (1 + V)(dx2 + dy2) . 
(4.3) 

It is no restriction to set 

V=Bv, (4.4) 

and Eq. (4.3) becomes 

ds2 =eH dudv/(l +BV)I/Z- (1 +Bv)(dx2 +dy2). 

(4.5) 

Thus when fL.u = 0 we may assume that the line element 
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obtained from (2.6) by setting A = 0 holds. It further fol­
lows from (4.1), (4.4), and (4.5) that 

Ruu =0, 

Ruv = n.uv , 

(1 + Bv)Rvv = - Bnv 

[Eqs. (2.8) with A = 0]. Hence we must have 

((1 + Bv)Rvv).u = - BRuv 

(4.6a) 

(4.6b) 

(4.6c) 

(4.7) 

as an integrability condition (Bianchi identity) of Eqs. 
(4.6b) and (4.6c). It then follows that if Rvv = 0 we must 
have Ruv = O. That is, the Ricci tensor vanishes and the Rie­
mannian curvature tensor also vanishes. Thus such a space 
time is flat. 

Equation (4.6c) may be integrated to give 

n = - f (1 +B7J)Rvv d7J +lnJ(u). 

It is no restriction to takeJ(u) = I, for by the transforma­
tion 

u= fJ(U)dU, 

the termJ(u)du in the line element (4.5) (with the bars 
omitted) becomes duo Thus we have as the line element of 
the space-time the expression 

ds2 = en du dv/(1 + Bv) 1/2 - (1 + Bv)(dx2 + dy2) , 
(4.8) 

with 

Bn = - f (1 +B7J)Rvv d7J. (4.9) 

When n.u = 0 and thus Ruv = 0 in addition to 
RAB = Ruu = 0, the Einstein tensor of the space-time is 

GafJ = Rvvnanp , 

where na is the null vector defined by the second of Eqs. 
(3.5). That is, the stress-energy tensor of such a space-time 
is that of a null fluid with energy density proportional to 
- Rvv. and with four-velocity na. 

The Bianchi identities 

GaP;{J = 0 

ensure that 

(naRvv);a = 0; 

that is, Rvv is conserved under the motion of the null fluid. 
As was pointed out earlier, when n = 0, then Rvv = 0, 

in addition to the assumptions made above, the space-time is 
flat and the line element (4.9) becomes 

or 

ds2 = du dv/(1 + Bv) 1/2 - (1 + Bv)(d~2 + dy2) , 
(4.10) 

ds2 = dft au - (1 + BU/2)2(dx2 + dy2) , 

when u = ft and 

I + Bv = (1 + BU/2)2 . 

When f.l.v = 0 we may use the results of Sec. II with 
B = 0 and find that Rvv = O. In addition, equations similar 
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toEqs. (4.6), (4.8), and (4.9) must hold. That is 

d~ = en du dv/(1 +AU)I/2 - (1 + Au)(dx2 + dy2) , 
(4.11 ) 

- An = lU (1 + AS')Ruu dS' . (4.12) 

Further, we must have 

-ARuv = ((1 + Au)Ruul,v , (4.13) 

the equations obtained from Eq. (2.9) whenB = O. The ana­
logs to Eq. (4.6) are 

(1 +Au)Ruu = -An,u , (4.14a) 

(4.14b) 

Rvv=O. (4.14c) 

When Ruu = Rvv = RAB = 0, then Ruv = 0, and as fol­
lows from Eqs. (1.8) the Riemann curvature tensor vanish­
es. That is, the space-time is flat. When f.l,v = RAB 
= Ruv = 0, the only possible nonvanishing component of 
the Ricci tensor is R uu and hence the Einstein tensor is given 
by 

Gap = Ruu1a1p , 

where la is the null vector defined by the first of Eqs. (3.5). 
That is, the source of the gravitational field is a null fluid. In 
addition we must have 

(Ruu1a);a = O. 

v. EXTENSION OF SOLUTIONS 

In this section we shall assume that in a region of space­
time we may introduce coordinates u, v, x,y which are such 
that in region I, where u > 0 and v> 0, the line element is 
given by Eqs. (2.6) and (2.7), where n(u,v) is a known C 2 

function of u and v. That is, RAB = 0 and R uu , R uv ' and Rvv 
are determined by Eqs. (2.8). We shall then extend such a 
solution across the null hypersurfaces u = 0 and v = 0 by 
assuming that the metric tensor is continuous across these 
hypersurfaces but has discontinuous derivatives across 
them. Such space-times were discussed in Ref. 4 and were 
shown to have distribution-valued curvature tensors, i.e., 
curvature tensors that contain Dirac delta functions whose 
coefficients depended on the values of the discontinuities of 
the first derivatives of the metric tensor. 

The method of that paper enables one to determine the 
distribution-valued Ricci and Riemann curvature tensors of 
the resulting space-time. These tensors may also be calculat­
ed by using the equations of Sec. I with 

f.l = f.lD = In(1 + d (u) + @ (v») , 

(J) = (J)D = nD _ lj.tD , 

where 

d(a) =AuO(u) , 

@(v) = BvO(v) , 

nD = (0.1 _ 0.11 _ 0.111 + nIV )O(u)8(v) 

(5.1a) 

(5.1b) 

(5.1c) 

(5.ld) 

+ O(u) (0.11 - nlv) + O(v) (0.111 _ nlv) + n 1v , 

(5.le) 

with 
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OIV = 0(0,0) = ° , 
and (}(tP) is defined by the equations 

{

I, tP>O, 

(}(tP) =!, tP = 0, 

0, tP <0. 

(5.1f) 

(5.1g) 

Also (}(tP) may be taken to be the Heaviside function 
that is unity for positive and zero values of the argument and 
otherwise zero. Equations (5.1 a) and (5.1 b) define p, and w 
in terms of their values in region I by replacing the variables 
u and v by u(}(u) and v(}(v), respectively (cf. Penrose7 ). 

Thus in region I (where u >0, v> 0), 

p, =p,I = In(1 +Au +Bv), 

w = WI = OI(U,V) - !,uI . 

In region II (where u > 0, v <0) 

p,=p,Il=ln(1 +Au) 

w = wIl = OIl - !,un = O(u,O) - !,uII . 

In region III (where u <0, v>O), 

p, =p,1II = In(1 +Av) , 

and in region IV (where u <0, v<O), 

(5.2a) 

(5.2b) 

(5.3a) 

(5.3b) 

(5.4a) 

(5.4b) 

p,IV = WIV = OIV = 0. (5.5) 

On the hypersurface p, = 0, it follows from Eq. (5.1e) 
that 

OD = (}(V)OIll + (1 - (}(V»)OIV , (5.6a) 

andonv = 0, 

(5.6b) 

Since we are taking 0(0,0) = 0, Eqs. (5.6a) and (5.6b) 
contain only the first terms in each equation irrespective of 
whether ()( tP) is the Heaviside function or is defined by Eq. 
(5.2). 

It follows from Eq. (5.1a)that 

(1 + d(u) + &6'(V»)p,D,u =A(}(u) , 

(1 + .r<f(u) + &6' (V»p,D,u = B(}(v) , 

(1 + .r<f(u) + &6'(VWp,D,uu 

= (1 + .r<f(u) + &6' (v»)A8(u) - A 2(}2(U), 

(1 + d(u) + &6'(V»2p,D,uu 

= (1 + .r<f (u) + &6' (v) )B8(v) - B 2(} 2(V) , 

(1 + .r<f(u) + &6' (VWp,D,uu = - AB(}(u)(}(v) , 

where 8 ( u) is the Dirac delta function. 
FromEq. (5.1e) we have 

O~ = (}(u)«(}(v)O~u + (1 - (}(v»)O~! , 

O~ = (}(v)«(}(u)O~u + (1 - (}(u»))O~~I, 

O~" = (}(u){}(v)O~u" . 
On substituting Eqs. (5.1) into Eqs. (1. 5) one 

(1 + d(u) + &6'(v»)Q"U 

(5.7a) 

(5,Th) 

(5.7c) 

(5.7d) 

(5.7e) 

(5.8a) 

(5.8b) 

(5.8c) 

= A8(u) - A(}2(U)«(}(V)0~u + (1 - (}(v»)O~!) , 
(5.9a) 
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Quv = O~uv(}(u){}(v) , (5,9b) 

(1 + d(u) + &6' (v»)Quu 

= B8(v) - B(}2(V)«(}(U)0~u + (1 - (}(U»)OIll,v) , 
(5.9c) 

where the Qa{3 are the distribution-valued components ofthe 
Ricci tensor. It follows from the results in Ref. 4 that R J a{3 
(J = I,II,III,IV), the components ofthe Ricci tensor in re­
gion J, are given by Q( u,v) with (u,v) in region J. 

and 

Hence from Eqs. (5.9) we have 

(1 +Au+Bv)R~u = -AO~u' 

(1 +Au)R~Iu = -AOII,u' 

Rllluu =R IV
uu =0, 

R Iuu = 0 1 uv , 

R II uu = R III uu = R IV u" = ° , 
(1 + Au + Bv)R ~u = - BOI

, .. , 

( 1 + Bv)R III = - BOlli uv ,v , 

Note that 

lim R IU" = R IIuu 
v-o 

lim R I"u = Rill"" . 
u-o 

(5.1Oa) 

(5.1Ob) 

(5.1Oc) 

(5.11a) 

(5.11b) 

(5.12a) 

(5.12b) 

(5.12c) 

(5.13a) 

(5.13b) 

It further follows from Eqs. (5.9) that on u = 0, 

(1 + &6'(v»)Quu =A8(u) , (5.14a) 

and onv=O, 

(1 + d (u) )Quu = B8 (v) . (5.14b) 

From the discussion given in Ref. 4 it may be concluded that 
the singular hypersurfaces u = ° and v = ° are planar shells 
of null matter whose stress-energy tensors are given by 

- KT'ap =A (1 + &6' (v))-I/a1p, (5.15a) 

for u = 0, and 

-KT'a{3 =B(l + .r<f(u»)-Inanp , (5.15b) 

for v = 0, where K is the Einstein gravitational constant (cf. 
Appendix 2 of Ref. 5). Requiring that the energy density of 
the shells be positive forces, 

A<O, B<O. 

In view ofEq. (2.6) we may take 

A=B= -k. (5.16) 

There is an essential singUlarity in region I, even when 
O(u,v,) = 0, along the spacelike hypersurface~: 

k(u + v) = 1 . (5.17) 

Thus given a function O(u,v) in region 1*, region I 
bounded by the hypersurface ~, we may extend the space­
time with metric tensor (2.7) from this region across the 
boundaries u = ° and v = ° to regions II, III, and IV. The 
resulting space-time has the metric tensor 
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d~ = exp (OP)du dv 
{1- k(u(}(u) + v(}(v»)p/2 

-{l-k(u(}(u) +v(}(v»)}(dX2+dy2) , 

where {lD is given by Eq. (5.1e). 
The space-time contains two colliding planar shells of 

matter, the hypersurfaces u = 0 and v = 0, and the compo­
nents of its Ricci tensor contain delta functions with support 
on these hypersurfaces. These null hypersurfaces may be in­
terpreted as planar shells of null matter or as the leading 
edges of planar impulsive gravitational waves.7 This latter 
interpretation is that used by Penrose7 especially when 
{lI = O. In that case all components of the Ricci tensor van­
ish everywhere except on the hypersurfaces u = 0 and 
v = O--the wave fronts-and all regions but region 1* are 
flat. In the latter region, the region of interaction of the col­
liding waves (planar shells of matter) , the metric describes 
the stationary plane-symmetric vacuum solution given in 
Ref. 3 and discussed in Ref. 5. We shall interpret the region 
1* as the region of interaction of the impulsive gravitational 
waves with wave fronts u T' 0 and v = 0 in all cases irrespec­
tive ofthe value of {lI. 

VI. CONCLUSIONS 

As has been pointed out above, given {lI = 0 the line 
element (5.21) describes the evolution of a space-time in 
which two planar gravitational waves with wave fronts 
u = 0 and v = 0, colliding in two surfaces u = v = 0, interact 
in the region 1* to produce a Kasner plane-symmetric vacu­
um solution of the Einstein field equations. However, if we 
are given that two planar impulsive gravitational waves with 
wave fronts u = 0 and v = 0 propagate in a flat space-time 
and collide at u = v = 0, the nature of the region 1* of space­
time is not uniquely determined. The ambiguity in the out­
come of such a collision results from the fact that, from the 
data given above and Eqs. (5.lOb), (5.12b),and (5.13),one 
can only conclude that {lI(U,V) is such that 
{lI(U,O) = {lI(O,V) = 0 but otherwise arbitrary. 

When{l~uv = o and {l~u{l~v #0, the nature of region 1* is 
described by case (b) of Sec. III, and the wave fronts u = 0 
and v = 0 are followed by distributions of null dust. If, how­
ever, one assumes that in addition to {l~uv = 0, the regions II 
and III are vacuous (the assumption made throughout Ref. 
5), then it follows from Eqs. (5.13) and the requirement that 
{lI(O,O) = 0 that {lI = O. 

When{l~uv = - u,uu,v #0 inside region 1*, whereuisa 
nonconstant solution ofEq. (3.9), the nature of this region is 
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described by case (c) of Sec. III. If, in addition, one requires 
that regions II and III be vacuous equations, (5.15) imply 
that uis constant on u = 0 and v = O. Then Eq. (3.9) in tum 
implies that u is constant throughout region I bounded by l:. 
Thus the metric for case (c) cannot be extended to regions II 
and III unless the leading edges of the wave fronts u = 0 and 
v = 0 are followed by distributions of null dust. 

Suppose that regions II and III of a planar space-time 
are occupied by two planar impulsive gravitational waves 
with wave fronts u = 0 and v = 0 each followed by a distri­
bution of null dust, and that these waves collide at u = 0, 
v = O. The field equations (5.10)-(5.12) and Eqs. (5.13), 
together with the condition {l(0,0) = 0, only determine 
{lI(U,O) and {lI(O,V), and {lI(U,V) is arbitrary for u > 0 and 
v>O. 

If, however, one requires that R ~v = 0 in addition to the 
above requirements in regions II, III, and IV, then {lI (u,v) is 
uniquely determined because of Eqs. (5.13). If, instead of 
imposing this condition on R ~P , one requires that R ~P be of 
rank 1 with R lAB = 0, then {lI(U,V) is again uniquely deter­
mined from Eqs. (3.11), (3.9), and (5.13). 

Thus the evolution of a planar space-time in which two 
planar impulsive gravitational waves collide is not uniquely 
determined by the Einstein field equations after the collision. 
That is, solutions of the generalized Einstein field equa­
tions-equations in which the curvature tensor is distribu­
tion valued-are not unique if only the initial values of the 
metric tensor and its derivatives are prescribed on a space­
like hypersurface. In other words, in such a case the Cauchy 
problem does not have a unique solution. 

For planar symmetric space-times in which two planar 
impUlsive gravitational waves collide, uniqueness can be re­
stored by imposing various conditions on the Ricci tensor 
( the stress-energy tensor) in the region of interaction of the 
waves. Different requirements on R laP is determined from 
the values of R II ap and R III ap on the singular hypersurfaces 
u = 0 and v = 0, respectively. 

's. Chandrasekhar and B. C. Xanthopolous, Proc. R. Soc. London Ser. A 
402,37 (1985). 

2S. Chandrasekhar and B. C. Xanthopolous, Proc. R. Soc. London Ser. A. 
403, 189 (1986). 

3A. H. Taub, Ann. Math. 53, 472 (1951). 
4A. H. Taub, J. Math. Phys. 21, 1423 (1980). 
sT. Dray and G. 't Hooft, Class. Quantum Grav. 3, 825 (1986). 
6R. Tabensky and A. H. Taub, Commun. Math. Phys. 29, 61 (1973). 
7R. Penrose, General Relativity, edited by L. O'Raifeartaigh (Clarendon, 
Oxford, 1972), pp. 101-118. 

A.H.Taub 695 



                                                                                                                                    

Multiplication formulas of orthogonal polynomials of boson field operators: 
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The products of several orthogonal polynomials of boson field operators, the quantum 
mechanical version of multiple Wiener integrals, are expressed as linear combinations of the 
polynomials. The expression is obtained by making use of the correspondence rules of boson 
operators and complex numbers. 

I. INTRODUCTION 

A broad class of stochastic processes and random fields 
are decomposed into direct sums of orthogonal polynomials 
of a Gaussian white noise. This is called the Wiener-Ito de­
composition 1-4 or, more familiarly in physics, the Wiener­
Hermite expansion. 5

•
6 This classical result affords a quan­

tum mechanical interpretation4-8 by introducing annihila­
tion and creation operators (a(t), at (t»)(tER d) for a boson 
free field in the Fock representation. The nth degree Wick 
products of the form 

gn = :Q(tl )Q(t2 ) ••• QUn):, t1,t2 , ... ,tnER d , 

(1.1 ) 

of commuting operators 

Q(t) = a(t) + at(t), tER d, (1.2) 

acting on the vacuum state 10), generate n-particle subspace 
{gn 10)}. In the case of d 1, this Fock structure on the 
canonical commutation relation is only represented by the 
Wiener-Ito decomposition of square integrable random 
variables.4 The Wiener-Hermite expansion refers to the 
cases of d> 1 with the same statement.5

,6 

In view of the nonlinear problems in the Wick polyno­
mial expansions of field operators, attention was naturally 
directed to the multiplication formulas of Wick polynomi­
als. Jaffe9 gave a general formula for products of an arbitrary 
number of gn 's of the above type (1.1) with (1.2). The no­
tion of Wick products itself was extended by Segal lO to free 
fields in (possibly) non-Fock states with similar multiplica­
tion formulas. The results were generalized, in a context of 
quantum stochastic differential equations, by Nakazawall 

to gn 's formed with noncommuting operators, 

(1.3 ) 

depending on a complex function S. 
This paper presents multiplication formulas that ex­

press products of gn 's as their linear combinations for the 
Fock case. The subject is in the domain of Appendix A of 
Jaffe,9 but our generalization is the extension to the case 
(1.3). This is again in the domain of Nakazawa,lI yet our 
result subsumes (3.9) of Ref. 11 for two gn's as a special 
case. The main contribution of the present analysis will be 
the clarification of interrelations of the subject with the gen­
eralized phase-space method of Agarwal and W oIfY Our 
method of derivation seems to be valuable because of its be­
ing lucid and systematic, thus facilitating practical calcula­
tions. This will be seen by an example whose result would 

have otherwise been difficult to obtain. 
Starting from the multiplication formulas for functions 

of c-numbers, 12 we obtain those for functions of q-numbers 
(boson oPerators) with the aid of the correspondence rules 
between the two kinds of functions. Section II begins with 
the case of one degree of freedom, which is essential to our 
approach. As a by-product, formulas for the products of two 
and three Hermite polynomials are readily reproduced. We 
then proceed to finitely many degrees offreedom in Sec. III, 
and extension to boson fields will be carried out in Sec. IV 
using these results. Remarks will follow in Sec. V, giving a 
powerful application of the obtained three-term formula. 

II. ONE DEGREE OF FREEDOM 

Let a, at be boson annihilation and creation operators 
obeying a commutation relation 

[a,at ] 1. (2.1) 

Let la) denote the coherent state J3 defined by 

la) =exp(aat -a*a)IO) , (2.2) 

which is an eigenstate of the annihilation operator a, 

ala) = ala) . (2.3) 

Let us introduce a linear map .'7, transforming functions of 
complex variables a, a* to those of a, at by 

.'7F(a,a*) = :F(a,at ):. (2.4) 

Here: . : denotes the Wick product arranging a, at in the 
normal order without using the commutation relation (2.1). 
In the normal order, the annihilation operator a is put on the 
right-hand side of the creation operator at. Note a simple 
relation, 

(2.5) 

This is established as follows: rewrite F( a,a t ) in the normal 
order using (2.1), where the relation (2.5) clearly holds be­
cause of (2.3). 

Let FI>F2, ... ,F1 be possibly noncommuting functions of 
a, at. A multiplication formula for (a1F1F2 ••• FIla) is 
given by Agarwal and Wolf12 from the viewpoint of the gen­
eralized phase-space method: 

(aIF1F2 ' •• FIla) = IT Yf exp( J2 ) 

j=2i 1 Ja j Ja1' 

X IT (ak IFk lak) I ak a.c.c.' (2.6) 
k 1 
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where ak = a,c.c. indicates a 1 = a2 = '" = a] = a and 
aT =a! = ... =aT =a*. 

For a fixed complex t, we define Wick polynomials gIl 's 
by 

(2.7) 

First, let us derive a multiplication formula for a prod­
uct of two Wick polynomials. An application of (2.6) to 
gj (t)gm (t) with a 1 = a, a 2 = P yields 

(algjgmla ) 

= eXP(aaa;p* )(algjla) ({3lgm IP) Ip=a.c.c.. (2.8) 

Using the property [Eq. (2.3) 1 of the coherent state and the 
definition of the Wick product: . :, we note 

(algkla)=(ta+t*a*)\ k=l,m. (2.9) 

Substituting (2.9) into (2.8) and expanding the exponential 
function of a 2/ aa ap *, we obtain 

(alglgmla)=exp( a
2 

)(ta+t*a*)1 
aaap* 

X (tP + t*p*)ml /1= a.c.c. 

r (11)-1( a
2 

)i(ta+t*a*)1 
i=O aaap* 

X (tP + t*p*)m\p=a.c.c. 

lAm 

= L A (l,m;i) It 12i(ta +t*a*)/+rn-2i 
i=O 

lAm 

L A (I,m;i) It 12i 
i=O 

X (al:(ta + t*at )/+m-2i:la) , 
(2.10) 

where 

A(l,m;i) = l!m!lll(l- i)!(m i)! , (2.11) 

and the symboll A m represents a minimum of I and m. The 
operation of Yon (2.10) yields the multiplication formula 

lAm 

gl (t)gm (t) = L A (l,m;i) It 12igl + m - 2i (t) , (2.12) 
i=O 

with the aid of the property (2.5). 
Multiplication formulas for the product of I Wick poly­

nomials are derived similarly. However, we will discuss only 
the case I = 3: 

gl(t)gm(t)g,.(t) = L B(l,m,n;i,j,k)ltI 2(i+j+k) 

Here, 

B(l,m,n;i,j,k) 

i.j,k 

(2.13 ) 

I!m!n! , (2.14) 
i!J1k!(l- i - j)!(m - j - k)!(n - k - 01 

and the summation in (2.13) is carried out over the range 
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O<i + j<l, O<j + k<m, O<k + i<n, O<i,j,k. 
(2.15 ) 

Derivation of (2.13) is as follows. The formula (2.6) in 
the present case becomes 

(alglgmg"la) 

( 
a2 a 2 a 2 ) 

= exp aa ap * + aa ay* + ap ay* 

X (algda) ({3lgm IP) (ylg" Iy) Ip= r= a,c.c .. 

Expanding the exponential function as 

( 
a z )i( a

2 )l( a
2 

)k L (~~k,)-I -- --
i,j,k 1!J.. aa ay* aa ap * ap ay* , 

we have 

(alglgmg"la) = L B(l,m,n;i,j,k)ltI 2(i+ H k) 
i,j,k 

X (ta + t*a*)I+m+,,-2(i+H k) . 

Thus the operation of!T and the use of (2.5) result in Eq. 
(2.13 ). 

The above results immediately give multiplication for­
mulas for the products of two and three Hermite polynomi­
als. For 

a=~+~ at=~ - ~ 
2 dx' 2 dx' 

the Hermite polynomial Hn (x), defined by 

H (x) = ( _ 1)" exp(X2) d " exp( _ X2) 
" 2dx" 2' 

is expressed as 

H,,(x) =g,,(1). 

(2.16) 

(2.17) 

(2.18 ) 

The relation (2.18) is shown by induction; the case 
n = 0,1 is obvious. Suppose (2.18) holds for n = k. Then 

:(a + at)k+ I: = at:(a + at)k: + :(a + at)k:a 

=(~ - ~)Hk(X) +Hk(X)(~+~) 
2 dx 2 dx 

(2.19) 

which is equal to Hk + 1 (x) since 

dHk(x) 
dx = kHk_ 1 (x), 

Hk+1 (x) =xHdx) -kHk_ 1 (x). 

The multiplication formula (2.12) is now reduced to the 
well-known formula 

lAm 

HI (x)Hm (x) = L A(l,m;OHI+m 2i(X) , (2.20) 
i=O 

and (2.13) to the formula 
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= L B(I,m,n;i,j,k)HI+ m+ n_ 2(;+Hk) (x), (2.21) 
;,j,k 

where summation ranges over (2.15). 

III. MANY DEGREES OF FREEDOM 

The results in Sec. II are now straightforwardly ex­
tended to many degrees of freedom. Let a = (a ( 1), 
a(2), ... ,a(J»), at = (at (1 ),at (2), ... ,at (J») be boson anni­
hilation and creation operators obeying the commutation 
relations 

[a(s),at(t)] = 8s, , 

[a(s),a(t)] = [at(s),at(t)] = 0, s,teJ= (1,2, ... ,J) . 
(3.1) 

In this section all quantities with underlines such as ~ repre­
sent J-dimensional complex vectors; we write, for example, 
~ = (a (1 ),a(2), ... ,a(J»). By I~) we denote a direct product 
of the coherent states la(t», of tth boson operators 
(a(t),at (t»). Let us extend the linear map Y of (2.4) in such 
a way so as to transform the functions of the complex vari­
ables g, (!* to those of~, ~t by 

(3.2) 

Here: . : denotes the Wick product making all the annihila­
tion operators a(t) appear on the right-hand side of the cre­
ation operators at (t) without using the commutation rela­
tions (3.1). Again, a relation 

Y«~IF(~,~t) I~») = F(~,~t) (3.3) 

holds. 
Let F 1,F2, ... ,F[ be possibly noncommuting functions of 

a, at. Let us start with a mUltiplication formula for 
(~IFIF2 ... F[ I~) given by an extension of (2.6) 12: 

[ j-I 

<~IFIF2 ... F[I~) = IT IT A(.a,,-'4) 
j=2;= I 

X JJI <~ IFk I~ ) I a.k = a.,C.c .. 
(3.4) 

Here the differential operator A (g,I!) is defined by 

A(g,I!) = exp( stl A(g,I!;S»), (3.5) 

with 

a2 

A(rv{3'S) - seJ 
--' - aa(s) a{3 *(s) , . 

(3.6) 

In (3.4 ), the expression ~ = g,c.c. means ~I = ~2 
=' .. =~I =~and~r =g! = ... =~1 =~*. 

For teJ, define 

Q(f,~;t) = ;(t)a(t) + ; * (t)at(t) , (3.7) 

and consider the Wick polynomials 

gn (flf2" ·fn;tl ,t2·· ·tn ) 

= eQ(fl'~;tl)Q('2'~;t2)" 'Q(fn,~;tn): 
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(n = 0) , 

(n;;;.1) . 
(3.8) 

A multiplication formula for glgm now becomes 
lAm (I) 

glgm = L L (11)-IOlgI+m_2;' 
;=0 

with 
; 

(3.9) 

01 = IT 8 (tP(Ppt ' u(p) )sp(P) (tP(P) )'TJ* u(p) (t' u(p) ) , 
p=1 

and gl,gm ,gn are written explicitly as 

gl = gl(SIS2" ·S/;tl t2 .. ·tl ) , 

gm = gm ('TJI'TJ2" ''TJm;t i t ~· .. t:") , 
gl+m-2; =gl+m-u(SI"'[Sp]'''SI'TJI'''['TJu] 

(3.10) 

(3.11 ) 

( 3.12) 

.. ·'TJm;tl ·· ·[tp]···tlti···[t~]···t:"). 
(3.13) 

Here (p(1),p(2), ... ,p(i») and (0'(1),0'(2), ... ,0'(i») are 
taken from (1,2, ... ,1) and (1,2, ... ,m), respectively, and the 
summation ~(J) is carried out over all such I !m!! 
{(I - i)! (m - i)!} combinations. The symbol 8 ( . ,.) is 
Kronecker's delta, and [SP], ['TJu], [tp], and [t ~] indicate 
the exclusions of Sp(l) "",Sp(i)' 'TJu(l) ,···,'TJu(i)' tp(1) , ... ,tp(i), 
and t ~(I) , ••• ,t ~(i)' respectively. 

Let us derive (3.9) by using (3.4) with 1=2 and 
~I = g, ~2 = I!. Expanding the exponential operator A, we 
obtain 

<~Igigm I~) = A(g,f!) <~lgII~) <I! Igm II!) I£!=a.,c.c. 

00 J i 

= L L (11)-1 IT A(g,f!;Sp) 
;=0 S.,S2' .... sl= 1 p= 1 

(3.14) 

where 
I 

III = IT Q(S:x,g;tx ) , ( 3.15) 
x=l 

m 

Il2 = IT Q( !J.y,f!;t;) . (3.16) 
y=1 

The operation of A (!!,f!;sp ) transforms (3.14) into 

(3.17) 

Here the summation ~(2) is carried out over all I!! 
(1- i)! choices ofp( 1 ),p(2), ... ,p(i) from {1,2, ... ,l}, and ~(3) 
is done over all m!/(m - i)! choices of 0'(1),0'(2), ... ,0'(i) 
from {1,2, ... ,m}. The factors II4,Il5 are defined by omitting 
x = p( 1 ),p(2), ... ,p(i) andy = 0'( 1 ),0'(2), ... ,0'(i) in (3.15) 
and (3.16), respectively. In the last expression of (3.17), 
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which follows from the property of the coherent state and 
the definition of g" 's (3.8). By operating ..;r on (3.17) and 
using the property (3.3), we readily obtain (3.9). 

Here we remark that the relation (3.9) implies the or­
thogonality of Wick polynomials g" in the sense 

(Qlglgm IQ) = 0 (l =l=m) , (3.18) 

since (Olg" 10) = 0 if n =1=0. 
A multiplication formula for the product of the three 

polynomials gl, gm' and 

(3.19) 

is derived similarly: 

(3.20) 

Here the summation with respect to i, j,k is carried out 
over the range (2.15), and the summation l;(4) is done 
over all IImln!/{(l- i - j)l(m - j - k)!(n - k - i)l} 
combinations of choosing (p(l ),p(2} •... ,p(i + j»). 
(u(1).u(2}, ... ,u(j + k», and (r(1).r(2), ... ,r(k + i») from 

(1,2, ... ,/), (1,2, ... ,m), and (1,2 •... ,n). respectively. Thesym­
boIs O2, 03, and 04 are defined by 

; 

O2 = IT 6(t ;(k+ pptp(p) )~ ~(k + p) (t ;(k + p) )SP(P) (tP(P) ) , 
p=l 

j 

03 = IT 6(tp(; + qpt ~(q) )SP(; + q) (tP(; + q) )71:(q) (t ~(q) ) • 
q=1 

k 

04 = II 6(t ~(j+ rpt ;(,d71U(j+r) (t ~(j+r) )~ ~(,) (t ;(,) ) • 
r= 1 

(3.21) 

and the argument of gl + m + " _ 2(; + j + k) is explicitly written 
as 

(SI'" [Sp] .. 'S/71I'" [71u] " '71m~I'" [~r] " '~,,;tl'" [tp] 

... tit i ... [ t ~ ] ... t :.. t i" •• [t ;] ... t:) • 

where [spl, [71u], [~T]' [tp ], [t~]. and [t;] exclude 
SpO) '''''SP(; + j}' 71u(I) ... ·.71u(j + k), ~T(l) .···.~T(k+;)' 
tpop· .. ,tp(;+j)J t~(l) .... ,t~(j+kP and t;(lp .... t;(k+O' re­
spectively. 

The derivation of (3.20) is as follows. First, use (3.4) 
with 1= 3 and al = a.. .«z = I}, and a3 = r. Then, 

(alglgmgm la) = A (gj}) A (a..r)A (I!..r) (alglla) (f!.lgm II!.) (rig" Ir) I r=(!=Q,C.c. 

= ~ (iy1k!)-1 L IT A(a..r;Sp) IT A(a..l!.;S;) IT A(I!..r;S~)nln2n3Ir=l!=Q,c,c, 
I.}.k s,"'Si'sj"'sj,sj""$k p= 1 q= 1 r= 1 

= L (11;1kl)-Il;(4)020304n6n7nglr=l!=Q,c.c .. 
;,j,k 

Here n l,n2 are given by (3.15) and (3.16), and n3 by 

" n3 = IT Q(~.r;t ~') . (3.22) 
z=1 

The factors n 6• n 7• and n g are given by omitting 
x=p(1), ... ,p(i+j). y=u(1) ..... u(j+k). and 
z = r(1 ) ..... r(k + i) in (3.15), (3.16), and (3.22), respec-
tively. Again the operation of..;r and the use of relations 

n 6n 7n gl r = (! = Q,e.c. = (algi + m + ,,- 2(i + j + k) la) 

and (3.3) yield (3.20). 

IV. ORTHOGONAL POLYNOMIAL FUNCTIONALS 

Let (a(t),at (t») (teRd
) be boson field operators satisfy-

ing 

[a(s),at(t)] = 6(1 - s) , 

[a(s),a(l) 1 = [at(s),at(t)] = 0, s,teR d. (4.1) 

Let S; (I), 71; (t).~; (t) EL2(R d) (i = 1.2 .... ) be the space of 
square integrable complex functions on Rd. The purpose of 
this section is to derive the mUltiplication formulas for or­
thogonal functionals defined by 

G" (~1~2 ••• ~,,) 

i dt l · .. i dt" g" (~1~2" '~,,;1112" '1,,) , (4.2) 
Rd Rd 
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and their linear combination G" [see Eq. (4.12) ]. In (4.2). 
g" is defined by 

g,. (~1~2" '~n;tlt2" ·t,.) 

with 
Q(~,a;t) = ~(t)a(l) + ~*(t)at(t) • 

(n = 0) , 

(n>l) , 
(4.3) 

(4.4) 

analogous to (3.7) and (3.8). The discussion in Sec. III is 
formally extended to the present case; as is usually done. we 
regard, in (3.8), '1"2' .... ',. as the infinite-dimensional vec-
tors ~1'~2'''''~'' and t l ,t2 , ... ,t" as continuous variables. Then 
we obtain the multiplication formulas (3.9) and (3.20) with 
the replacement of Kronecker's delta by the delta function. ... ... 
A multiplication formula for G[Gm now reads 
.. .. 111m (I) i ... 

G,Gm = L L (11)-1 II (Sp(Pl'71u(p) )GI + m_ u , 
i=1 p=1 

with 
... ... 
G[ = G1(SIS2"'S/) , ... ... 
Gm = Gm <111712" • 11m ) • 

G,+ m - 2; ... 
=G[+m-U(SI···[Sp]· .. S/71I···[71u]···l1m) . 
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Here (p( 1),p(2), ... ,pU») and (o-( 1 ),0-(2), ... ,o-U») are taken 
from (1,2, ... ,1) and (1,2, ... ,m), respectively, and the summa­
tion ~(l) is carried out over all such l!m!/{(l- i)!(m - i)!} 

combinations. The terms [sp] and [1]u] indicate the exclu­
sion of sp(\), Sp(2) '''',Sp(i) and 1]u(\) ,1]u(2) , ... ,1]u(;)' respec­
tively. The inner product (.,.) in L2 (R d ) is defined by 

(4.9) 

Since On (tlt2" ·tn) is invariant under the permutation of 
{1,2, ... ,n}, it is naturally extended to t, where it has the form 

w 
t= I YwY{t\W)" ·t~W)}. (4.10) 

w=1 

Here Y is the symmetrizing operator defined by 

Y{tl,,·tn} 

= (n!)-l It1T(\) ® •.. ®t1T(n) (n = 1,2, ... ), 
1T 

(4.11 ) 

with 1T running over all permutations of {1,2, ... ,n}. We de­
fine Gn (t) by 

w .. 
Gn(t) = I ywGn(t\W),,·t~W» (4.12) 

w=1 

for t of ( 4.1 0), and similarly GI (S), G m (1]) for S, 1] given by 
u s= I auY{S\U)",s}U)}, (4.13 ) 

u=1 

v 
1] = I PV Y {1]\V) " '1]~)}. (4.14) 

v=] 

A multiplication formula for GI (S)Gm (1]) is now writ­
ten in a form similar to (2.20), 

111m 

GI (S)Gm(1]) = I A(l,m;i)GI + m_ 2;([S,1];i]), 
;=1 

where [S,1];i] is defined as 

[S,1];i] 

( 4.15) 

1 1 u V ; 

= , I -, I I I auPv II (s i(~) ,1]~~~) ) 
I. A m. !l u = 1 v = 1 P = 1 

X Y{f:' (u) ••• f:' (u) 1](V) .. '1](V)} (4.16) 
~ AU + 1) ~ A(/) !lU + 1) !l(m)' 

In (4.16),A. andJl run over all permutations of {l,2, ... ,l} and 
{1,2, ... ,m}, respectively, and the coefficient A(l,m;i) in 
(4.15) is defined in (2.11). Nakazawall writes (4.15) in a 
more compact form, 

111m 

GI (S)Gm(1]) = L GI+ m_ 2;(S:i:1]), 
;=1 

by introducing the i contraction S:i:1]14 given by 

S:i:1] = A (/,m;i) [S,1];i] . 

( 4.17) 

(4.18) 

The formula (4.15) is derived as follows: we operate 
(l!)-I~A (m!)-l~!l to (4.5) and rearrange it using the in­
variance of 01, Om, 01 + m _ 2; under the permutations of 
their arguments. This rearranged formula and the definition 
ofGI , Gm, GI + m _ 2;' and [S,1];i] immediately yield (4.15). 
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A similar argument can be used to derive a multiplica­
tion formula for the three functionals GI (S), Gm (1]), and 
Gn (t) as 

GI(S)Gm (1])Gn (t) 

= I B(l,m,n;i,j,k) GI + m + n - 2U + j+ k) ([S1]t;ijk ]) . 
i.j,k 

Here the summation is over the range (2.15) and 

[S1]t;ijk] 

(4.19) 

1 1 1 u v w =, I-, I, I I I I a upvyw 8 28 38 4 
I. A m. !l n. v U= 1 V= 1 W= 1 

X Y{si(i+j+I)"'si()1]~~)j+k+l) 

X .. '1](V) r (w) ... r (w) } 
!l(m)~ v(k+;+ I) ~ v(n) , (4.20) 

with 
; 

8 II (f:'(U) r(W) ) 
2 = ~ A(p) ,~ v(k + p) , (4.21) 

p=1 
j 

8 - II (f:'(U) (V» 
3- ~A(i+qp1]!l(q)' (4.22) 

q=1 
k 

8 4 = II (1]~~)j+ rpt ~~;) ) . (4.23) 
r= 1 

The summations in (4.20) w.r.t. A.,Jl,V are carried out over 
all permutations of{I,2, ... ,l}, {1,2, ... ,m}, {1,2, ... ,n}, respec­
tively. 

V.REMARKS 

The identity of the structure of expectation values of 
Wiener-Hermite functionals and Wick products of boson 
Fock fields was realized early by Imamura et al.5 Any (vec­
torial or tensorial) Gaussian white noise on tERd may be 
constructed linearly on a scalar Gaussian white noise/(s), 
sER, with t also depending linearly on s. The Wiener-Ito 
decomposition2,3 of square integrable random variables as­
sociated with/(s) is known4,7,8,'5 to give a representation of 
F ock structures of free fields on s, with annihilation and cre­
ation operators possibly defined by4,8,l5 

a(s) = /(s) + _0_ at(s) = /(s) _ _ 0_ 
2 o/(s) , 2 o/(s) , 

(5.1) 

together with vacuum expectation values realized as expec­
tations w.r.t. the probability measure induced by f These 
facts imply that Wiener-Hermite functionals or multiple 
Wiener integrals are special facets of orthogonal polynomi­
als of commuting operators for real t i w)'s in (4.10), yet the 
whole structure is embraced in the original mUltiple Wiener 
integrals ofIto2 and Wiener.3 

Let us introduce a suggestive notation for (4.12), valid 
for real t of (4.10), 

Gn(t) = i dt1 ,,· i dtn 
Rd Rd 

X t(tl, .. ·,tn )Hn (tl, .. ·,tn ) , 

Hn (tl,· .. ,tn ) = gn (1,1, ... ,I;t
" 

... ,tn) . 

H. M.lto 
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We also use an abbreviated notation for (5.2) and (5.3), 

(5.4 ) 

where the integration over Rd is implied by repeated indices 
I 

t( 1, ... ,/)HI (1, ... ,1) X 1]( l', ... ,m')Hm (l', ... ,m') 
111m 

1 ('),2(') , ... ,n(') that stand for t \'),t ~,) , ... ,t ~tl. The formulas 
(4.15) and (4.19) for real t, 1], and t (or, for commuting 
operators) are now written simply as follows: 

= L A(I,m;OY[t(I, ... ,(I - i),l#, ... ,i#)1](I', ... ,(m - i)',I#, ... ,i#)]HI + m _ 2;(1, ... ,(I - i),I', ... ,(m - 0'), (5.5) 
;=0 

t( 1, ... ,I)HI (1, ... ,1) X 1]( l', ... ,m')Hm (1', ... ,m') xt( 1" , ... ,n" )Hn (1" , ... ,n") 

= L B(I,m,n;i,j,k)Y[t(l, ... ,(I - i - j),l #, ... ,i#,l*, ... ,j*)1](l', ... ,(m - j - k)',l *, ... ,j*,l b
, ... ,k b

) 

;,j,k 

X t(l", ... ,(n - k - i)",l b
, ... ,k b,l#, ... ,i#)] 

X H I + m + n-2(i+j+ k) (1, ... ,(1 - i - j),l', ... ,(m - j - k)',l", ... ,(n - k - 0"). (5.6) 

Here Y indicates the symmetrization of the unrepeated ar­
guments, and the summation in (5.6) ranges over (2.15). 

We now consider a non-Gaussian random variable with 
real KI and K3: 

(5.7) 

We calculate the kernels, L 1, L3 of X 3, which are of signifi­
cance in stochastic problems, 

X 3 =L 1(1)H1(1) +L3(123)H3(123) 

+ higher order terms. (5.S) 

Repeated applications of (5.5) will give the desired result, 16 

but the procedure is extremely troublesome. It is far more 
practical to use our (5.6), the result being 

L 1(1) = 3(Y + 6Z)K1(1) 

+ ISK3(1pq)K1(p)K1(q) 

+ lOSK3 (1pq)K3 (pqr)K1 (r) 

+ 324K3(1pq)K3(prs)K3(qrs) , (5.9) 

L 3(123) = KI (1 )K1 (2)K1 (3) + 3( Y + 6Z)K3(123) 

+ lSY{K1(1)K3(23p)K1(p)} 

+ 54Y{K1(1)K3(2pq)K3(3pq)} 

+ lOSY{K3( 12p)K3(3pq)Kl (q)} 

+ 216K3( Ipq)K3(2qr)K3(3pr) 

+ 324Y{K3(12p)K3 (3qr)K3 (pqr)} , (5.10) 

Y=K1(1)K1 (1), Z=K3(123)K3(123). (5.11) 
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The rhs of (5.10) clarifies that the factor 126 in the expres­
sion of L3 ( 123) in Ref. 16 should correctly be read as 216. 
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The paper starts the program of rewriting quantum electrodynamics in terms of the manifestly 
covariant and covariantly computed effective action. A general method for obtaining nonlocal 
terms in the effective action is proposed and the term responsible for the one-loop magnetic 
moment of the electron is worked out. In contrast to the usual calculation based on Green's 
functions, the present calculation nowhere encounters the infrared divergences (including 
renormalization and restriction to the physical mass shell). Comparison with the method of 
Green's functions shows the inadequacy of the latter. 

I. INTRODUCTION 

All effects of a given quantum field theory are contained 
in its effective action and there should be a straightforward 
way to compute relevant terms in the effective action with­
out recourse to the standard technique of Green's functions, 
perturbation theory, etc. This is especially important for 
gauge theories because in this case the Green's functions are 
inadequate objects whereas the effective action is a manifest­
ly covariant functional and there should be manifestly covar­
iant methods for its computation. In addition, the effective 
action technique, when sufficiently developed, should save 
much computational work because it deals only with dia­
grams without external lines, and this reduces considerably 
the number of diagrams contributing to a given effect. 

In the present paper we start the program of rewriting 
quantum electrodynamics in terms of the manifestly covar­
iant (and covariantly computed) effective action. The effect 
of QED that seems most attractive from this point of view is 
the anomalous magnetic moment of the electron. This is be­
cause, first, the magnetic moment has a clear interpretation 
in terms of the effective action and, second, already the pres­
ent-day experimental data require its computation with 
four-loop accuracy. 1--4 If the effective action techniques have 
any computational advantages, it is here that they must 
prove their worth. 

One more reason why the problem of the anomalous 
magnetic moment looks tempting is that apparently, for this 
problem, one needs only the local term in the effective La­
grangian, of the form 

1irr'rvFf-tv1/t, (1.1) 

and, therefore, one may hope that the elaborate Schwinger­
DeWitt technique5

•
6 will be applicable. This simplicity is, 

however, illusory and, on closer examination, the problem 
(even to lowest order) requires a qualitative improvement of 
the existing covariant methods for the calculation of the ef­
fective action. Indeed, if using the Schwinger-DeWitt tech­
nique one expands the one-loop effective action of QED in 
inverse powers of the electron mass, the coefficient of the 

term ( 1.1 ) will prove to be exactly zero. In fact, other terms 
of this local expansion, containing derivatives of 1/t, 

(11m )1irr'r"Ff-tv"l1/t, (lIm2)1irr'r"PI',,''1/21/t,... (1.2) 

all contribute and, upon using the mass-shell equation for 1/t, 
all take the form (1.1). To be more correct, for the electron 
magnetic moment we need the term in the effective action, 
which is quadratic in 1/t and linear inPf-tv' and whileP,.,v may 
be regarded as constant,1/t is arbitrary. This term [which is a 
sum of all terms ( 1.2) ] is nonlocal. However, when the cor­
responding effective equation for 1/t is solved iteratively, by 
expanding in powers of the fine-structure constant, then at 
each iteration order the quadratic in the 1/t term of the renor­
malized effective action takes the local form 

W't! = - J dx ¢("I + m + i g; 2 4~ r"rvp,.,v)1/t 

(1.3 ) 

whereg is the gyromagnetic ratio, O( aF) denotes terms with 
derivatives of Ff-tv, O(p2) terms higher order in PI-'v' and 
O(e2n

) terms of nth and higher orders in the fine-structure 
constant. 

Thus, at least in the framework of the usual effective 
action (as distinct from the unique effective action,? see the 
discussion in the concluding section), the anomalous mag­
netic moment is a nonlocal effect. In the present paper we 
propose a covariant method for computing nonlocal terms in 
the effective action and work out the relevant term in the 
one-loop effective action of QED [Eq. (5.8)]. At the heart 
of the method lies a Gaussian integral with noncommuting 
sources. Its calculation is discussed in the Appendix. (An­
other approach to the effective action in quantum electrody­
namics, which also leads to integrals with noncommuting 
parameters, is proposed in Ref. 8.) 

In the language of the Green's functions, our final result 
corresponds to the calculation of the one-loop mass operator 
and the three-point vertex with the electron lines off shell. 
However, the reward for covariance is that we nowhere (in­
cluding the renormalization and restriction to the physical 
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mass shell) encounter the infrared divergences and nowhere 
need to introduce the photon mass. The comparison with the 
textbook calculation, carried out in the concluding section, 
shows clearly the inadequacy of the Green's function meth­
od. 

II. DIAGONALIZATION OF THE QUANTUM 
LAGRANGIAN 

We start with the QED Lagrangian in a covariant 
(mean field9

) gauge 

.Y= - !FJlvFJlV-1ji[Y'(aJl -ieAJl ) +m1]'" 

- !(aJlAJl- aJl (AJl»2, (2.1) 

where 

FJlv = aJlAv - avAJl ' (2.2) 

(2.3) 

and g"v is the positive-definite metric of flat 2eu-dimensional 
space. [In QED the use of mean-field gauges is not crucial. 
The loop part of the effective action for (2.1) coincides with 
that for the usual Lorentz gauge, which is covariant by itself. 
The addition containing (A) affects only the tree term of the 
effective action making it covariant.] The parameter eu will 
be used to regularize ultraviolet divergences in proper-time 
integrals. 

Next we introduce the mean fields 

AJl=(AJl)' "'=("'), i/t=(1ji) , (2.4 ) 

and define 

aJl = AJl -AJl' 'TJ = '" - "', 1j = 1ji - i/t. (2.5) 

The a Jl ' 'TJ, 1j will be regarded as independent integration vari­
ables in the functional integral. By expanding the Lagran­
gian in powers of the quantum fields we obtain (the term 
.Y I' linear in the quantum fields, always cancels in the equa­
tion for the effective action, see, e.g., Ref. 7) 

.Y =.Yo +.YI +.Y2 +.Y3' (2.6) 

.Yo = - ! FJlvFJlV - i/t[ Y'(aJl - ieAJl) + m1]tP, 
(2.7) 

FJlv = aJlAv - avAJl ' (2.8) 

.Y 2 = ! aJl (g"va 2)av -1j [Y'(aJl - ieAJl) + m1] 'TJ 

+ ieaJl 1jY'''' + ieaJl i/lY''TJ , (2.9) 

.Y 3 = ieaJl 1jY''TJ . (2.10) 

Let us introduce the notation for the Dirac operator in 
an external field and its (Euclidean) Green's function, 

§ = Y'(aJl - ieAJl) + m1, 
§§-I =§-I§ =1, 

§-IJ(X) = - f G(x,y)J(y)dy, 

(2.11 ) 

(2.12 ) 

(2.13 ) 

where all operators are understood as acting to the right on a 
spinor. 

A convenient diagrammatic technique for the effective 
action in QED emerges if we diagonalize the Lagrangian of 
quantum fields by making the shift 

703 J. Math. Phys., Vol. 29, No.3, March 1988 

'TJ(x) = t(x) - ie f G(x,y)Y'",(y)aJl (y)dy, (2.14a) 

1j(y) = t(y) - ie f aJl (x)i/t(x)Y'G(x,y)dx, (2.14b) 

where now t and t will be the independent variables in the 
functional integral. The Jacobian of the replacement (2.14) 
equals unity. In terms of the new set of quantum fields 
aJl ,t,t we obtain 

.Y2·= !aJlQJlVav -t§t, 

.Y 3 = ieaJltY't - e2aJltY' § -Iyv"'av 

- e2aJl~§-lyvtav 

-ie3aJli/tY'§-laat'§-lyV",av' 

where Q JlV is the following vector-field operator: 

(2.15 ) 

(2.16) 

Q Jlv8(x,y) =g"va 28(x,y) + e2i/t(x)Y'G(x,y)yV",(y) 

+ e2i/t(y)yvG(y,x)Y''''(x) . (2.17) 

Its Green's function plays the role of the photon propagator 
in the resultant diagrammatic technique. 

For the one-loop effective action we need only .Y 2: 

Wone.loop [A,,,,,i/t] 

= Trln(§8(x,y») - ! Trln(Q JlV8(x,y»). (2.18 ) 

The mean fields "', i/t enter Wone.loop through the operator 
QJlV given by (2.17). By expanding (2.18) in powers of""i/t 
we obtain 

Wone.loop [A ,,,,,i/t ] 

= Tr In(§8(x,y») - ! Tr In(gl'v a 28(x,y») 

- ! Tr(MJlv(x,y») + o «i/t",) 2) , (2.19) 

where 

MJl v (x,y) = - e2i/t(x)Y'G(x,y)yA",(y)( - g •. vla;) 

- (-gv;.la;)e2i/t(y)yAG(y,x)Y''''(x). 
(2.20) 

Thus the term quadratic in '" is 

wr.f'e.loop = - ! Tr(MJlv(x,y»). 

This expression is graphically shown in Fig. 1. 

III. THE PROPAGATORS 

(2.21) 

If the effective action is to be expanded in powers of "', i/t, 
then the photon propagator in the diagrammatic technique 
will become the free Green's function 

_ gJlV 8(x,y) = foo d'T e- U (X,Y)/2Tg (3.1) 
a 2 Jo (41T'T)'" JlV , 

,............-------
........... 

2 /' '" e .t?~--------------~~~ 
FIG. 1. The H contribution to the one-loop effective action. The left blot is 
~, the right blot is 1/J, the broken line is the free photon propagator 
( - g,.Ja 2 )8(x,y), the full line is the electron propagator G(x,y) in an 
external (mean) electromagnetic field, and each vertex is 1"'. 
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where CT(X,y) is the world function,5 

CT = ! CTl'o#, CTI' =aI'CT(X,y) . (3.2) 

For our purposes, the mean electromagnetic field Fl'v, 
unlike rP, may be regarded as constant. This means that the 
effective action will be expanded in powers of Fl'v and its 
derivatives. Therefore, for the calculation of the electron pro­
pagator in an external field G(x,y), one may apply the 
Schwinger-De Witt technique.5,6 Bearing in mind renormal­
ization, we shall work with accuracy D(F 3

) although in the 
present paper all quantities will be needed only with accura­
cy D(F 2) + D(aF) , 

Thus we introduce the covariant derivative V I' which 
acts on a spinor as 

Vl'rP= (al' -ieAI')rP 

and on a conjugate spinor as 

V I'if = (al' + ieAI' )if ' 

(3.3a) 

(3.3b) 

Matrices in the space of spinors will be denoted by letters 
with a hat. From (3.3a) and (3.3b), the action of the covar­
iant derivative on a matrix is 

A A 

VI'X = al'x, (3.3c) 

The quantity fYt I'V' which figures in the general formalism6 
A 

(VI' V v - V v VI')rP = f!Jt I'vrP, (3.4) 

is in the present case 

fYtl'V = - ieFI'J. (3.5) 

By using the squaring procedure one obtains 

G(x,y) = - (t'VI' -mI)(H-m2I)-lb(x,y) , (3.6) 

H =It'VVI' Vv + P, (3.7) 

where we have reduced the squared operator to the canoni­
cal form6 with 

P = ! t'yV fYt I'V = - (iel2 )Fl'v t'yV . 

Next one writes 

(3.8) 

- (H - m 2I)-1 = Sa'" dse-sm'e'H, (3.9) 

1 '" e'Hb(x,y) =---", e- u(x,y)/2s I snon(x,y), (3.10) 
(417-s) n=O 

where On (x,y) are the DeWitt coefficients5,6 which in the 
present case behave like spinors at the point x and conjugate 
spinors at the point y. Thus 

G( ) 
Sa

'" ds - sm' - (1I4s)g,./uv 

x,y = ---e e 
o (417"s)'" 

X[- + nto snbn (x,y) ] , 

(3.11 ) 

where 

bn (x,y) = (t'VI' - mI)on (x,y) - !CTvyvOn+ 1 (x,y) 
( 3.12) 

and CT v = a ~CT(X,y) is a vector at the point x and a scalar at 
the pointy. The two-point functions (3.12) should now be 
expanded in the covariant Taylor series in powers of CTV (Ref. 
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6) with coefficients at the point x. These coefficients are built 
of the coincidence limits of On (x,y) and their covariant de­
rivatives, which are tabulated in Ref. 6 in a universal form. 

Let us represent the Green's function (3.11) in the form 

G(x,y) = K(x,y)oo(x,y) (3.13) 

by factoring out the zeroth-order DeWitt coefficient 
00 (x,y ). The oo(x,y) is the parallel displacement propagator 
along the geodesic,5,6 whose explicit form is never needed in 
loop calculations (we shall see below how this comes about, 
see also Ref. 6). For K(x,y) one may write down the expan­
sion in CTV to the given accuracy 

K( ) - Sa'" ds - sm' - (1I4s)g,./uv 

x,y - ---e e 
o (417"S)'" 

A A A 

X (Zo(CT) + ZI (CT) + Z2(CT») 

+ D(F 3
) + D(aF) , (3.14) 

A A A 

where Zo(CT), ZI(CT), and Z2(CT) are polynomials in CTvof 
zeroth, first, and second order in Fl'v' respectively. All that 
remains is to use the table of universal coincidence limits in 
Ref. 6 to obtain 

20 (CT) = - mI - (lI2s)yVCTv , 

21 (CT) = (iemI2)Fl'vt'yVs 

(3.15) 

+ (ieI2)Fl'v (t'b~ +! y" t'yV)£T', (3.16) 

22(CT) = (e2mI4) [!(Fl'vt'yV) 2 + !Fl'vFI'VI ]S2 

+ (e2/2)yP U(Fl'vt'yV)2gaP + !(Fl'vt'yV)Fpa 

+ lfl'vFI'VIgPa - !F(pvFa). vI ]s~ 

+ (e2mI12)FaI'Fp.I'Is~of1 
+ (e2/24)FaJtFp.l'yv~of1CTv. (3.17 ) 

IV. CALCULATION OF THE NONLOCAL EFFECTIVE 
ACTION 

From (2.21), (2.20), and (3.1) we have 

W~e.lOOP = e2 f dx f'" dl" Jo (417"1")'" 

X f dy e- U (x,y)/2rif(x)yvG(x,y)yvrP(Y) . 

(4.1 ) 

Here Sdx may be regarded as an "external" integral making 
the effective action of the effective Lagrangian, and Sdy as a 
loop integral. The genera~ procedure6 is now to make the 
replacement of variables in the loop integral 

(4.2) 

and use the expansion (3.13), (3.15) for the Green's func­
tion G(x,y). In the absence of gravity, the Jacobian of the 
replacement (4.2) is 

I ao# I = 1 
ayV 

(4.3) 

and one obtains 
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00 

'1''1' =e x e W ;;·,· 2 I d II ds d'T - sm2 

one-loop ( 41TS ) '" ( 41T'T) '" 
o 

x I CUI daP )e - [(s + T)/4sT]g",.o"U
V 

_ A A 

X t/!(x)Y'[Zo(O') + ZI (0') 

+ O(F2) + O(JF) ]YaOO(x,y)t/!(y) , 
(4.4) 

where use has been made of the fact that 0o(x,y) commutes 
with y". [In QED, 0o(x,y) is proportional to the unit matrix, 

oo(x,y) = I exp(ie L All dxll) 

where the contour C is the geodesic connectingy with x and 
directed from y to x. ] 

In the framework of the Schwinger-DeWitt technique 
one would now expand also t/!(y) in the covariant Taylor 
series6 

00 (_ 1)n 
o (xJl)t/!(y) = L 0'" ... q"V "'V t/!(x) 

o , n = 0 n! . Il, Il" 

(4.5) 

[it is here that the 0o(x,y) completes its job and leaves the 
stage] and in this way reduce the loop integral to the Gaus­
sian integral over 0". However, this isjust what we cannot do 
in the present case because all terms of the expansion (4.5) 
contribute to the electron magnetic moment. Therefore we 
represent the expansion (4.5) in the form 

00 

(4.6) 

and in this form substitute it in (4.4). As a result the loop 
integral reduces to Gaussian integrals with noncommuting 
sources (this method, originally used for the present calcula­
tion, was generalized in Refs. 10 and 11 where a nonlocal 
expansion in powers of a universal set of curvatures is ob­
tained for the generic one-loop effective action: ) 

1 '" I( IT daP)~' ... O'a"e - (l/4u)g",.o"u
v

e - ""va, 
(41TU) fJ= 1 

[Va,VfJ ] = -ieFa{JI, u=s'T/(S+'T). (4.7) 

The calculation of these integrals is discussed in the Appen­
dix. Since the polynomials 2"0(0') and 2"1 (0'), entering (4.4) 
and given by the expressions (3.15) and (3.16), are linear in 
0", we need only the first two Gaussian moments, for which 
we obtain 

1 '" I( IT daP)e - (1I4u)g",.o"u
v

e - o"Va 

(41TU) fJ=1 

= euVava + O(F2) + O(JF) , (4.8) 

1 '" I( IT daP)uAe - (l/4u)g",.o"U
v

e - o"Va 

(41TU) fJ= I 

= - 2u(gA" + ieuFA") V "eUVava + O(F2) + O(JF) . 
(4.9) 

After the explicit expressions (3.15) and (3.16) have 
been used and the Gaussian integral over 0" done with the 
aid of (4.8) and (4.9), we obtain 

"# 2 I II ds d'T 2- [ 'T ( . S'T us..) iem A,/3 Wone-loop = e dx e- sm t/!(X)Y" - mI + --Yil Vil + le --F~-vfJ + --F!lfJ'Y'r s 
(41T)"'(S + 'T)'" S + 'T S + 'T 2 

o 

- ie ~ F!lfJ('Y'di + !YA'Y'yP)VA]y"e[ST/(S+T)]VaVat/!(x) + O(F2) + O(JF) , 
S+'T 

where all operators act in the indicated order to the right on the spinor t/!(x). 

V. EXPLICIT FORM OF THE EFFECTIVE ACTION AND THE ANOMALOUS MAGNETIC MOMENT 
It is convenient to express the exponentiated operator in (4.10) in terms of the squared Dirac operator (3.7), 

euVaVa = (1 + u! eO'F)euH + O(F2) + O(JF) , 

H = Va va - ! eO'F, 

where 

In the remaining terms of (4.10) one may use the operator identity 

4iY/l-P""V" = (O'F)'Y'V/l- - 'Y'VIl (O'F) + O(JF) , 

(4.10) 

(5.1) 

(5.2) 

(5.3 ) 

(5.4 ) 

which guarantees that the covariant derivatives will act on t/! or ij only in the Dirac combination 'Y'V /l- (and this is true for 
higher loop orders as well). 

The proper-time integrals over sand 'T remain to be computed. For this purpose we make the standard replacement of 
variables 

s=A.Z, 'T=A.(1-z), O<A.< 00, O<z<l, 

which brings expression (4.10) to the form 
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I J(s,'T) I = A. , 
J(A.,z) 
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W~e.IOOP = _e_
2 
-fdX¢(X) t dz ("" ~[2(2-aJ)mz 

(41T)'" Jo Jo A. ",-I 

- m(1 + z) + 2(2 - aJ)(yPVI' + mI) (1 - z) - 2(yPVI' + mI) (1 - z) 

- 2(2 - aJ)m ! e(uF)A.r - 2m ! e(uF}A.z2( 1 - z) 

- {yPVI' + mI deuF}A.z(1 - z)(2 - z) ]e-..tz[m
2 
- (I-Z)Hl",(x) + O(F2) + O(aF) (5.6) 

where { , } denotes the anticommutator. 
The integrals over the parameters are elementary if the integration over A. is done first. The only ultraviolet divergent 

integral is of the form 

("" ~e-..tz[m2-(1-Z)Hl 
Jo A. ",-I 

(5.7) 

and is calculated at aJ ---> 2 by the usual trick of integration by parts (see, e.g., Ref. 6). Note that, for small Fl'v' the coefficient of 
A. in the exponent of (5.7) is negative definite. There is, therefore, no problem with convergence of the proper-time integrals at 
the upper limit, which in massless theories is inherent in the local Schwinger-DeWitt technique (see the discussion in Refs. 7 
and 10). 

After the proper-time integrals have been computed, in the limit aJ ---> 2 we obtain the final explicit expression for the 
effective action: 

- e
2 f - [( 3 W~e.looP = -- dx",(x) m - --+3Inm2+3C-4 

(41T)2 2 - aJ 

_ 3 In 41T + m
2 

- H + m
2 

- H(2 _ m
2 

- H)ln m
2 

) 
H H H m 2 -H 

+ (yPV I' + m) (- _1_ + In m 2 + C _ 2 _ In 41T _ m
2 

- H + _m_2_-_H_(2 + m
2 

- H)ln 2m2 ) 
2-aJ H H H m -H 

+ 2: UF ( -(1+ m2;;H)(1+2 m2;;H)+2m2;;H(1 + 

+ {yPVI' + m, 2:2 UF}( 2( 1 + m2;; H) 

where C is the Euler constant. The renormalization in (5.8) 
boils down to deleting the terms 

~fdX¢(X)[m(- _3_+3Inm2 
(41T)2 2 - aJ 

+ 3C - 4 - 3 In 41T ) 

+ (yPV I' + m) (- _1_ + In m 2 

2-aJ 

+ C - 2 - In 41T) ]"'(X) = - W~unter , 

proportional to the terms of the classical action 

Wr.! = - f dx ¢(x)(yPVI' + m)"'(x) 

[see Eq. (2.7)]. The renormalized effective action is 

(5.9) 

(5.10) 

W~=Wr.! + W~e.looP + W~nter +O(e4
). (5.11) 

If the effective equations for'" and ¢ 
8W# 
~ = (yPVI' + m)"'(x) + O(e2

) = 0, (5.12a) 
8",(x) 

8W~ - +-
--= ",(x)(yPVI' - m) + O(e2

) = 0 (5.12b) 
8",(x) 
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(5.8) 

I 
are solved by iteration and the solution is inserted back into 
the action, then, since we have 

(5.13 ) 

it follows that all nonlocal terms in (5.8) vanish. Note that 
all logarithms are suppressed and no infrared divergences 
arise. Thus we obtain 

W ~¢ I mass shell 

= - fdx ¢(x) (yPVI' + m + ~...!-.UF) 
(41T) 2m 

X",(x) + O(F 2
) + O(aF) + O(e4

) , (5.14) 

with Schwinger's value 

(g - 2)/2 = e2/8~ + O(e4
) (5.15) 

for the anomalous magnetic moment. 

VI. DISCUSSION 

The reader has of course noticed that the present calcu­
lation is reminiscent of Schwinger's calculation in Ref. 12 
(but pushed to its logical extreme) and differs drastically 
from the usual textbook calculation. An important differ­
ence is that neither in computing the effective action nor in 
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conducting the renormalization nor in restricting the result 
to the physical mass shell did we encounter the infrared di­
vergences. In particular, the spinor-field renormalization 
constant is 

(Z2- t -1) 

= ~(_1 __ In m2 _ C + 2 + In 41r) + O(e4
) 

(41T) 2-w 
(6.1 ) 

from (5.9) and is infrared finite. [The Ward identity 
Z t = Z2 is, of course, trivially satisfied in (5.9) because the 

. counterterm is covariant. ] 
To carry out the comparison with the method of Green's 

functions, let us expand the renormalized effective action 
(5.11) in powers of the electromagnetic potential A,. and 
keep only terms linear in A,.. The result can be written in the 
form 

Wr"= - J dx¢[i+m-ieA+~R(i) 
-ieArR(i)]f/!+O("') (6.2) 

in terms of the renormalized mass operator ~R (i) and ver­
tex function r R (i) [A r R (i) is the notation for the contrac­
tion of the vertex function withA,.(x)]. The ~R(i) and 
rR(i) can be read off from (5.8)-(5.11). 

Expression (5.14) is obtained by using, in the quantum 
terms, the mass-shell equation (5.12): 

(i + m - ieA)f/! + O(e2) = 0 (6.3) 

and similarly for ¢. The expansion inA,. is then equivalent to 
the expansion of ~R (i) and r R (i) at the point i = - m: 

J dx ¢(x) [ - ieAr R (i) 1 f/! 

= J dx¢[ -ieArR( -m)]f/!+O(A2) +O(e4
), 

(6.4) 

J dx ¢'[~R (i) 1f/! 

= J dx ¢ [ ~ R ( - m) + ~ ~ ( - m) ieA ] f/! 

+ O(A 2) + O(e4
) • (6.5) 

But they cannot be expanded! If, nevertheless, we do expand, 
the result will be infrared divergent: 

~R(-m)=O, (6.6) 

~~( -m) = (~/(41T)2)(2-41n(m2/0»), (6.7) 

-ieArR( -m) = [e2/(41T)2][(e/2m)uF 

- (2 - 41n(m2/O»)ieA]. (6.8) 

Fortunately, the contributions of Green's functions have no 
meaning separately. The noncovariant infrared-divergent 
pieces add together to yield the finite covariant result 

~R ( - m) + ~~ ( - m)ieA 

-ieArR( -m) = [e2/(41r)2](e/2m)uF. (6.9) 

However, what is done in textbooks is not even this. For 
Green's functions, the restriction to the physical mass shell 
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(6.3) cannot be formulated consistently [note the term with 
~~ in (6.5)], and, instead of (6.3), the free equation 

(i + m)f/! = 0 (6.10) 

is used. With this mass-shell equation the quantum correc­
tions to the Dirac operator take the form 

(6.11 ) 

the contribution from ~~ is absent, and the infrared diver­
gence of the vertex function remains uncompensated. The 
textbook procedure is then to redefine the counterterm, 

(Z 2- t - 1) textbook 

= (Z 2- t - 1) + [e2/( 41T)2](2 - 41n(m2/0») 
(6.12) 

and correspondingly the mass operator, vertex function, and 
effective action 

~R (i) I textbook = ~R (i) - (i + m) 
2 

X ~2 - 41n(m2/0») 
(41T) 

=~R(i) -~~( -m)(i+m), (6.13) 

e2 
2 Ar R (i) I textbook = Ar R (i) - A --2 (2 - 41n(m /0») , 

( 41r) 
(6.14 ) 

W r" I textbook 

= Wr" + ~(2 - 41n m
2 )J dx¢('; + m)f/!; 

(41T) 0 
(6.15 ) 

thereby making these good quantities explicitly infrared di­
vergent off shell! At this price, the quantum corrections to 
the Dirac operator, when restricted to (6.10), take the re­
quired form. Note that the structure of the coefficient 
In (m2 /0) in (6.15) clearly indicates that a piece of a nonlo­
cal term has been erroneously included in the counter term. 

Equation (6.10) may be understood as a leading ap­
proximation in expanding the solution of the effective equa­
tions in A 1'" To be more correct, the leading approximation is 
then 

(6.16) 

but condition (6.6) is satisfied, and one may think that 
(6.10) is the only solution of (6.16). It is in this case that the 
quantum corrections are of the form (6.11). However, for 
perturbation theory, the correct expansion is an expansion in 
the charge, and this leads to (6.9) not (6.11). Physically, 
too, one considers either the problem of an electron in a 
constant external field or the scattering problem. In the for­
mer case the electron field never satisfies Eq. (6.10), while in 
the latter case the electron is free in the in and out states (if 
such states exist), but at any ratc? the external field cannot be 
regarded as constant in time. 

To return to more interesting matters, an important 
question is whether the iterative solution (in e2

) is the only 
solution of the effective equation for f/! (for F,.v constant and 
small). If it is, then the nonlocality of the corresponding 
term in the effective action is just an off-shell artifact. In the 
present paper we did not consider the modification 7,13 of the 
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effective action, which guarantees its gauge independence 
and parametrization independence. It would be interesting 
to see if this modification can change the situation off shell, 
discussed above. An even more unsatisfactory feature of the 
off-shell result (5.8) is the presence of the term with the 
anticommutator. For the iterative solution, this term vanish­
es in the effective action but does not vanish in the effective 
equations. This is precisely the kind of problem which the 
unique effective action deals with.7 
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APPENDIX: THE GAUSSIAN INTEGRAL WITH 
NONCOMMUTING SOURCES 

The Gaussian moments (4.7) can be obtained by differ­
entiating the integral 

J(e) = I OJ If IT duB)e-(1/4Ulg",p"UYlIIZ(Eu-Vul 
(41TU) \.8= I 

(A1) 

with respect to the numerical parameters ea' Here Va are, 
generally, abstract operators whose commutator is known, 

(A2) 

In general, calculation of the integral (AI) is an out­
standing problem, but for our present purposes we do not 
need much. We shall confine ourselves to the approximation 
where 

(A3) 
I 

and keep only terms linear in f); I'Y (with flat-space gl'Y ). 
The operator exponential function in (A I) is defined by 

its power series expansion which may be integrated term by 
term: 

00 I 
J(e) = " -(e - V) .. '(e - V) £..i, a l an 

n=O n. 

x I CUI duB )e - (1/
4u

lg",p"u
Y 

0"" .. aan 

= I + ~ (2U)k a .. ··a2k (e _ V) ... (e - V) . 
k~1 (2k)! g a, a2k 

(A4) 

Here ga, ... a2k is the completely symmetric tensor defined by 
the recursion relations 

2k 
gal"'a2k= Lga.ajga2'··aj-taj+l'··a2\ 

j=2 
(AS) 

Next, in each term of the sum (A4), the multipliers should 
be commuted in such a way as to form the operator (Va va) k. 

Using (A3) we find that up to terms O(f);2) the result has 
the same form as in the case of commuting sources, 

00 Uk A 

J(e) = L -[ (e - V)a (e - v)a]k + O(&i'2) 
k=ok! 

A + O( [V,&i']) 

= eU(E-Vlu(E-Vl
U + O(f);2) + O( [V,f);]) . (A6) 

The differentiation of (A6) with respect to el' again en­
counters the problem of non commutativity. We proceed by 
using the power series expansion of (A6): 

= f u
n
{2n(e_V)I'(e_V)a(e_v)a)n-1 

n=O n! 

+ n(n - 1) [(e - V)y(e - V)V,(e - V)I']«e - V)a (e - V)T- 2
} 

A A + O(&i'2) + O( [V,&i']) . 

Since 

[(e - V)y (e - V)Y,(e - V)I'] 
A A 

= - 2&i'I'Y(e - V)Y + O([V,&i']) , (A8) 

the final result is 

= 2u(gI'Y - uf);I'Y)(e _ V)yeU(E-Vlu(E-VlU 

+ O(f);2) + O( [V,f);]) . (A9) 

Thus the first Gaussian moment is already modified with the 
commutator term. Repeated use of (A9) makes it possible to 
obtain Gaussian moments of any order. 
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Of concern is a rigorous Thomas-Fermi theory of electron densities for spin-polarized 
quantum-mechanical systems. The number N, , NI of spin-up and spin-down electrons are 
specified in advance, and one seeks to minimize the energy functional E(p, ,PI) 

= C1SR3(P, (X)S/3 + PI (x)s/3)dx + C2SR3SR3 [p(x)p(y)/lx - yl ]dx dy + S R3 V(x)p(x)dx, 
where C1, C2 are given positive constants, p, andpI are non-negative functions, p = p, + PI is 
the total electron density, SR3P, (x)dx = N" SR3PI (x)dx = N I, and Vis a given potential. 
These results are analogous to the classical rigorous (spin-unpolarized) Thomas-Fermi theory 
developed by Lieb and Simon [Phys. Rev. Lett. 33, 681 (1973)] and by Benilan and Brezis 
("The Thomas-Fermi problem," in preparation). 

I. INTRODUCTION 

Consider a quantum-mechanical system having N elec­
trons with Zj protons at a nucleus in a fixeq location R j in R 3, 

for j = 1, ... ,M. In Thomas-Fermi theory one studies the 
ground-state electron density for such a system. An N elec­
tron density is a non-negative integrable function P on R3 
satisfying 

f p(x)dx = IloIIL' = N. JR3 

The ground-state density Po is the N electron density that 
minimizes the total energy of the system, when viewed as a 
functional of the density. The ground-state density satisfies 
the property implied by its name, i.e., if A is any Borel set in 
R3, then SAPO (x) dx is the expected number of electrons to be 
found in A at any instant of time (when the system is in its 
ground state). 

The simplest expression for the energy as a functional of 
the density goes back to Thomas1 and Fermi2 in the early 
days of quantum mechanics ( 1927). The resulting Thomas­
Fermi (ground-state) energy and density have certain nice 
properties. For instance, a scaling argument shows that the 
energy is exact as Z = ~f= I Zj -- 00 (cf. Ref. 3). Thomas­
Fermi theory is useful in calculating properties that depend 
on the "average electron," such as total, kinetic, and ex­
change energies. On the other hand, the theory is less effec­
tive for calculating properties depending on valence shell 
electrons such as molecular bonding energies. 

Thomas-Fermi theory is traditionally a spin-unpolar­
ized theory in which half of the electrons are spin up and half 
are spin down. A spin-polarized theory is one in which there 
is an excess of spin-up (or spin-down) electrons. Several 
physicists and chemists working in density-functional theor­
ies have discovered that spin-polarized theories can lead to 
better approximations of molecular bonding energies, kinet­
ic energies, and other numbers of interest. (Compare, e.g., 
Ref. 4.) 

In high magnetic fields, at high temperatures, and in 

certain other circumstances, the ground state of the system is 
known experimentally to be spin polarized. It is not unusual 
to see the electron configuration for a nitrogen atom in its 
ground state depicted as 

2p ..1..1..1 

2s.li.. 

Is .li... 

The Is and 2s orbitals are filled with one spin-up electron and 
one spin-down electron, while the three 2p orbitals contain a 
single spin-up electron apiece. Gadiyak and Lozoviks and 
Pathak,6 in his unpublished thesis, have obtained results in 
formal spin-polarized Thomas-Fermi theory, but not in a 
rigorous mathematical context. Lieb and Simon [Ref. 3 (b), 
p. 34] indicated the possibility that their rigorous spin-unpo­
larized theory could be extended to the spin-polarized case. 

Our purpose here is to put spin-polarized Thomas-Fer­
mi theory on a rigorous mathematical foundation. Many 
simplifying assumptions are present in our model. We treat 
the usual Thomas-Fermi model but we specify both the 
member of spin-up and spin-down electrons in advance. 
(Thus temperature, exchange terms, gradient expansions, 
and relativistic corrections are ignored.) Nevertheless, even 
in this simple case, two new mathematical complications 
arise. First of all, the Euler-Lagrange equation for our mini­
mization problem reduces to a system of nonlinear elliptic 
partial differential equations rather than a single equation. 
Second, in spin-unpolarized Thomas-Fermi theory the 
monotonicity properties of the relationship between the 
chemical potential and the electron number leads easily to 
certain conclusions. In the spin-un polarized case, the func­
tion alluded to above maps a subset of R into R. However, 
the analog of this function in the spin-polarized case maps a 
subset of the plane R2 into R2. Herein lies a key difference in 
the analysis of the spin-polarized and spin-unpolarized uses. 
The key steps are more difficult in the spin-polarized case, 
and, in particular, it is harder to determine the range of this 
function. 
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This paper is organized as follows. In Sec. II we formu­
late and discuss the minimization problem for the ground­
state densities and the corresponding Euler-Lagrange prob­
lem. In Sec. III we explain how to find the ground-state 
densities by solving partial differential equations. The tech­
nical section, Sec. IV, is devoted to proofs. Novel results on 
compact support for a maximal system of electrons are ob­
tained. In Sec. V it is shown that a (generalized) atom has 
radially nonincreasing ground-state densities for both the 
spin-up and spin-down electrons. 

II. THE MINIMIZATION PROBLEM 

Consider a system with NT electrons ofthe spin-up var­
iety and Nl spin-down electrons. We emphasize that Nt and 
Nl are specified in advance. Let N = Nt + NI be the total 
number of electrons for the system. Let Pt and PI be the 
corresponding densities. From now on we replace the sub­
scripts f, J, by 1, 2 for typographical convenience. Thus, for 
any Borel set A in n3

, S APi (x)dx is the expected number of 
electrons with spin i in A (at any instant of time), and 

r Pi(x)dx = N j 

JR' 
for i = 1,2. Let 

L 1+ = (PEL I(R3
): p;;;.O}, 

LI+ [N] = {pEL 1+ : L,P(X)dX=N}. 

Consider the energy functional ~ defined by 

~ (Pl,p2) 

= r (J(Pl) + J(p2»)(x)dx + r V(x)p(x)dx JR3 JR) 
+~ r r p(x)p(y) dxdy. 

2 JR' JR' Ix - yl 
(1) 

Here P = PI + P2 is the total electron density, and ~ is de­
fined on the largest subset of L 1+ xL 1+ such that each term 
on the right-hand side of ( 1) makes sense. We now describe 
the three integral terms in (1). 

The kinetic energy term involves a convex function J: 
[0,00 ) -- [0,00 ) satisfying 

J(O) =J'(O) =0, J";;;.O, J>O on (0,00). (1) 

The usual Thomas-Fermi kinetic energy approximation, in 
atomic units with h = 1, for the spin-polarized case is given 
by 

J(r) = M6r)2/3,-s13. 

This is derived formally in Refs. 5 and 6 and incorporates the 
Fermi statistics of the electrons. 

The second term in ( 1) represents the electron-nuclear 
attraction and is the only term in ( 1) that corresponds exact­
ly to its wave function analog. For a discussion connecting 
wave function theory with Thomas-Fermi theory, see Ref. 
7. In order to allow the potential V to be as general as possi­
ble we make at this point only the minimal assumption 

VEL Ii"., (R3) and V <0 on a set of positive measure. 
(V) 
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This (V) is a necessary condition for the existence of a 
Thomas-Fermi ground-state density in both the spin-polar­
ized and usual (or spin-unpolarized) theories (cf. Ref. 8). 
The most important special cases are the molecular Coulomb 
potential 

M Zj 
I--=---

j=1 Ix-Rjl 
Vex) = (2) 

and the atomic Coulomb potential 

Vex) = -z/lxl. (3) 

Here Z and Zj are given positive numbers. 
The final term in the definition of the energy functional 

~ corresponds to classical electron-electron repulsion. The 
customary choice of the constant c •• is 1; the Fermi-Amaldi9 

choice of Cee = (N - 1 )IN vanishes when there is only one 
electron and hence no electron-electron repulsion, and Cee is 
approximately 1 for large N. As we shall see later, negative 
ions do not exist in spin-polarized Thomas-Fermi theory 
(with Ceo = 1), but singly negative ions exist under the Fer­
mi-Amaldi hypothesis. 

The problem of finding the ground-state energy and 
densities in spin-polarized Thomas-Fermi theory is stated as 
follows. 

Minimization problem: Assume 0), (V), with ~ given 
by (1). Find (PI,P2)EI!J(N1,N2) such that 

~(Pl,p2) =min{~(pl,p2): (PI,p2)EI!J(N1,N2)}, (4) 

where 

I!J (N1,N2) = {(Pt,p2): PiEL 1+ [Ni ], J(Pi)EL 1+ , 

VPi EL I(R3
), 

(x,y) --p(x)p(y) Ix - yl-IEL I(R3 XR3
), 

for i = 1,2}. 

Here NI and N2 are given positive numbers. 
Recall thatp = PI + P2 is the total electron density. One 

can easily show that the functional ~ on the convex set 
I!J (N1,N2) is strictly convex. Thus, if a minimizing (Pl,p2) 
exists, it is unique. But the domain I!J (NI,N2) of the minimi­
zation problem incorPorates the constraints Pi;;;'O and 
S R'Pi (x )dx = Ni for i = 1,2. The integral constraints sug­
gest the introduction of Lagrange multipliers A I' ..1. 2, and the 
minimization of the functional 

E(PI,p2) ~(Pl,p2) + itl ..1.{ L,Pi(X)dX - Ni). 

We proceed formally, ignoring the constraints Pi;;;'O. 
The Euler-Lagrange equations take the form 

aE ( __ ) aE ( __ ) ° 
- PI,p2 = - PI,p2 = . 
api apz 

The computation of aE lapi is analogous to that in the spin­
unpolarized case (cf. Refs. 7, 8, 10), but there is an extra 
complication in the electron-electron repulsion term. De­
fine the convolution operator B by B = (417'1'1) -I., i.e., 

Bf(x) = _1_ r f(y) Ix _ yl-I dy. 
417' JIR' 

It is well-known from Newtonian potential theory that B is 
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the inverse of the negative Laplacian acting on functions on 
JR3, i.e., B= (- a)-·. The electron-electron repulsion 
term thus becomes 

21TCee r pBp dx 
JR' 

= 21TCee r [p.Bp. + 2p~p. + p~p2]dx, 
JR' 

since B is (formally) self-adjoint. Consequently, 

~ [21TCee r pBp dX] = 21TCee [2Bp. + 2Bp2] 
ap2 JR' 

and similarly 

a~. [21TCee f pBp dX] = 41TCeeBp. 

This leads us to the Euler-Lagrange problem associated 
with the minimization problem [cf. (4)]; a precise state­
ment follows. 

Euler-Lagrange problem: Assume (J), (V), and let 

~ (N.,N2) = L .+ [N.l XL .+ [N2]. 

Find CP.,p2,A.,A2)e~ (N.,N2) XJR2 such that, a.e., 

J'CP.) + V+kB(p. +P2) +A.e&(p.), 

J'(P2) + V+kBCp. +P2) +A2e&<,o2)' 

where k = 41TCee and for i = 1,2, 

& (Pi) = {{o}, 
[0,00 ), 

on {x: Pi (x) > O}, 

on {x: Pi (x) = O}. 

(5) 

The Lagrange multipliers A., A2 are the electronegativi­
ties, while their negative - A., - A2 are the chemical poten­
tials. The notationge&(Pi) combines an equation (on [Pi 
>0]) together with an inequality (on [PI =0]). The in­
equalities arise as a consequence of the constraint that the 
densities are non-negative. Since the domain of admissible 
densities (P.,p2) is larger in the Euler-Lagrange problem 
than in the minimization problem, we expect solutions of 
latter to satisfy the former, but not necessarily conversely. 
The precise relationship between the two problems is as fol­
lows. 

Theorem 1: Assume (1), (V). If (P.,p2) solves the mini­
mization problem, then there exists a unique pair 
(A.,A2)eJR2 such that (P.,p2,A.,A2) solves the Euler-La­
grange problem. Conversely let (P.,p2,A.,A2) solve the 
Euler-Lagrange problem. If there is a real constant M such 
that 

x--J*(M - V(x»)+eL .(JR3), 

then (P.,p2) solves the minimization problem. 
Here a+ = max{a,O}, and J* is the convex conjugate 

function (or conjugate of J) defined by, for t;>O, 

J*(t) = sup{ts - J(s): s;>O}. 

In particular, if J(s) = cs" for somepe( 1,00) and c> 0, then 
J*(t) = (cp)p/qt q for t;>O, wherep-· +q-. = 1. The as­
sumption that J *( (M - V) +) is integrable ensures that 
inf ~ (P.,p2) > - 00. 

Theorem 1 is proved by making obvious modifications 
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of the proof given in Ref. 10, which is the spin-unpolarized 
case. The ideas were sketched earlier by Brezis,8 and the full 
details were given in Ref. 10. 0 

We remark that letting Ixl-- 00 in (5) shows thatA.;>O, 
A2 ;>0 provided that V(x) --0 as Ixl-- 00, either in the usual 
sense or in a weak sense [e.g., VeWeakLP(x: Ixl >R) for 
some R > 0, p < 00. These spaces will be defined in the next 
section]. In this case, in the statement of Theorem 1, we may 
replace (A.,A2)eJR2 by (A.,A2)e[0,00 )2. Furthermore, 
N.;>N2, N. = N2 tum out to be equivalent to, respectively, 
A2;>A., A2 = A., and in the latter case (i.e., N. = N2) we 
have the usual (spin-unpolarized) Thomas-Fermi theory. 

III. SOLUTION OF THE EULER-LAGRANGE PROBLEM 
VIA NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL 
EQUATIONS 

Set 

Ui = - ~ V - kBpi> 

for i = 1,2 and define r:[O,oo) -- [0,00) by 

r {
(J')-.(S), for se(O,oo), 

(s) = 
0, for se( - 00 ,0]. 

(6) 

The Euler-Lagrange problem (5) (which consists of two 
equations and two inequalities) reduces to 

J'(Pi)eUi + Uj -Ai + &(Pi)' 

for i = 1,2 andj=j=i (withje{I,2}). Applying r yields the 
system of two equations 

Pi = r(ui + Uj -Ai)' (7) 

Since we require that Pi eL .+ [Ni ], integrating (7) yields 

r r(ui(x)+Uj(X)-Ai)dx=Ni> (8) 
JR' 

for i,je{I,2} with i=j=j. Applying - a to U i and using (7) 
and (8) leads to a coupled system of elliptic equations. This 
version of the spin-polarized Thomas-Fermi problem can be 
stated precisely as follows. 

Nonlinear elliptic problem (first version): Find U., 
u2eWeak L 3(JR3) and (A.,A2)eJR2 such that 

- au. + kr(u. + U2 -A.) = ~av, 
- aU2 + kr(u. + U2 -A2) = !av, 

(9) 

in the sense of distributions, and 

N. = i r(u. (x) + u2 (x) - A.)dX, 
R' ( 10) 

In studying the nonlinear elliptic problem we shall make 
a stronger assumption on V, namely, that (V) holds and 
aV~(R3) + L ·(R3), i.e., aVis the sum ofa finite signed 
measure and an integrable function. The results that follow 
are especially clean when a V is non-negative. 

The spaces Weak LP(R3
) are the weak LP spaces or 

Marcinkiewicz spaces. A measurable function f on R3 is in 
Weak LP(JR3) iffillfilip < 00, where 
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for all bounded Borel sets A C R3} ; 

here p < 00 and p -I + q-I = 1. Some basic facts concerning 
these spaces are collected in the following lemma. II 

Lemma 1 (cf. Ref. 10): (i) Let l<r<p< 00. Then 
Weak LP(R3

) CL roc (lR3) with continuous injection; and 
uEWeakLP(R3) implies lul'EWeakLP/'(R3). 

(ii) The functionx ..... lxl- a belongs to Weak L 3/Q(R3), 
forO<a<3. 

(iii) IfEEWeak L P(R3
), 1 <p < 00, andfEL I (R3), then 

E*/EWeakLP(R3) and 

IIIE*flllp<IIIE IllpllfIL~'· 
(iv) Write "g( 00 ) = 0" iff for allE":>O there is a Borelset 

A£ in R3 of finite measure such that Ig(x) I < €for all XM£' If 
geWeakLP(R3), 1 <p< 00, then "g( 00) = 0". 

Coupled systems of nonlinear elliptic equations are in 
general difficult to handle. Our particular system has the 
apparent additional complications caused by the necessity of 
working in a spaces of densities [inL I(R3)] and by the pres­
ence of bounded signed measures that arise from avo [Re­
call that - a ( Ix I-I) = 4m5o, where {jo is the Dirac point 
mass at the origin in R3.] However, our system of equations 
is greatly simplified by the introduction of a new variable. 

Let 

W="I +U2' 

Then the pair of equations (9) can be added to give the single 
equation 

2 

-aw+ L r(w-A;) =aV. (11) 
;=1 

This suggests an alternate version of our partial differential 
equation (POE) problem. 

Nonlinear elliptic problem (second version): Find 
WEWeak L 3(R3) and (A I.A2)ER2 such that (11) holds in the 
sense of distributions and 

N; = ( rlw(x) -A;)dx, i= 1,2. JR3 

The two versions of the nonlinear elliptic problem are 
equivalent. The second is simpler in that it only involves one 
POE, and the densities can be found directly from P; 
= r(w - A;). Of course, U; can be found by solving 

- au; =/; 

[see (9)], where/; = ~av - kr(w - A;) is known once w 
is known. 

Prior to solving the Euler-Lagrange problem by means 
of the nonlinear elliptic problem (second version), we make 
additional assumptions on J and V. 

Hypothesis 1: Let (V) and (J) hold. Suppose further 
that "V( 00) = 0", o<aVEL I(R3), and 

( r(clxl-I)dx = 00, (12) 
Jlxl>1 

for some c > O. 
Hypothesis 2: Let (V) and (1) hold. Suppose further 
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that .. V(oo) =0", 0<aVE.A"(R3
), (12) holds, and 

x ..... r ( Ix I-I) is integrable in a neighborhood of x = O. 
Recall that r is defined by (6). Note that either Hy­

pothesis 1 or Hypothesis 2 implies 0 < S R' a v < 00. 

Lemma 2: Assume either Hypothesis 1 or Hypothesis 2. 
Then the nonlinear elliptic problem (either version) is 
equivalent to the Euler-Lagrange problem. 

Proof: The equivalence of the first version of the nonlin­
ear elliptic problem and the Euler-Lagrange problem is es­
sentially the same as in the spin-unpolarized case.9,10 Any 
solution of the first version of the nonlinear elliptic problem 
gives a solution of the second version when we set 
w = u I + U2· Conversely, passing from the second version to 
the first involves solving 

- au; = ~av - kr(w -A;) 

as was discussed following the statement of the second ver­
sion of the nonlinear elliptic problem. 0 

We now solve the second version of the nonlinear ellip­
tic problem and thereby obtain the desired solution of the 
Euler-Lagrange problem (and the minimization problem as 
well in many cases). 

Theorem 2: Assume either Hypothesis 1 or Hypothesis 
2. Let 

No = _1_ { aVo (13) 
41TCee JR3 

Then (recall N = NI + N 2 ) the Euler-Lagrange problem 
has a unique solution whenever 0 < N <No and no solution 
whenN>No. If V(x) ..... O as Ixl ..... 00 and ifO<N <No, then 
the solution densities PI' P2 have compact support. More­
over, if NI > N2, then P2 has compact support, even if 
N=No· 

This theorem will be proved in the next section. First 
some remarks are in order. 

According to Theorem 2, N = No is the maximum num­
ber of electrons our quantum-mechanical system can have 
(in spin-polarized Thomas-Fermi theory), and this N is de­
termined by V and Cee via (13). If V is the molecular Cou­
lomb potential (2), then 

_1_ ( av= f fZj{jRj =Z, 
41T JR3 j= I 

whereZ = ~f= lZj is the total number of protons in the mol­
ecule. The same is true for atoms. Thus for N = No, (13) 
gives 

N= ce-;; Iz. 

When Cee = 1, it follows that N<Z, and therefore no nega­
tive ions exist (in this theory). However, in the Fermi­
Amaldi case of Cee = (N - 1 )IN, the maximum value of N 
satisfies (13), i.e., 

N=N(N-l)- I Z, 

or N = Z + 1. Thus singly negative ions exist (but not dou­
bly negative ions). On the other hand, in Thomas-Fermi 
theory, neither N nor Z need be integral. 

For J(r) = cr P for r;>O with c > 0 and 1 <p < 00, condi­
tion (12) is equivalent top;>~. If aVE.A"(R3

) rather than 
L I(R3

), then (12) plus the final condition of Hypothesis 2 is 
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equivalent to p >~. When Vis the molecular Coulomb poten­
tial (2), then the condition in the converse of Theorem 1 
holds iff p > l' Thus when p >~, we can solve the minimiza­
tion problem. However, for ~ <p<~, we have a solution of the 
Euler-Lagrange problem but no solution of the minimiza­
tion problem [since in this case inf '1f (p 1,p2) = - 00]. It is 
worth emphasizing that the physical case of p = j falls com­
fortably into the acceptable range for both problems. 

IV. PROOF OF THEOREM 2 

First fix (A I,A2)E[0, 00 )2. Without loss of generality we 
may assumeA2>A I. For sER set 

2 

(3(s) = L kr(s - Aj) (14) 
j=1 

with r defined by (6) and, as before, k = 41rcee • We then 
solve, for A = (A I,A2), 

- AWA +(3(wA) =J, (3(wA)EL I(R3
), (15) 

for / = A V together with the condition that "w A ( 00) = 0". 
The following result of Benilan et al. II is the right tool for 
this problem. 

Proposition 1: Let (3: R -+ R be continuous, nondecreas­
ing, and satisfy (3(0) = o. 

(i) If/EL I(R3), then (15) has a unique weak solution 
WA in WeakL\R3). 

(ii) If x-+{3( ± lxi-I) is integrable in a neighborhood 
of the origin, then for every /E.L (R3), problem (15) has a 
unique solution wAin Weak L 3 (R3). 

Lemma 3: The function (3: R -+ [0,00 ) defined by ( 14) is 
continuous, nondecreasing, and satisfies (3(0) = O. 

This lemma follows easily from the hypotheses (J) on J, 
the definition of r, and the fact that AI,A2>0. 0 

Thus for each fixed A = (A I,A2), Proposition 1 (i) 
[resp. Proposition 1 (ii)] guarantees the existence of a 
unique solution WA in Weak L 3(R3) of (11) under the as­
sumption Hypothesis 1 [resp. Hypothesis 2]. 

In both cases,{3( wA)EL I(R3). 
For i = 1,2 set 

Ni(A) = 1, r(wA(x) -Ai)dx, 

N(A) = (NI (A),N2(A»), 

N(A) = NI(A) + N2(A). 

(16) 

Proposition 2: The function N ( . ): [0, 00 ) 2 -+ [0, 00 ) 2 is 
continuous. For i,jE{1,2} with i=/=j, N i (A 1,A2) is a nonin­
creasing function of Ai and a nondecreasing function of Aj • 

Both NI(A) and N2(A) are strictly decreasing on lines of 
slope 1 that pass through the positiveA2 axis [i.e., if AI <Ill' 
A2<1l2' and 112 -Ill =A2 -AI' then NI(A) >NI(Il) and 
N2 (A) > N2 (Il) ] . Moreover, NI (0,A2) > 0, N2 (0,A2) > 0, for 
all A2>0; and N(A I,A2) < N(0,A2) whenever AI > 0, A2 > O. 
Finally, for iE{1,2}, limAi_ oo Ni (A I,A2) = O. 

In proving this result we may, without loss of generality, 
restrict ourselves to the infinite triangle {(A I,A2)E[0,00 )2: 

A2>A I} rather than the quarter plane (A I,A2)E[0, 00 )2. 
Proof: The proof will be broken into several pieces. 
Monotonicity: Let A = (A I,A2) and Il = (1l1,J.L2) be in 

[0,00)2 and satisfy AI <Ill andA I -A2<1l1 -1l2' Set 
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for a = A,J.L. Then Wa, by Proposition 1 and Lemma 3, is the 
unique solution of 

- AWa + {3a (wa + al) = AV, "Wa (00) + a l = 0", 
(17a ) 

where (3 a is given by (14) for a = A,J.L. Subtracting (17 A) 
from (171') yields 

-A(wJL -WA) +(3JL(wJL +1l1) -(3A(WA +AI ) =0. 

Multiply this equation by (W;, - WA ) +; using (14) and inte­
grating over the ball BR = tXER3: Ixl <R} gives 

r - A(wJL - wA }(wJL - wA) + 
JBR 

- r(wA) - rewA + AI - A2)] (wI' - WA) + = O. 
(18) 

Let 

E = {xER3: wI' (x) > wA (x)}. 

Since (wI' - wA) + = 0 on R3 \E, the integrals in (18) may 
be taken over EnBR rather than BR • Also, on E, r(wJL ) 
- rewA »0 and r(wJL + III - 1l2) - rewA + AI - A2) 
>0 since r is a nondecreasing function. It follows that, by 
the divergence theorem, 

0> r - A(wJL - wA )(wJL - wA) + 
JErlBR 

- r [~(WJL -WA)](WJL -wA)+dS 
JErlaBR Jr 

+r IV(wJL -wA)1 2 
JErlBR 

- ~ r ~ (wI' - WA )2+ dS 
2 JErlaBR Jr 

+ r IV(wJL - WA) 12. 
JErlBR 

(19) 

But, by Fubini's theorem, 

iR+ki J 
- (w - WA)2 dSdr 

R aBRrlE Jr I' + 

= r [(wI' - WA )2+ (R + k) 
JaBRrlE 

- (wI' - WA )2+ R ]dS-+O, 

as R-+ 00 for each kER since AI <Ill and "wa (00) 
+ a l = 0" for a = A,Il. Thus setting R -+ 00 in (19) allows 
us to deduce 

0> L IV(wJL - wA)1 2. 

Consequently E is a Lebesgue null set and wI' <WA a.e. 
(whenever AI <Ill and AI - A2<1l1 - 1l2)' It follows that 

r(wJL -1l1)< rewA -AI) a.e., (20) 

whence 
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A similar argument establishes 

N2 (p) <N2 (A) 

provided ..12 <P2 and AI - A2>p I - P2' In particular, it fol­
lows that NI (A I,A.2) is nonincreasing in AI and N2(A I,A.2) is 
nonincreasing in ..12 on the sets specified. 

Now suppose AI <PI and ..12 = P2' Then 

- !J.wl-' + kr(wl-' - PI) + kr(w,t - ..12) = !J. V, 

- !J.w,t + kr(w,t - AI) + kr(w,t - ..12) = !J.V. 

Subtracting the former from latter gives 

-!J.(w,t -wI-') +kr(w,t -AI) +kr(wl-' -PI) 

-kr(w,t -..12) +kr(wl-' -..12) =0. 

Multiply by (W,t - wI-') +, integrate over BR , and use (20) 
to obtain 

r -!J.(w,t -wl-')(w,t -wl-')+ JBR 

+ k r (r(w,t - ..12) - r(wl-' - ..12) )(w,t - wI-') + <0. 
JBR 

(22) 

Let 

F={xeR3
: w,t(x) > wI-' (x)}. 

Both integrals in (22) may be taken over FnB R rather than 
BR since the integrands vanish on R3 \F. Also, on F, 

r(w,t -AI»r(wl-' -..12) 

since r is nondecreasing. Thus 

r - !J.(w,t - wI-' )(w,t - wI-') + <0. JFnBR 

As in our previous calculation, we use the divergence 
theorem, let R -+ 00, and employ "(w,t - wl-')( 00 ) = 0" to 
conclude that 

L IV(w,t - wl-')1 2 = O. 

Thus F is a Lebesgue null set and w ,t <wI-' a.e. Hence 

r(w,t -AI)<r(WI-' -..12) 

and so 

N2 (A) <N2 (p). 

The very same argument shows that AI = PI' ..12 <P2 
implies NI (A)<NI (p). Thus N; (A I,A.2) is nonincreasing in 
A; and nondecreasing in Aj forj=/=i. 

Suppose now that ..12>..11 > 0 and set P2 = ..12 - AI' 
PI = O. Then the points A = (A I,A.2) andp = (0,JL2) lie on a 
line of slope 1 that intersects the positive vertical (or ..12) 
axis. The preceding arguments show NI (A I,A.2) <N2(0,JL2) 
and NI (A I,A.2) <N2(0,JL2)' 

We have verified the monotonicity assertions in their 
weak form. The strict monotonicity results will be proved 
presently. 

Continuity: Fix ..12>0. Let {A ~t be a sequence in 
[0,00) withA ~ ~AI' and letA n = (A ~ ,A.2)' By the monotoni­
city of w,t n - A ~, w,t n converges to a function v almost 
everywhere and in the sense of distributions. But v is clearly a 
distributional solution of the same equation as W,t 

714 J. Math. Phys., Vol. 29, No.3, March 1988 

[A = (A I,A.2)] and VEweakL 3 (R3
). Thus by uniqueness, 

v = W,t. The preceding argument implies r (w,t n - A ~ ) 
< r (w,t - AI); hence by Lebesgue's monotone convergence 
theorem, NI (A n) -+NI (A). 

Now suppose A ~ tAl' Again we have w,t n -+ W,t and 
r (w,t n - A ~ ) -+ r (w,t - AI)' An application of Lebesgue's 
dominated convergence theorem then gives NI (A n) 

-+NI (A). It follows that NI (A I,A.2) is continuous in AI' In 
both cases, i.e., as A ~ approaches AI from either side, W,tn 
-+w,t holds, and so W,tn - A2-+W,t - ..12' Applying rand 
integrating shows that N2(A I,A.2) is continuous in AI' An 
analogous argument with AI fixed shows that NI (A I,A.2) and 
N2(A I,A.2) are continuous in ..12' 

We next show that 

lim N;(A) = 0, 
Ar ... 00 

for i = 1,2. Since - !J.w,t <!J.V and w,t,VeWeakL 3(R3
), (a 

suitable version of) the maximum principle gives W,t < - V 
a.e. (cf. Ref. 11). Consequently, r(w,t -A;)<r( - V 
- A; ). Using the fact that "V( 00 ) = 0" and the definition 

of r, it follows that r( - V-A;) -+0 as A; -+ 00. Applying 
the dominated convergence theorem gives the desired result. 

Recall our assumption that ..12>..11' Then N2 (A I,A.2) -+ 0 
as ..12 -+ 00, even if AI is fixed. But our condition that ..12>..11 
was inessential and made for convenience only. Thus 
NI (A I,A.2) -+ 0 as AI -+ 00, whether or not ..12>..11; in particu­
lar, ..12 can be fixed in this argument. 

Strict mono tonicity: Assume ..12>..11, 0 < AI < P I> ..12 < P2' 
AI -A2=PI-P2' and N;(A) =N;(p), for i= 1,2. As­
sume further that N 2 (A) >0. We seek a contradiction. The 
inequalities (20), (21) then become equalities, so - !J.wl-' 
= - !J.w,t, "wI-' (00) = 0", "w,t (00) = 0". It follows that 

W,t = wI-' a.e. Since 

N I(A»N2(A) >0, 

the sets 

Q; = {xeR3: r(w,t(x) -A;»O} 

have positive Lebesgue measure. But r is strictly increasing 
on (0,00), whence 

r(wl-' (x) - Pi) = r(w,t (x) - A;) 

for xeQ; iffwl-' (x) - P; = W,t (x) - A;. Thusp; = ..10 a con­
tradiction. Thus both NI (p) = NI (A) and N 2(p) = N 2 (A) 
cannot hold. 

So we suppose NI (A) > NI (p) and N2 (A) = N2 (p), 
and we seek a contradiction. [The case of NI (A) = NI (p), 
N2(A) >N2(p) is similar.] Since N2(A) = N2(p) we must 
have W,t - ..12 = wI-' - P2 a.e. Then W,t = wI-' + ..12 - P2 
= wI-' + AI - PI' whence W,t - AI = wI-' - PI a.e. But then 
r(w,t -AI) = r(wl-' -PI) a.e., which implies 
NI (A) = NI (p), a contradiction. 

Next we show that 

N2(AI>0) >0, N I(0,A.2) >0, 

for 0<..11, ..12 < 00. As the two proofs are essentially the same, 
we show the latter. Let W,t be the solution of (15) and 
"w,t (00) = 0", where A = (0,A.2)' Assume NI (0,A.2) = 0; 
we seek a contradiction. Then 
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P(W;.) =knw;.) +knw;. -A2) =0 a.e., 

whence w;.";;O a.e. But - a(w,t + V) = 0, "w;. (00) = 0", 
"V( 00) = 0". By the maximum principle it follows that W;. 

= - Va.e. Thus V>O a.e., which contradicts assumption 
(V) [which states that {xeR3

: Vex) <O} has positive mea­
sure]. 

This completes the proof of Proposition 2. 0 
Lemma 4: Let No = N(O.Az) whereA2>0 is fixed. Then 

( 13) holds, and No is independent of Az. 
ProoF We give the proof for the case that a VeL I(R3

). 

[The more general case of a Ve.L (R3
) requires only minor 

modifications.] By Proposition 1 (i), W;. EWeak L 3(R3) 
and aw,t eL I (R3

), where W;. is the solution of (15) and 
"w;. (00) = 0" for A = (0.A2)' It follows that 

W;. = (41Tlxl)-I*( -aw;.) 

(cf. the appendix in Ref. 11). Consequently W;. is asymptotic 
to c/lxl as Ixl-+oo, where c= (41T)-lh,( -aw;.). As­
sume SR,aW;. <0, or, equivalently, c>O. Then r(w;.) 
eL I(R3

), which implies r(clxl- l
) is integrable outside 

some ball; this contradicts (12). 
It follows that S R' aw;. >0, and so 

r P(w;.» r avo JR3 Jft3 
Therefore it only remains to show that SR'P( W;. )";;SR,aV. 
Recall that S R' ( - aw;.) (sgn w;.) +>0 [since - a is accre­
tive on L I(R3

)]. MUltiplying - aw;. + P(w).) = aV by 
(sgn w;.) +, integrating over R3

, and noting thatp( w;.) = 0 
whenever w). ..;;0, we obtain 

r P(w;. (x»)dx = r P(w;. (x»)(sgn(w). (x»))+ dx JR] JR3 

..;; r av..;; r aV 
J[W~>oJ JR' 

by our assumption that a V>O. 0 
View N = (NI ,N2 ) as a map from the triangle 

To= {(A I .A2): 0";;A I ";;A2< oo} to [0,00)2. The monotoni­
city properties of Proposition 2 (and the proof of Proposi­
tion 2) show that N is injective on To. We next show that the 
image of To under N is the triangle TI pictured in Fig. 1. 

Lemma 5: The image of To under N is the triangle 
TI = {(NI,N2):0<N2..;;NI,NI +N2..;;No}. 

ProoF First we prove that the interior of TI is in the 
range of To. We do this by contradiction. To that end sup­
pose there is a point N* = (N T ,N r) in the interior of TI and 
in the boundary ofthe image ofN. Choose a sequence {Nn

} 

A 

.. 
...!....) 

FIG. 1. The image of To under N. 
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in the range of N that converges to N* as n -+ 00 . Since N* is 
in the interior of Tit it follows that N r > 0, NT> N r, and 
NT + Nr <No. Choose A nin To such thatN(A n) = N n for 
each n> 1. Choose a subsequence of {A n}, which we denote 
by {A n = (A ~.A ~ )}, such that A ~ -+A TE[O,oo], A r-+A r 
E[O,oo], and A r>A r. If A T <A r < 00, we obtain a contra­
diction from the continuity ofN (by Proposition 2). If AT 
= 0 and A r < 00, then Lemma 4 implies NT + Nr = No, 

which is again a contradiction. Next, A T = A rE [0,00 ) cor­
responds to spin-unpolarized Thomas-Fermi theory in 
which case NT = Nr, again a contradiction. Finally, if A r 
= 00, then by (16), Nr = O. Thus all cases have been han­

dled, and we have obtained a contradiction. Thus the image 
of N contains the interior of T I • 

The line segment {(NI,N2)ETI: NI = N2} is the image 
under N of{ (A 1.A2)ETo: A I = A2} by standard spin-unpolar­
ized Thomas-Fermi theory. The line segment {(NI ,N2 )ETI : 

NI + N2 = No} is the image under N of {(AI.Az)ETo: 
AI = O} by Lemma 4 and Proposition 2. The line segment 
{(NI,N2)ETI: N2 = O} is the image of {(A I.A2)ETo: 
A2 = oo} under the (extension by continuity of the) map N. 
Lemma 5 now follows. 0 

We can now complete the proof of Theorem 2. Most of it 
follows from Proposition 2 and Lemmas 4 and 5. Next we 
show that if V(x) - 0 as Ix I- 00, and 0 < NI + N2 < No, then 
the solution densities PI andp2 have compact support. Note 
that O<NI +N2<No iff AI>O, A2>0, where Ni 
= Ni(A I.A2) =Ni(A), for i= 1,2. However, 
- a(w;. + V)..;;O and "w;. (00) = 0", "V( 00) = 0", 

whence w;.";; - Va.e. by the maximum principle. Thus W;. 

- Ai";; - V-Ai' and since Vex) -Oas lxi- 00, there exists 
an R >0 such that W;. (x) -Ai";;O for a.e. x with Ixl >R. 
This implies that 

Pi (x) =r(w;.(x) -Ai)=O 

for a.e. x with Ixl >R and i = 1,2. Thuspi andp2 have com­
pact support. Finally we note that when NI + N2 = No, 
NI > N2 iff A I = 0 <A2' Again invoking the maximum prin­
ciple we see that w;.";; - V and so W;. - A2";; - V - A2 
(a.e.). The argument of the preceding paragraph shows that 

.02 has compact support. 
The proof is finally complete. 0 
The last assertion of Theorem 2 helps to justify the fig­

ure in the Introduction depicting the electronic configura­
tion ofa neutal nitrogen atom (cee = 1). The density .02 of 
spin-down electrons has compact support while the density 
PI is supported on R3. Thus the spin-down electrons are 
more tightly bound to the nucleus. 

v. MONOTONICITY OF ATOMIC DENSITIES 

Let us now consider a generalized atom with Z protons 
fixed at the origin. We shall show that if a V is a radial de­
creasing function, then the unique solution densities (PI,p2) 
of the Euler-Lagrange problem are also radial decreasing 
functions whenever 0 < N ..;;No' The uniqueness of the solu­
tion readily implies that both must be radial functions. The 
problem is thus to show that PI and P2 are decreasing. Our 
result to this effect (Theorem 3 below) is based upon the 
following result of Gallouet and Morel. 12 
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Proposition 3: Let {3: R -+ R be a continuous nondecreas­
ing function which is increasing on (0,00) and satisfies 
{3(0) = O. 

(i) Let/EL I(R3
) and let u be the unique solution of 

-l1u +{3(u) =J, (23) 
"u( 00) = 0", {3(u)EL I(R3

). 

If / is radially nonincreasing (resp. decreasing), then u is 
radially nonincreasing (resp. decreasing). 

(ii) Assume further that x-+{3( ± lxi-I) is integrable 
on a neighborhood of the origin in R3. If/ = at)o + g for 
some a;>O and gEL I(R3

), whereg is radially nonincreasing 
(resp. decreasing), then the unique solution u of (23) is also 
radially nonincreasing (resp. decreasing). 

Theorem 3: Assume Hypothesis 1 and suppose l1 V is a 
radially nonincreasing (resp. increasing) function. Then for 
all 0 <N<No, the solution densitiesPI,p2 are radially nonin­
creasing (resp. decreasing) on the sets where they are posi­
tive. Furthermore, if Hypothesis 1 is replaced by Hypothesis 
2, the same conclusions hold when l1 V = at)o + g, where a is 
a non-negative constant and gEL I(R3

) is radially nonin­
creasing (resp. decreasing). 

Proof Assume Hypothesis 1. Then given positive 
numbers N

" 
N2 with N, + N2<No, there exists A = (A ,,A.2) 

in [0,00 ) 2 such that the unique densities PI,p2 that solve the 
Euler-Lagrange problem are given by 

Pi=r(W,,+Ai ), i=1,2, 

where w" is the unique solution of 

-l1w" + {3(w,,) = l1V, 

"w" (00) = 0", {3(w,,)EL I(R3
), 

where{3(w,,) =knw" -AI) +knw" -..1.2 ) [see (14)]. 
Lemma 3 shows that {3 satisfies the hypotheses of Proposi­
tion 3. Since l1Vis radiallynonincreasing, so is w" by Propo­
sition 3 (i). The strictly increasing assertion of Proposition 3 
(i) implies that Pi is radially decreasing whenever it is posi-
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tive. When Hypothesis 2 holds, the above argument goes 
through by appealing to Proposition 3 (ii). 0 

ACKNOWLEDGMENTS 

We are very grateful to Mel Levy, Rajeev Pathak, and 
John Perdew for their patient explanations and generous 
help in our efforts to understand spin-polarized Thomas­
Fermi theory. 

The first named author gratefully acknowledges the 
partial support of NSF Grant No. DMS-8620148. The sec­
ond named author gratefully acknowledges the partial sup­
port of the Louisiana Education Quality Support Fund, 
Contract No. 86-LBR-016-04. 

1L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927). 
2E. Fermi, Rend. Acad. Naz. 6, 602 (1927). 
3(a) E. H. Lieband B. Simon, Phys. Rev. Lett. 33, 681 (1973); (b) Adv. 
Math. 23, 22 (1977); (c) E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981). 

40. L. OliverandJ. P. Perdew, Phys. Rev. A 20, 397 (1979); O. Ounnars­
son, B. I. Lundqvist, and J. W. Wilkins, Phys. Rev. B 10,1319 (1974); S. 
Nordholm, J. Chern. Phys. 86, 363 (1987); J. P. Perdew, M. Levy, and O. 
S. Painter, "Chemical bond as a test of density-gradient expansions for 
kinetic and exchange energies," to appear. 

50. V. Oadiyak and Yu. E. Lozovik, J. Phys. B 13, 1531 (1980). 
6R. Pathak, Ph.D. thesis, University ofPoona, 1982. 
7J. A. Goldstein and O. R. Rieder, in Differential Equations in Banach 
Spaces, edited by A. Favini and E. Obrecht (Springer, Berlin, 1986), p. 
110. 

·Ph. Benilan and H. Brezis, "The Thomas-Fermi problem," in prepara­
tion; H. Brezis, in Contemporary Developments in Continuum Mechanics 
and Partial Differential Equations, edited by G. M. de la Penha and L. A. 
Medeiros (North-Holland, Amsterdam, 1978), p. 81; H. Brezis, in Vari­
ationaiinequalities and Complementarity Problems: Theory and Applica­
tions, edited by R. W. Cottle, F. Oiannessi, and J. L. Lions (Wiley, New 
York, 1980), p. 53. 

"E. Fermi and E. Amaldi, Mem. Accad. Ital. 6,119 (1934). 
100. R. Rieder, Ph.D. thesis, Tulane University, 1986; and an article to 

appear. 
11Ph. Benilan, H. Brezis, and M. O. Crandall, Ann. Scuola Norm. Sup. Pisa 

2,523 (1975). 
12 Th. Oallouet and J.-M. Morel, Nonlin. Anal. TMA 7,971 (1983). 

J. A. Goldstein and G. Ruiz Rieder 716 



                                                                                                                                    

Moment problem formulation of the simplified ideal magnetohydrodynamics 
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A fundamentally new method for determining the eigenvalues of linear differential operators is 
presented. The method involves the application of moment analysis and affords a fast and 
precise numerical algorithm for eigenvalue computation, particularly in the intermediate and 
strong coupling regimes. The most remarkable feature of this approach is that it provides 
exponentially converging lower and upper bounds to the eigenvalues. The effectiveness ofthis 
method is demonstrated by applying it to an important magnetohydrodynamics problem 
recently studied by Paris, Auby, and Dagazian [J. Math. Phys. 27, 2188 (1986)]. Through the 
very precise lower and upper bounds obtained, this approach gives full support to their 
analysis. 

I. INTRODUCTION 

In a recent work, Paris, Auby, and Dagazianl presented 
a thorough analysis of the simplified ideal magnetohydro­
dynamics (MHD) ballooning equation given below, based 
on the earlier ~ork by Antonsen, Ferreira, and Ramos2

: 

~ [(1 +X2) dY ] 
dx dx 

- [A +y(1 +x2) -~]Y=O. 
l+x 

(1.1 ) 

We will analyze this A-eigenvalue equation through a funda­
mentally new approach utilizing a moments equation deriv­
able from Eq. ( 1.1 ), together with non-negativity properties 
of the solutions to Eq. (1.1). In this manner we are able to 
transform the above system into a true moment problem. 3 

Through the use of well-known theorems arising from the 
traditional "moment problem," it will be seen that a highly 
effective, simple, and precise numerical algorithm for deter­
mining the A-eigenvalues can be realized. This type of analy­
sis has appeared elsewhere4-7; however, the special nature of 
the present MHD system requires some unprecedented re­
formulations quite different from those to be found in the 
cited references. 

There are three principal reasons for applying our mo­
ment formulaton to Eq. (1.1). First, since our method yields 
very narrow lower and upper bounds to the eigenvalues, we 
can unequivocably confirm the results of Paris, Auby, and 
Dagazian. Second, this approach is simple and readily im­
plementable numerically. Third, few researchers are aware 
of the generality of this technique. Its dissemination in the 
context of a physically important problem motivates this 
work in part. 

For simplicity we limit our presentation to the genera­
tion of the two lowest A( = - A - i)-eigenvalues. 

aj On leave of absence from Service de Physique Theorique. CEN-Saclay. 
France. 

II. A SPECIAL TRANSFORMATION 

Although Eq. (1.1) is nonsingular along the x axis, it 
has regular singular points in the complex-x plane at 
x = ± i. In addition, Eq. (1.1) is defined on the interval 
(a = - 00, b = + 00). At the end points, the physical solu­
tion must exhibit "rapid" decrease to zero. In general, on the 
basis of accumulated empirical data,4-7 the implementation 
of a moments analysis appears to be numerically more effec­
tive in a representation space in which the number of non­
end-point singular points is reduced or completely eliminat­
ed. Thus, with respect to Eq. (1.1), consider the 
transformation 

z=x/(1 +X2)1/2, (2.1) 

or 

(2.2) 

Note that the transformation is invertible and that end 
points map onto end points. Using 

~= (l_z2)3/2!!..., 
dx dz 

one can transform the original MHD problem to 

(1-r)3 d
2
y _z(1_r)2 dy 

dr dz 
- [A(1-r)+Y-j.l2(1-z2)2]y=O. (2.3) 

Clearly, the new problem is defined on the interval 
(a = - 1, b = + 1). Irregular singular points appear at the 
end points a = - 1 and b = 1 (while the singular points at 
±; have been mapped'to ±;oo). As will be seen below, 

because the physical solution decreases to zero "rapidly" at 
the transformed end points, the new irregular singular points 
atz = ± 1 will not affect the exponential convergence of the 
moments problem analysis. 

A simple asymptotic analysis ofEq. (1.1) shows us that 
the physical solutions must behave as 
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{
exp( - rlxl), r> 0, 

y(x) Ixl-:"" Ixl-1I2±N4+A, r=O. (2.4) 

Accordingly, 

{
exp[ -rlzl/(l-z2)1/2], r>O, 

y(z) Izj:1 (l_Z2)1I4±(1/2)~1I4+A, r=O. (2.5) 

Note that from the asymptotic relations, no positive solution 
can exist for A. < - 1. 

m(p+4) ={[ -2J.L2+A.+ (p+3)(3p+ 1O)]m(p+2) 

The moments of the physical solutions, m (p), must exist 
and be finite. 

m( p) = f~ 1 dz zPy(z). (2.6) 

A recursion relation for these moments follows from Eq. 
(2.3). In particular, upon multiplying Eq. (2.3) by zP and 
integrating by parts over the domain ( - 1,1), one finds for 
all r, 

+ [ - A. - r + J.L2 - (p + 1)( 3p + 5) ] m ( p) + P ( P - 1) m ( p - 2)}[ ( p + 5) 2 - J.L2] -I. (2.7) 

No end point contributions from y( ± 1), y' ( ± 1) appear 
because y(z) 's end point behavior insures that expressions of 
theformzP(l-r)qy(z) andzP(l-r)9y'(z) (q>l) van­
ish at z = ± 1. Note that this holds for all r values, includ­
ingr= O! 

III. MAKING USE OF THE POSITIVITY PROPERTIES OF 
THE SOLUTIONS TO THE SCHROOINGER EQUATION 

In the work of Paris, Auby, and Dagazian,1 it is shown 
how Eq. (1.1) and Eq. (2.3) can be transformed into a 
Schrodinger equation system given by 

d 2\f1 - - + q(;)\11 = A\fI, (3.1) 
d;2 

where 

x = sinh (;), \fI(;) = (cosh l /2 ;)y(x), 

q(;) = r cosh2; - (J.L2 - !)sech2;, 

and A = - A. - 1. It is known that for such systems, the 
lowest A-eigenvalue corresponds to a positive (\fI > 0) solu­
tion.4 Accordingly, one also has Yo(z) = So(z) > O. In addi­
tion, because of parity invariance, the next "excited" state 
(or next higher A-eigenvalue) must correspond to a solution 
with only one zero situated at the origin, YI(z) =ZSI(Z). 
Because of parity invariance, it also follows S; (z) (i = 0,1 ) 
are symmetric in z. This latter observation leads to further 
simplification ofEq. (2.7). Through a change of variables, 
one has 

mo(2p) = f~ 1 dz rPSo(z) , (3.2) 

= .r dw wPSO(WI/2)/WI/2, Z2 = w. 

=uo(p). (3.3) 

Note that for the above, ail the odd-order moments are zero. 
For the first excited state we have 

m l (2p+ I) = f~1 dzrp+1zSI(z) (3.4) 
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= 11 dw wPWI/2S1 (wI/2) 

=ul(p)· (3.5) 

Again, note that the even-order moments are zero for 
ml(p)· 

In terms of the U; ( p), i = 0,1, the moment recursion 
relation for the "ground" and "first" excited states becomes 

u;(p + 2) = [{ ~ ~i;:~ + i)(6p + 10 + 3i)}U;(P + 1) 

{
-A. - r + J.L2 } 

+ -(2p+l+i)(6p+5+3i) u;(p) 

+ 2p(2p - I + 2i)u; (p - I) ] 

X[(2p+5+i)2_J.L2]-I, (3.6) 

u;(O) = 1. (3.7) 

Equation (3.7) follows from the arbitrariness of norma liz a­
tion and S; (z)'s positivity. Note that the u-moments are mo­
ments of positive function measures (SoIwI/2,wI/2SI)' 

It will be noted that Eq. (3.6) defines a finite difference 
equation. Once U; (1) and A. are specified (for fixed J.L2,r 
values), all the moments are determined. This is called a "1-
missing moment problem.,,4 Thus for a I-missing moment 
problem, U; (I) is not known as a function of A.. However, 
unlike other systems we have examined4-7 for particular 
choices ofJ.L2, Eq. (3.6) actually defines a O-missing moment 
problem (where only A. needs to be determined). 

Consider theJ.L2 values for which the denominator in Eq. 
(3.6) can vanish. LetJ.L = 2q + 5 + i, for some integerq and 
a chosen value for i (0 or 1 ).It is known thatS; (W I

/
2

) exists 
and has finite nonzero moments. Thus we must have that the 
numerator expression for U; (q + 2) be zero. Hence if 
J.L = 2q + 5 + i, then 

0= [ - 2J.L2 + A. + (2q + 3 + i)( 6q + 10 + 3i)] U; (q + I) 

+ [ - A. - r + J.L2 - (2q + 1+ i)(6q + 5 + 3i)] 

Xu;(q) +2q(2q-l +2i)u;(q-l). 

Only if the above is satisfied will we have 
0< U; (2q + i) < co! Thus an additional constraint on the 
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moments is defined. For given A, Uj (1) is fixed, and the 
problem becomes a O-missing moment problem up to mo­
ment order U j (q + I)! 

As an example, let J-t = 5 (q = O,i = O). Then 

u(1} = (A + r - 20}/(A - 20). (3.8) 

A second application of the above philosophy leads to an 
important result. From Eq. (3.8) we see that if a ground 
state is to exist for A = 20, then the finiteness and positivity 
of U ( 1 ) require A + r - 20 = 0, or r = O. This is the same 
result quoted by Paris, Auby, and Dagazian.1 It should be 
noted that this is a special case of the general eigenvalue 
sequence for r = 0, 

A = (J-t - m)(J-t - m - I), (3.9) 

where m is a non-negative integer (notice A;;' -! always). 
I 

The complete solution in the r = 0 case is known (Le., Refs. 
1 and 2) since, for r = 0, the relevant equation can be re­
duced to a form of the hypergeometric equation. 

IV. RELEVANT THEOREMS 

Handy and Bessis4 have shown that use of the Hambur­
ger moment theorem,3 specified below, leads to a rapid algo­
rithm for calculating eigenvalues. Because the system in 
question, Eq. (2.3), is defined on a finite interval, the results 
in Ref. 4 need to be appropriately generalized. 

We state the Hamburger moment theorem3
: The neces­

sary and the sufficient conditions for a given set of moments 
u( p}, p;;'O, to be the moments of a non-negative function 
measure,j(x}, defined on ( - 00, + oo), are 

u(1} 

(

U(O) 

Dn[u(p}] =Det : 

u(1} 

u(2} u(n + 1) 
u(n} ) 

>0, for all n;;.O. (4.1 ) 

u(n} u(n + I} u(2n} 

The above are called Hankel-Hadamard determinants. 
If a functionj (w) is defined on a finite interval [a,b], then the necessary and sufficient conditions for it to be non-negative 

on [a,b] are obtainable as follows. Let j. (w) be defined so that 

{

arbitrary, for UXl[a, b], so long asf dx xPj. (x) exists, 
j.(w} = 

j(w}, if wE[a,b]. 

(4.2) 

The necessary and sufficient conditions for j. (w) to be non­
negative on (- oo,oo), and zero on the complement of 
[a,b], are that the functions j. (w), (w - a)j. (w), and 
(b - w}j. (w) all be non-negative for WE( - 00, + oo). 

This is immediately clear. Thus we can say that the neces­
sary and sufficient conditions for f( w) to be non-negative on 
[a,b] are 

(U(P) = fdW wPj(W»), 
Dn [u( p)] > 0, Dn [u( P + 1) - au( p}] > 0, 

and (4.3) 

D n [bu ( p) - u ( p + 1)] > 0, for all n ;;.0. 

V. DESCRIPTION OF THE ALGORITHM 

All the basic components of the general moments ap­
proach have been defined. Thus, for either the ground or first 
excited state (i = 0,1, respectively), one chooses fixed values 
forJ-t2 and r. From moment recursion relations in Eq. (3.6) 
one can readily generate the first P moments, u j ( p) 
( 1 <p<P). They will be polynomial functions of A and 
Uj (I) = u. Accordingly, the Hankel-Hadamard determi­
nants in Eq. (4.3) will also become polynomials in A and u. 
Note that from the w-integrations in Eq. (3.2) and Eq. 
( 3.4 ), the appropriate choices for the a and b parameters are 
a = 0 and b = 1. Thus we have 
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(n+ 1-.50 •• > 

Dn [uj(p)] = I Ci.~>(A)Uk, (5.1 ) 
k=O 

n+1 

Dn[uj(p+ 1)] = I Ci:>(A}uk, (5.2) 
k=O 

(5.3 ) 

The specific numerical algorithm proceeds as follows. 
An arbitrary A interval is specified [a"B]. A sufficiently nar­
row partitioning is defined. At each A point the polynomial 
determinants defined above are determined. That is, the C 
coefficients are numerically determined. The location of the 
real u roots are determined. In this manner one can assess if 
any u-space subregions exist satisfying the Hankel-Hada­
mard inequalities of Eq. (4.3) (only those determinants in­
volving moments of order at most P are considered). If such 
u-space subregions exist, then the associated A-partition 
point is a possible physical value. If no u-space subregions 
exist, then for that specific A-partition value one can say that 
it is not a possible physical value. In this manner both lower 
and upper bounds to A physical are determined. The results are 
given in the various tables. 

VI. CONCLUSION 

We have presented a simple and numerically effective 
technique for eigenvalue determination of linear differential 
systems. Our results confirm the analysis of Paris, Auby, and 
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TABLE I. Bounds for the ground state eigenvalue. 

Max. order 
of moments Lower A. Upper A. 

used, P bound bound 

o 50 3 - 58.2 -56.9 
4 - 57.90 - 57.27 
5 - 57.84 - 57.71 
6 - 57.831 - 57.792 
7 - 57.805 - 57.797 
8 - 57.800 3 - 57.797 8 
9 - 57.8000 - 57.798 I 

o 5 9 -7.942 -7.923 
12 -7.9295 -7.9264 
15 -7.9293 -7.9285 
18 -7.92918 -7.92902 

o 12 -2.73 -2.65 
18 -2.660 -2.652 
24 - 2.65448 - 2.65385 
28 - 2.654 36 - 2.653 98 

o 0.5 12 -2.0 - 1.7 
18 - 1.87 - 1.83 
24 - 1.848 - 1.839 

Dagazian l for those specific 1l2, y values quoted in the ta­
bles. These suggest that the overall analysis of Paris, Auby, 
and Dagazian is reliable. Our approach yields unequivocal 
narrow bounds for A.phYSical' As noted elsewhere,4-7 a mo­
ments analysis is specially designed to handle intermediate 
and strong coupling problems. This is readily apparent from 
Tables I-III. The larger y is, the faster is the rate of conver­
gence of our bounds. Also note that in our method, which 
parameters are fixed and which varied is inconsequential. 
We have adopted the point of view of Paris, Auby, and Daga­
zian in treating A. as the undetermined parameter. We could 
have just as easily switched things around and kept A fixed, 
while varying y .. 

TABLE II. Bounds for the ground state eigenValue. 

Max. order 
of moments Lower A. Upper A. 

used,P bound bound 

50 3 - 57.3 - 55.9 
7 - 56.87 - 56.85 
9 - 56.859 2 - 56.856 8 

5 10 -7.08 -7.06 
15 - 7.070 - 7.068 
18 - 7.0694 -7.0692 

10 -2.1 -1.8 
12 - 1.94 - 1.87 
15 - 1.893 - 1.875 
20 - 1.880 - 1.876 
24 - 1.8778 - 1.8775 

0.5 5 -2.4 6.2 
10 -1.4 -0.6 
15 - 1.16 - 1.09 
20 -1.116 - 1.102 
24 - 1.107 - 1.l04 
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TABLE III. Bounds for the first excited state eigenvalue. 

Max. order 
of moments Lower A. Upper A. 

11
2 r used, P bound bound 

0 50 3 -75.0 -71.1 
7 -72.90 -72.84 
9 -72.858 -72.854 

0 5 l2 - 13.21 - 13.18 
17 -13.2043 - 13.2027 

0 15 -5.46 - 5.32 
18 - 5.38 - 5.33 
22 - 5.350 - 5.340 

0 0.5 15 -4.2 - 3.8 
24 -3.92 - 3.88 

50 3 -74.0 -70.0 
7 -72.06 -72.01 
9 -72.017 -72.013 

5 13 -12.542 - 12.530 
17 - 12.5414 - 12.5400 

10 - 5.5 -4.7 
18 -4.86 - 4.82 
22 - 4.836 - 4.827 

0.5 15 -3.8 -3.4 
24 -3.46 -3.43 

During the space of time since the original communica­
tion of this work, important developments have transpired 
which further the implementation of the Hankel-Hadamard 
moments approach. In particular, it is possible to develop an 
equivalent linear formulation of the nonlinear Hankel-Ha­
damard theory.8,9 This linearization allows us to use linear 
programming methods to solve missing moment problems of 
any order. Such methods can be used in the present case. 
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ERRATUM 

Erratum: The diffraction of waves by a penetrable ribbon [J. Math. Phys. 
4,65(1963)] 

c. Yeh and C. S. Kim 
Electrical Engineering Department, University 0/ California at Los Angeles, California 90024 

(Received 9 December 1987; accepted for publication 16 December 1987) 

The problem of the scattering of electromagnetic waves 
by an elliptical dielectric cylinder was formulated and solved 
in the original paper. Numerical examples were also present­
ed there. Recently, we discovered a typographical error in 
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FIG. 2. Polar diagrams for waves (IH~ I) scattered by a dielectric ribbon 
with k ~tf = 10. The incident electric vector is polarized in the axial direc­
tion. (Arrows indicate the direction of incident waves.) 
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FIG. 4. Polar diagrams for waves (IE~ I> scattered by a dielectric ribbon 
with k ~ti 10. The incident magnetic vector is polarized in the axial direc­
tion. (Arrows indicate the direction of incident waves.) 

the computer program affecting the presented numerical re­
sults. The purpose of this erratum is to provide the corrected 
numerical results. They are shown in Figs. 2-5 and in 
Table I. 
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FIG. 3. Polar diagrams for waves (IH~ I) scattered by a dielectric ribbon 
with k ~ tf = 1.0. The incident electric vector is polarized in the axial direc­
tion. (Arrows indicate the direction of incident waves.) 
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FIG. 5. Polar diagrams for waves (IE ~ I) scattered by a dielectric ribbon 
with k ~tf = 1.0. The incident magnetic vector is polarized in the axial di­
rection. (Arrows indicate the direction of incident waves. ) 
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TABLE I. The rate of convergence for 50 = 0.2, kr// = (10) 1/2, and e = 90". 

A 2n A2n + I 
n m=2 m=3 m=4 m=2 m=3 m=4 

0 -0.151 -0.167 - 0.166 -0.254 - 0.261 -0.261 
+0.328j +0.333i +0.333i +0.318i +0.326i + 0.326i 
+ 0.137X 10- 1 + 0.678 X 10- I + 0.675 X 10- 1 + 0.400 X 10- 1 + 0.408 X 10- 1 + 0.408 X 10- 1 

+ 0.212i + 0.126i + 0.127i -0.142XIO- lj - 0.205 X IO- li - 0.205 X IO- li 
2 - 0.107X 10- 2 -0.105xlO-2 -0.307xto-3 - 0.307 X 10- 3 

- O.l09XIO- li - O.1ll X IO- li - 0.261 X lO-3j - 0.265 X lO- 3i 
3 + 0.330X lO-~ + 0.443 X 10-6 

+ 0.271 X 1O-4i + 0.791 X 1O-1j 

B2n+2 B 2n + 1 

n m=2 m=3 m=4 m=2 m=3 m=4 

0 - 0.405 X lO-3 - 0.405 X lO-3 - 0.405 X 10-3 - 0.375 X lO-2 - 0.375X lO-2 - 0.375X lO-2 
+O.l92XlO- lj +O.l92xlO- lj +O.l92XlO- lj + 0.593X lO-li + 0.594X to-Ii +0.594xlO- li 
+0.152XlO-4 + 0.153x 10-4 +O.l53xlO- 4 + 0.373 X lO-3 + 0.375 X to-3 + 0.375X 10- 3 

- O.44DX 1O-3i - 0.469 X 10-3i - 0.469 X lO-3j - 0.216X 1O-2i -0.255XlO-2j - 0.255X 1O- 2i 
2 - 0.421 X 10-1 - 0.421 X lO-1 -0.365XlO-5 - 0.365 X lO-5 

- O.l72X lO-5j - 0.175X 1O-5i - 0.427 X lO-4i - 0.438 X lO-4j 
3 + 0.266 X lo- \0 + 0.534 X lo-· 

- O. lO5 X lO-8j - 0.571 X 1O-1i 
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